
problem worldwide. HBV is not directly cytotoxic to 
infected hepatocytes; the clinical outcome of infection 
results from complicated interactions between the virus 
and the host immune system. In acute HBV infection, 
initiation of a broad, vigorous immune response is res
ponsible for viral clearance and selflimited inflammatory 
liver disease. Effective and coordinated innate and 
adaptive immune responses are critical for viral clearance 
and the development of longlasting immunity. Chronic 
hepatitis B patients fail to mount efficient innate and 
adaptive immune responses to the virus. In particular, 
HBVspecific cytotoxic T cells, which are crucial for HBV 
clearance, are hyporesponsiveness to HBV infection. 
Accumulating experimental evidence obtained from 
the development of animal and cell line models has 
highlighted the importance of innate immunity in the 
early control of HBV spread. The virus has evolved 
immune escape strategies, with higher HBV loads and 
HBV protein concentrations associated with increasing 
impairment of immune function. Therefore, treatment 
of HBV infection requires inhibition of HBV replication 
and protein expression to restore the suppressed 
host immunity. Complicated interactions exist not 
only between innate and adaptive responses, but also 
among innate immune cells and different components of 
adaptive responses. Improved insight into these complex 
interactions are important in designing new therapeutic 
strategies for the treatment HBV infection. In this 
review, we summarize the current knowledge regarding 
the crosstalk between the innate and adaptive immune 
responses and among different immunocytes in HBV 
infection.
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Abstract
Hepatitis B virus (HBV) infection is a major public health 
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recognition at the early stage of infection. HBVspecific 
Tcell responses are timely and efficiently induced in 
acute selflimited infections but are deeply exhausted 
in chronic hepatitis B. The tolerogenic effect of the liver 
environment and the persistent exposure of T cells to 
high antigen loads play a key role in the pathogenesis of 
Tcell inhibition in chronic HBV infection. Combination of 
reduction of HBV and virus antigen loads and restoration 
of the antiviral Tcell function may represent a strategy 
to cure chronic HBV infections.

Wang L, Wang K, Zou ZQ. Crosstalk between innate and 
adaptive immunity in hepatitis B virus infection. World J Hepatol 
2015; 7(30): 2980-2991  Available from: URL: http://www.
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INTRODUCTION 
Hepatitis B virus (HBV) infection is a major public health 
problem worldwide. Approximately 30% of the world’s 
population show serological evidence of current or past 
HBV infection and 350 million people are chronically 
infected[1]. The outcome of HBV infection varies widely 
among infected patients from resolved acute infection, 
chronic hepatitis, and liver cirrhosis to hepatocellular 
carcinoma. Infections in approximately 5% of adults 
and 95% of neonates become persistent[2]. HBV itself 
is not directly cytotoxic to infected hepatocytes and the 
clinical outcome of infection results from complicated 
interactions between the virus and the host immune 
system[3-5]. The immune responses to HBV antigens, 
which are mediated through complex interactions 
between the innate immune and adaptive immune 
systems, are responsible both for viral clearance and 
disease pathogenesis. In acute HBV infection, a broad, 
vigorous immune response results in viral clearance 
associated with acute, self-limited inflammatory liver 
disease[6]. In contrast, chronic hepatitis B (CHB) patients 
fail to mount efficient innate and adaptive immune 
responses to the virus, with HBV-specific cytotoxic T cells 
(CTLs) in particular, being hyporesponsiveness to HBV 
infection[7,8]. The role of adaptive immune responses 
in the control of HBV infection is widely accepted, 
with HBV-specific T cell responses being essential for 
the termination of HBV infection. Furthermore, CD4+ 
T cells serve as the chief regulators of the adaptive 
immune response to HBV[5]. The innate immune system 
is the first line of active host defense against viral 
infection, and once activated, is linked to a favorable 
clinical outcome and subsequent robust adaptive 
immune responses[8]. The induction of innate immune 
responses by HBV during the phase of early infection is 
a longstanding controversy. The development of animal 
and cell culture models has yielded great improvements 
in our understanding of the innate immune responses 
during HBV infection. Furthermore, the strategies emp-

loyed by HBV to counteract the innate antiviral pathways 
are being gradually recognized. It is known that effective 
recognition of viral infection and successive activation 
of antiviral innate immune responses are vital for 
host antiviral defense and largely depend on multiple 
regulators, including Toll-like receptors (TLRs)[9,10] 
and cytokines[11]. Efficient control of virus infections 
requires the coordinated actions of both innate and 
adaptive immune responses. Mounting effective innate 
and adaptive immune responses is critical for viral 
clearance and the development of long-lasting immunity. 
Complicated interactions exist not only between the 
innate and adaptive systems, but also among innate 
immune cells and among different components of 
adaptive responses.

