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Abstract
Despite repeated attempts to develop a unifying 
hypothesis that explains the clinical syndrome of heart 
failure (HF), no single conceptual paradigm for HF 
has withstood the test of time. The last model that 

has been developed, the neurohormonal model, has 
the great virtue of highlighting the role of the heart 
as an endocrine organ, as well as to shed some light 
on the key role on HF progression of neurohormones 
and peripheral organs and tissues beyond the heart 
itself. However, while survival in clinical trials based 
on neurohormonal antagonist drugs has improved, HF 
currently remains a lethal condition. At the borders of the 
neurohormonal model of HF, a partially unexplored path 
trough the maze of HF pathophysiology is represented 
by the feedback systems. There are several evidences, 
from both animal studies and humans reports, that the 
deregulation of baro-, ergo- and chemo-reflexes in HF 
patients elicits autonomic imbalance associated with 
parasympathetic withdrawal and increased adrenergic 
drive to the heart, thus fundamentally contributing to 
the evolution of the disease. Hence, on top of guideline-
recommended medical therapy, mainly based on 
neurohormonal antagonisms, all visceral feedbacks have 
been recently considered in HF patients as additional 
potential therapeutic targets.
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Core tip: At the borders of the neurohormonal model 
of heart failure (HF), a partially unexplored path trough 
the maze of HF pathophysiology is represented by the 
feedback systems. There are several evidences, from 
both animal studies and humans reports, that the 
deregulation of baro-, ergo- and chemo-reflexes in HF 
patients elicits autonomic imbalance associated with 
parasympathetic withdrawal and increased adrenergic 
drive to the heart, thus fundamentally contributing to 
the evolution of the disease. Hence, on top of guideline-
recommended medical therapy mainly based on 
neurohormonal antagonisms, all visceral feedbacks have 
been recently considered in HF patients as additional 
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INTRODUCTION
Heart failure (HF), a pathophysiological state in which the 
heart is unable to pump blood at a rate commensurate 
with the metabolizing tissues requirements, or can do so 
only with elevated filling pressures[1], is currently a real 
epidemic in western countries, affecting more than 20 
million people in