A better understanding of the interplay between 
innate and adaptive immune responses and between 
the host immune response and the virus is crucial for 
the development of new antiviral therapeutic strategies 
aimed at eradicating chronic infections.

In this review, we summarize the current knowledge 
regarding the interactions between the innate and 
adaptive immune systems and among different immuno-
cytes during HBV infection.

TLRS
TLRs are a group of highly conserved molecules that 
sense pathogen-associated molecular patterns (PAMPs). 
So far in humans and mice, TLR1 to 13 have been 
identified, which are extensively expressed in various 
immune and non-immune cells. Stimulation by their 
ligands initiates the activation of complex intracellular 
signal transduction networks and innate and adaptive 
immune-related cells, including natural killer (NK) cells, 
NK-T cells, monocytes, dendritic cells (DCs), T cells, B 
cells, and Tregs, as well as the production of antiviral 
effector interferons (IFNs) and proinflammatory cyto-
kines[12]. TLRs play important roles in innate immune 
responses[13] to viral infections, including HBV. TLRs can 
activate DCs, improve antigen presentation, and initiate 
T cell immune responses. In vivo, TLRs also directly 
modulate HBV-specific T and B cell responses, which 
are essential for the termination of HBV infection[14]. 
Therefore, TLR responses are cell type-specific.

TLRs and innate immunity
Innate immunity is important in controlling infection 
immediately after contact with the pathogen and to 
initiate efficient development of an adaptive immune 
response. TLRs play a key role in the activation of 
innate immune responses to infectious agents[13]. The 
TLR family consists of intracellular and cell surface 
subgroups. The intracellular subgroup (TLR3, TLR7, TLR8 
and TLR9) is localized in endosomes and recognizes 
nucleic acids, such as viral DNA or RNA, while the cell 
surface subgroup (TLR1, TLR2, TLR4/MD-2, TLR5 and 
TLR6) recognizes extracellular bacterial and fungal cell 
wall components, as well as some viral proteins[13-17]. 
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Binding of TLR agonists to their receptors initiates the 
activation of complex networks of intracellular signal 
transduction pathways that leads to the induction of 
type Ⅰ IFNs (IFNα/β), proinflammatory cytokines, and 
costimulatory molecules, which are involved in antiviral 
responses[18,19]. The importance of TLR receptor signaling 
in controlling HBV replication was confirmed by a study 
in which a single intravenous injection of ligands specific 
for TLR3, TLR4, TLR5, TLR7 and TLR9 provided efficient 
inhibition of HBV replication in a non-cytolytic and IFNα/
β-dependent manner in HBV transgenic mice[20].

TLRs and DCs and peripheral blood mononuclear cells
TLRs are abundantly expressed on the surface of DCs, 
especially peripheral blood monocyte-derived DCs 
(moDCs). Plasmacytoid dendritic cells (pDCs) play a 
crucial role in triggering antiviral immunity through 
their ability to capture and process viral antigens and 
subsequently induce adaptive immune responses 
and the production of type Ⅰ IFNs. pDCs are the key 
sensors of viral infections through expression of both 
TLR7 and TLR9[21]. Myeloid DCs (mDCs) respond to 
TLR1, -2, -4 and -9 ligands resulting in upregulation 
of CD40 and activation of allogeneic T cells[22]. TLR9 
detects intracellular viral double-stranded (ds)DNA, 
which leads to the activation of nuclear factor κB (NF-
κB) via the myeloid differentiation primary response 88 
(MyD88) pathway, resulting in the activation of immune 
responses against HBV. However, expression of TLR9, 
MyD88, IRAK1, TRAF6, and NF-κB in peripheral blood 
mononuclear cells (PBMCs) of CHB patients is significantly 
decreased in comparison with healthy controls[23,24], which 
may result in an attenuated responses that ultimately 
lead to long-lasting HBV infection[25]. Reduced TLR9 
expression in pDCs of CHB patients is associated with 
impaired IFNα production[26]. TLR2 and TLR4 mediate the 
activation of the same signaling pathways downstream of 
MyD88, including NF-κB, MAPK, and PI-3k/Akt pathways 
to inhibit hepadnaviral replication. One study indicated 
that expressions of TLR2 and TLR4 were downregulated 
in PBMCs during HBV infection[27], while another study 
showed that expression of TLR2 and TLR-4 in moDCs 
was significantly increased with disease progression[28]. 
The role of TLR2 and TLR-4 in the pathogenesis of 
requires further evaluation.

TLRs and NK cells
NK cells possess receptors allowing them to sense and 
respond to viral and bacterial patterns, including TLRs. 
Upon TLR activation (mainly TLR3 and TLR7), NK cells 
produce IFNγ[29-31], which also contributes to deleterious 
inflammation if produced in excessive amounts[29]. NK 
cells in CHB patients have an impaired IFNγ response to 
TLR9 stimulation compared to healthy controls although 
no differences have been observed in responses to 
the other TLR ligands. This suggests that multiple 
mechanisms may be involved in NK activation[32] and 
although viral clearance is suppressed in chronic HBV 
infection, the potential to mediate tissue injury is 

maintained.

TLRs and non-parenchymal cells 
Non-parenchymal cells (NPCs), like Kupffer cells (KCs) 
and liver sinusoidal endothelial cells (LSECs), also 
participate in innate immune responses by producing 
various cytokines, including tumor necrosis factor-α 
(TNF-α) and IFNβ[28] in response to TLR signaling. 
Isogawa et al[20] demonstrated the involvement of 
NPCs rather than hepatocytes in antiviral activation 
induced by TLR ligands. HBV is recognized by the NPCs 
of the liver, mainly macrophages (KCs), although they 
are not infected. KCs respond to all TLR ligands by 
producing TNF-α or interleukin-6 (IL-6), to TLR3 and 
TLR4 ligands by producing IFNβ[22], to TLR1 and TLR8 
ligands by upregulating major histocompatibility complex 
(MHC) class Ⅱ and costimulatory molecules, and to 
TLR1, -2, -4 and -6 ligands by inducing high levels of 
T cell proliferation and IFNλ production in the mixed 
lymphocyte reaction[22]. 

LSECs are liver-resident antigen-presenting cells 
that are capable of antigen cross-presentation and 
induction of CD8+ T cell tolerance or immunity under 
different conditions[33,34]. Liu et al[35] demonstrated that 
pretreatment of LSECs with a TLR1/2 ligand or LPS 
(TLR4 ligand) relieved their suppressive functions to 
induce T cell immunity, while Wu et al[22] suggested 
that, on stimulation by TLR ligands, LSECs have similar 
responses to KCs. Another study that demonstrated 
that, among different TLR ligands, hepatic NPCs show 
significant production of IFNβ only in response to TLR3 
stimulation[36]. However, in the presence of HBsAg, TLR-
induced expression of IFNγ, interferon sensitive genes 
and proinflammatory cytokines in murine KCs and LSECs 
was efficiently suppressed, whereas the expression of 
anti-inflammatory cytokines was enhanced[37]. 

Although regarded as a type of antigen-presenting 
cell (APC), NPCs display a restricted TLR-mediated 
activation profile compared with “classical” APCs. There-
fore, antiviral effects induced by TLR receptor activation 
should be carefully evaluated in therapeutic design to 
maintain the balance between viral control and liver 
injury. Furthermore, coordination of innate and adaptive 
immune responses may be highly important for the 
control of viral infection[19].

TLRs and adaptive immunity
Several studies have demonstrated that TLR2 is 
expressed by activated and memory CD4+ and CD8+ 
T cells and serves as a costimulatory molecule[38,39]. In 
some studies, TLR3 and TLR9 expression on human 
CD8+ T cells was also demonstrated to promote IFNγ 
production upon stimulation[40,41]. However, one study 
showed that, although all TLRs were able to induce CD8+ 
T cell activation in vitro, there were profound differences 
in their CD8+ T cell activation capacity in vivo. TLR3 and 
TLR9 induced CD8+ T cell activation, while, TLR2 and 
TLR4 were not only incapable of inducing CD8+ T cell 
priming, but also inhibiting CD8+ T cell expansion[42].  
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IFNs
IFNs represent one of the first lines of host defense 
against invading pathogens. As key components of the 
innate immune system, IFNs have been demonstrated 
to restrict HBV replication by affecting multiple steps 
in the viral life cycle, including HBV RNA synthesis, 
pgRNA encapsulation, the turnover rate of viral proteins, 
and modulation of covalently closed circular (ccc)DNA 
formation[49,50] by inducing numerous IFN-stimulated 
genes[51]. IFNs are classified into three groups, types Ⅰ, 
Ⅱ and Ⅲ, based on the structure of their receptors on 
the cell surface[47]. The early phase of viral infection is 
characterized mainly by the production of type Ⅰ IFNα/β, 
and NK cell activation. The production of type Ⅰ IFNs can 
be triggered directly by virus replication through cellular 
mechanisms that detect the presence of viral RNA or 
DNA. The main sources of IFNα/β are infected cells and 
pDCs, whereas IFNγ is produced primarily by NK and 
NKT cells[52]. IFNβ has also been identified as a major 
antiviral factor produced by NPCs in response to TLR3[36]. 
Recombinant IFN (rIFN)-α has been approved and 
successfully used as a standard treatment for chronic 
HBV infection[48]. Furthermore, treatment of the HBV-
producing hepatocytes with rIFN-γ and rTNF-α efficiently 
suppresses HBV replication without cytolysis[53]. In 
addition, IFNs have immunomodulatory functions as 
indicated by the ability of IFNα treatment to recover 
HBV-impaired hepatocyte-intrinsic innate immunity[54].

TNF-α
TNF-α is another major antiviral cytokine which, like 
IFNγ, also stimulates adaptive immunity and the 
antiviral effects of CTLs[53,55]. The absence of TNF-α or 
early treatment with a TNF receptor blocker reduces 
viral clearance, persistently maintains elevated HBV 
viral load and increases expression of the inhibitory 
receptor, programmed death-1 (PD-1) in CD8+ T cells 
in a mouse model[56,57]. These results suggest that 
HBV is reactivated during therapy with TNF-α-blocking 
agents in clinical practice. In addition to the induction 
of non-cytopathic suppression and clearance of HBV in 
animal models, TNF-α rapidly blocks HBV replication by 
promoting destabilization of pre-existing cytoplasmic 
viral nucleocapsids containing viral RNA and DNA, as 
well as of empty nucleocapsids[57].

IL-6
Sodium-taurocholate cotransporting polypeptide (NTCP) 
has been identified as an HBV-specific receptor. Studies 
have shown that NTCP-mediates HBV entry is markedly 
inhibited by IL-6, with a strong inhibition of long-term 
HBsAg secretion and a profound reduction in intracellular 
HBV cccDNA[58]. Hösel et al[59] demonstrated that 
recognition of HBV patterns by liver NPCs results in IL-6-
mediated control of HBV infection at the transcriptional 
level. In the early phase of infection, IL-6 rather than 
IFN mediates control of the virus, limiting activation of 
the adaptive immune response and preventing death of 

B cells represent an important link between the 
adaptive and innate immune systems in that they 
express both antigen-specific B cell receptors (BCRs) as 
well as various TLRs[43]. Conventionally, signaling through 
the BCR initiates a sequence of events that are necessary 
for B cell activation and differentiation of. In combination 
with BCR signaling, TLR signaling plays multiple roles 
in B cell differentiation and activation and the outcome 
is largely context-dependent[44]. However, activation of 
resting B cells by simultaneous involvement of TLR-2 
and the costimulatory molecules CD40 and CD86 could 
be BCR-independent[45,46]. Expressions and activation of 
TLRs in immune cells in HBV infection are illustrated in 
Figure 1. 

CYTIKINES
Cytokines and chemokines play a crucial role in initi-
ating, maintaining, and regulating immunological home-
ostasis and inflammatory processes. Cytokines are 
released by many different cell types and activate cells 
of both the innate and adaptive immune system[47]. 
Cytokine-mediated immune responses play a pivotal 
role in determining the clinical outcome of HBV infection. 
Different patterns of serum cytokines and chemokines 
are associated with different phases of HBV infection. 
Non-cytolytic intracellular viral inactivation by IFNγ and 
TNF-α play an important role in the clearance of HBV in 
resolved acute HBV infection without killing infected cells. 
The recognition of PAMPs by PRRs such as TLRs, RIG-I 
like receptors, NOD-like receptors results in activation 
of intracellular pathways and leads to the production 
of antiviral, immunoregulatory and proinflammatory 
molecules[48].

TLRs

DCs

Controlling HBV replication

Type Ⅰ IFNs, proinflammatory 
cytokines and chemokines, ISGs

PRRsrelated adaptors, such as MyD88, 
RIGI/MDA5, IRF3, IRF7, NFκB

NK cells Liver 
NPCs

PBMCs CD8+ 
T cells

B cells

Figure 1  Expressions and activation of toll-like receptors in innate 
and adaptive immune cells in controlling hepatitis B virus infection. 
HBV: Hepatitis B virus; NPCs: Non-parenchymal cells; NK: Natural killer; 
IFN: Interferon; TLRs: Toll-like receptors; ISG: Interferon-stimulated genes; 
RIG-I: Retinoic acid inducible gene I; IRF: Interferon-regulatory factors; NF-
κB: Nuclear factor κB; PBMCs: Periperal blood mononuclear cells; MDA5: 
Melanoma differentiation associated gene 5; DCs: Dendritic cells.
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HBV-infected hepatocytes[59].

IL-12
IL-12 is an immunomodulatory cytokine that promotes 
cellular immunity. Research suggests that IL-12-based 
vaccination therapy strongly enhances hepatic HBV-
specific CD8+ T cell responses, restores systemic HBV-
specific CD4+ T cell responses and activates HBsAg-
specific follicular Th-germinal center B cell responses, 
resulting in IFNγ secretion and anti-HBs antibody 
production[55]. Studies have also shown that IL-12 
initiates LSEC-mediated CD8+ T cell immunity[35].

IL-18
IL-18 is produced mainly by activated macrophages, and 
like IL-12, induces IFNγ and TNF-α. It has been shown 
that IL-18 inhibits HBV replication in hepatoma cell lines 
and in the liver through induction of IFN-γ production 
by NK cells and T cells. HBeAg protein may suppress IL-
18-mediated NF-κB signaling in NK and hepatoma cells 
and inhibit expression of IFNγ[60], which contributes to 
the establishment of HBV persistent infection. Studies 
have shown that IL-18 gene polymorphisms affect 
susceptibility to HBV infection and are associated with 
different outcomes of HBV infection. However, the results 
from other studies are conflicting. Motavaf suggested 
that the IL-18 genotype -607 A/A is associated with 
susceptibility to chronic HBV infection[61], while Karra 
indicated that it may be protective against HBV infection 
and associated with spontaneous clearance[62]. Thus, the 
effects of this IL-18 genotype on HBV infection remain to 
be fully elucidated.

IL-22
Despite hepatoprotective and anti-fibrotic functions 
in acute liver injury models, IL-22 exacerbates liver 
inflammation and fibrosis in chronic HBV-infected 
patients and HBV transgenic (Tg) mice by recruiting 
Th17 cells into the liver. IL-22 also induces upregulation 
of numerous IL-22 pathway-associated proinflammatory 
genes in HBV-infected liver tissues and exerts mito-
genic and anti-apoptotic effects on hepatocytes[63]. 
Furthermore, IL-22 depletion was shown to significantly 
inhibit recruitment of antigen-non-specific inflammatory 
cells into the liver in HBV Tg mice, while, IFNγ mediated 
non-cytopathic inhibition of virus replication initiated by 
HBV-specific cytotoxic T cells was not affected[64]. This 
indicates that IL-22 has no direct inhibitory effects on 
virus replication.

Transforming growth factor-β and IL-10
Transforming growth factor (TGF)-β is an important 
cytokine for the maturation and differentiation of 
many different immune cells in the liver. This cytokine 
mediates dual immunoregulatory functions involving 
induction of proinflammatory or anti-inflammatory 
responses in cooperation with other soluble factors. 
It suppresses differentiation of Th1 and Th2 cells and 
promotes development of the Th17, Th9, and the Treg 

phenotypes[64]. Thus, TGF-β plays a dual role in HBV 
infection by suppressing immune responses against 
viral infection and inhibiting viral replication. TGF-β1 
suppresses HBV replication primarily through trans-
criptional inhibition of pre-genomic RNA[65]. KCs in HBV-
carrier mice express high levels of IL-10 and mediate the 
induction of systemic tolerance in an IL-10-dependent 
manner[66]. Blockade of IL-10 restores NK cell effector 
function in acute HBV infection, indicating that the 
immunosuppressive cytokine environment in chronic HBV 
infection may inhibit the ability of NK cells to produce 
IFNγ and subsequent activation of CD8+ T cells[67]. NK 
cells and regulatory B (Breg) cells also produce elevated 
IL-10 in CHB[68].

Other cytokines
IL-21, derived from HBV-specific CD4+ T cells plays 
key roles in sustaining CD8+ T cells and promoting 
B cell responses that are essential for effective HBV 
control[69]. IL-21 is not only mediates direct and effective 
suppression of HBV replication, but also reduces HBV 
replication by inhibiting IL-10 secretion[70]. However, 
as a mediator of inflammation, IL-21 is also involved 
in the development of HBV-induced liver cirrhosis and 
exacerbating liver injury[71].

IL-35 is a recently identified potent immunosu-
ppressive cytokine of the IL-12 family, which is secreted 
by regulatory T (Treg) cells and the newly reported Breg 
cells. IL-35 suppresses the proliferation of HBV antigen-
specific cytotoxic T-lymphocytes and IFNγ production in 
vitro and decreases the proliferation of CD4+CD45RA+ 
naïve T cells and the expansion of CD11c+ DCs ex vivo. 
High expression of IL-35 in CD4+ T cells may be one of 
the factors involved in the inhibition of cellular immune 
responses in chronic HBV infection[71-73].

DCS AND OTHER IMMUNE CELLS
DCs are the most efficient professional APCs, which 
stimulate the initial T cell activation and proliferation. 
Typically, immature DCs capture and process antigens to 
peptides which are then presented in the context of MHC 
class Ⅱ or class Ⅰ molecules. It is generally accepted 
that the function of DCs of patients with chronic HBV 
infection is impaired, resulting in more tolerogenic rather 
than immunogenic responses, which may contribute 
to viral persistence. However, whether DCs in chronic 
HBV patients are phenotypically and functionally equal 
to DCs from healthy donors is still open to discussion. A 
few studies have shown that the frequency and function 
of ex vivo-analyzed mDCs and pDCs are largely intact 
in patients with HBV infection and similar to those of 
healthy donor DCs, with the exception of reduced IFNα 
production by pDC from CHB patients[74]. Treatment of 
MoDCs with HBsAg resulted in enhanced cell surface 
expression of CD80, CD83, CD86 and MHC class Ⅱ, 
and increased production of IL-12 p40, IL-12 p70, and 
IL-10[75]. Nevertheless, other studies showed that the 
pDCs isolated from CHB patients have lower expression 
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of HLA-DR and the costimulatory molecules CD80 and 
CD40, leading to low allo-stimulatory function, and lower 
levels of IFN-α and IL-12 production[76-78]. The major role 
of DCs in CHB immunopathogenesis mainly involves 
their interaction with other cells of the innate or adaptive 
immune systems.

DC s and NK cells
NK cell functions are closely related to those of DCs. 
DCs play a crucial role in the NK cell activation and a 
reciprocal functional interaction between NK cells and 
either pDCs or mDCs may play an important physio-
logical role in the regulation of both innate and adaptive 
immune responses[79-81]. DCs efficiently enhances NK 
cell expression of CD69, proliferation, IFNγ secretion 
and cytotoxic activity. Studies have suggested that 
membrane-associated molecules, as well as soluble 
factors such as IL-12, TNF-α and type Ⅰ IFNs, contribute 
to DC-mediated NK cell activation[82] and subsequent 
adaptive immune responses. CHB patients display a 
diminished functional interaction between poly(I:C)/
IFNγ activated mDC and NK cells due to impaired mDC 
function and reduced IFNγ production compared to 
those of healthy individuals. Furthermore, restoration of 
TLR3-activated mDC activity leads to improved NK cell 
function, which underlies the impaired DC-induced NK 
cell dysfunction in CHB[83].

NK cells also promote the DCs maturation and mar-
kedly augment their capacity to produce proinflamma-
tory cytokines and to stimulate T cell responses. The 
NK cell-mediated effects on DCs are dependent on 
cell membrane-associated molecules, such as NKp30 
and soluble factors, such as TNF-α and IFNγ[82]. The 
intrahepatic pool of NK cells also plays a key role in the 
regulation of DC function in CHB patients[80]. Therefore, 
it can be speculated that enhancing this reciprocal 
interaction will reinforce the innate and thus, the adaptive 
immune response, which may contribute significantly to 
achieving effective antiviral immunity[81].

DCs and HBV-specific CD8+ T cells
Experimental evidence has shown that HBV-specific 
T cell responses are essential for the control of HBV 
infection. In chronic HBV infection, virus-specific CD8+ 
T cells are recruited to the liver, but are functionally or 
quantitatively impaired[84]. Typically, DCs activate resting 
T cells to initiate immune responses. Impaired DC 
function in patients with CHB may lead to insufficient 
T cell responses to HBV, which may be associated with 
persistent viral infection. HBV particles and purified 
HBsAg both contribute to the mDC dysfunction[85,86] and 
inhibit the antiviral function of autologous lymphocytes 
manifested by decreased IFNγ and IL-2 production and 
increased IL-10 secretion. A recent study demonstrated 
that HBcAg-pulsed DCs derived from CHB patients 
exhibited a stronger capacity to stimulate autologous 
CD4+ and CD8+ T cells to release IFNγ and induce HBV 
core 18-27 specific CTLs[87]. Furthermore, CpG-activated 
pDCs act synergistically in vitro with HBcAg-pulsed 

moDCs (core-DC) in inducing autologous HBV-specific 
CD8+ T cell proliferation and IFNγ production[88]. Thus, 
mature DCs efficiently induce Th1 polarization of T cells 
and generate HBcAg-specific CTLs. In addition, liver-
resident CD103+ DCs are also highly immunogenic in 
hepatotropic viral infections and serve as a major APC 
to support the local CD8+ T cell responses[89].

DCs and Treg cells
Circulating CD4+ CD25+ Tregs have been demonstrated 
to maintain immunotolerance and suppress antigen-
specific or antigen-non-specific T cell responses. In CHB 
patients, the frequency of CD4+ CD25 (high) Tregs is 
increased and correlates positively with serum viral load 
and has been shown to suppress HBV antigen-stimulated 
autologous PBMC proliferation and IFNγ production in 
vitro[90]. In CHB patients, DCs induce the expansion of 
Tregs, which continue to express high levels of forkhead 
box P3 (Foxp3) protein[91]. Furthermore, Tregs induced 
by NK-primed DCs are capable of inducing a suppressor 
effect via the negative co-stimulation of PD-1[92]. On the 
other hand, when triggered by a specific antigen, Tregs 
act on immature DCs via a feedback mechanism to 
block the upregulation of the costimulatory molecules, 
CD80 and CD86[91].

NK CELLS, NKT CELLS AND ADAPTIVE 
CELLS
NK cells represent the main effector cell population 
involved in innate immune responses against intra-
cellular pathogens and tumor cells through their cytolytic 
activity and production of cytokines. NK cells are 
enriched in the liver, with a frequency of 30%-50% of 
intrahepatic lymphocytes in humans, which is 10-12-fold 
higher in CHB patients compared to healthy controls[93]. 
NKT cells share characteristics with innate lymphocytes 
and classic NK cell markers that link innate and adaptive 
immunity[94,95]. CD1d-restricted invariant NKT (iNKT) cells 
are a group of innate-like regulatory T cells, which play a 
central role in the regulation of the liver environment[96]. 
In addition to the direct killing of viral-infected cells 
without antigen-specific priming, NK cells regulate 
adaptive immune responses by producing interferon 
IFNγ, TNF-α and immunoregulatory cytokines[97]. The 
ability of NK cells to modulate T cell responses can be 
mediated through direct T-NK interactions, cytokine 
production, or indirectly through DCs and other cell 
types. Early NK cell interactions with other immune 
cells can have long-lasting effects on the number 
and quality of memory T cells, as well as impacting 
the exhaustion of T cells during chronic infections[98]. 
Evidence supporting the role of NK cells in acute HBV 
infection is conflicting. One study demonstrated that the 
activation and cytokine-producing function of NK cells 
was impaired in acute HBV patients[69], while another 
study demonstrated that NK cell activation and the 
development of NK and NKT cell responses is earlier 
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than that of HBV-specific T cells, which may contribute 
to limiting the spread of HBV and lead to the timely 
induction of adaptive responses[99].

It is becoming increasingly apparent that NK cells 
exert a detrimental effect on the host during chronic 
HBV infection. As reviewed by Schuch et al[100], NK cells 
regulate adaptive immune responses by exhaustion of 
HBV-specific CD8+ T cells, probably by producing IL-10 
and TGF-β on activation[101-104], upregulation of tumor 
necrosis factor-related apoptosis-inducing ligand[105] 
and by diminishing APC function during persistent virus 
infection[106]. NK cell depletion can improve memory T 
cell formation[107] and control persistent infection[108]. 
The absence of the inhibitory receptor 2B4 on NK cells 
resulted in a reduced virus-specific CD8+ T cell response 
that led to prolonged viral persistence[109]. Human 
regulatory NK cells (NKreg), which are a subgroup of 
NK cells, have been shown to produce IL-10 and reduce 
the proliferation of antigen-specific CD4+ T cells in 
vitro[110]. NKreg cells can also limit virus-specific CD8+ 
T cell immunity and promote chronic virus infection or 
immune pathology[92]. Furthermore, in a mouse model 
of acute infection, NK cells have also been shown to 
inhibit the generation of virus-specific memory T- and 
B-cells as well as virus-specific antibody production 
in a perforin-dependent manner[111]. iNKT cells play a 
central role in the regulation of the liver environment. 
Upon activation, iNKT cells secret large amounts of both 
Th1 and Th2 cytokines and play key regulatory roles 
in antimicrobial immunity[96]. One report showed that 
the number and cytokine-producing function of iNKT 
cells were comparable in CHB patients and healthy 
controls, while another study showed that iNKT cell 
frequency decreased with disease progression in CHB 
patients[112]. When activated by the ligand, alpha-
galactosylceramide (alpha-GalCer), Vα14-positive NKT 
cells strongly enhance the induction and proliferation 
of HBsAg-specific CTLs in mouse models and promote 
the disruption of tolerance to HBV-specific CD8+ T cell 
antigens[113].

ADAPTIVE IMMUNE CELLS 
B cells and T cells
Anti-HBs antibodies play an important role in the 
clearance of HBV particles in the blood and protection 
against reinfection of hepatocytes[114]. Memory B cell res-
ponses are indicative of a resolved previous infection[115] 
because the appearance of anti-HBs antibodies occurs 
relatively late after HBV exposure, and are usually 
absent in the clinical symptomatic phase of infection 
as well as in the chronic stage. The role of anti-HBs-
positive B cells in the resolution or the pathogenesis of 
infection has been underestimated. In addition to anti-
HBs production, B cells can act as APCs for antiviral 
CD4+ T cells[116]. A number of studies have yielded 
contradictory findings. Xu et al[117] suggested that 
expression of CD80, serum HBs antibody levels and the 
frequency of HBsAg-specific B cells were significantly 

decreased in CHB patients compared with healthy 
control subjects. In contrast, another study showed 
that there were no differences in the frequencies of 
B-lymphocytes expressing CD80 and CD86 between 
CHB patients and healthy controls[118]. Some data 
indicated that interactions between B and T cells may 
contribute to immunotolerance in mouse models with 
B cells as predominant APCs[119]. Sustained exposure to 
viral antigens can lead to an increase in the frequency 
of B cells with an exhausted phenotype in the liver[120] 
as well as the induction of negative costimulatory 
molecules, such as PD-1 and CTLA-4[121]. In contrast, 
some evidence demonstrates that an overwhelming B 
cell response plays a key role in HBV-associated acute 
liver failure[122,123]. Therefore, the function of B cells in 
HBV infection requires further investigation.

CD4+ T cells and CD8+ T cells
Evidence of the role of CD4+ T cells in the control of HBV 
infection is conflicting. Some data show that, similar 
to CD8+ T cells, the CD4+ T cell response in the acute 
phase of self-limiting infection is significantly greater and 
multi-specific than in the chronic phase. Furthermore, 
the induction of functional HBV-specific CD8+ T cell 
responses is dependent on early CD4+ T cell priming 
prior to HBV spread[114]. While CD4+ T cell depletion 
at the peak of HBV infection had no effect on viral 
replication in infected chimpanzees[124], depletion prior to 
HBV infection resulted in quantitatively and functionally 
impaired HBV-specific CD8+ T cell responses[125]. In the 
absence of early CD4+ T cell responses, intrahepatic 
CD8+ T cell priming results in T cell inactivation, tolerance 
or apoptosis[126,127]. Functional impairment of T cells 
may also contribute to hyperactivation of regulatory 
CD4+ FoxP3+ T cells that suppress virus-specific T cells, 
thereby affecting the quality and intensity of antiviral 
responses. In CHB patients, the frequency of circulating 
CD4+CD25+ Treg cells correlates significantly with serum 
viral load and liver injury[128]. Th17 cells, another CD4+ T 
cell subset, may contribute to disease progression and 
the pathogenesis of liver injury in HBV-infected patients. 
An increased Treg/Th17 ratio and the Th17 frequency 
at onset have significant predictive value for survival 
of patients with HBV-related acute-on-chronic liver 
failure[129,130].

LIVER CELLS AND ADAPTIVE IMMUNE
Liver cells include NPCs and hepatocytes. Under normal 
conditions, resident liver LSECs and KCs secrete IL-10 
and TGF-β, maintaining a tolerogenic environment 
and restraining inflammatory responses to foreign 
antigens, such as HBV[67,131]. LSECs, as one type of 
local APC, are capable of antigen cross-presentation 
and subsequent tolerization of naive CD8+ T cells. 
Under certain conditions, LSECs can switch from a 
tolerogenic to an immunogenic state and promote the 
development of T cell immunity[131]. As in the setting 
of acute HBV infection, liver cells might be able to 
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sense HBV infection and mount antiviral effects via an 
IFN response[132]. Furthermore, LSEC-mediated cross-
presentation of soluble, circulating or hepatocyte-
derived antigens to naïve CD8+ T cells results in the 
development of antigen-experienced memory-like T 
cells[133]. LSECs and KCs can reduce TLR expression 
leading to the inactivation of innate immunity[134]. LSECs 
are the major liver cell type responsible for the induction 
of TGF-β-dependent hepatic CD4+ CD25+ Foxp3+ Treg 
cells, which contribute to the tolerogenic features of 
the intrahepatic microenvironment[135,136]. In contrast 
to activated professional APCs, intrahepatic antigen 
presentation by HBV-positive hepatocytes suppresses 
HBV-specific CD8+ T cell responses or mediates T cell 
apoptosis via the PD-1/ PD-L1 pathway[137]. This may in 
part, explain the development of the tolerogenic hepatic 
microenvironment and the occurrence of persistent 
HBV infection in the liver. Thus, precise quantitative and 
qualitative regulation of CD4+ T responses is required 
to initiate the activation of CD8+ T cells to control the 
infection.

CONCLUSION
The innate immune system is the first line of host defense 
against infection immediately after the pathogen invasion. 
Its functions depend largely on multiple regulators, 
including TLRs and cytokines, mainly type Ⅰ IFN and 
subsequent activation of adaptive immune responses. 
Initiation of effective adaptive immune responses, 
especially HBV-specific CD8+ T cell responses, is central 
to the control of HBV infection. Efficient clearance of viral 
infections requires the synergistic interaction of both 
innate and adaptive immune responses, which is vital 
for the development of long-lasting immunity. A better 
understanding of these complex interactions and their 
role in HBV infection is essential for designing effective 
immunotherapeutic regimens for CHB and designing 
new combination treatment strategies for the eradication 
HBV[138].
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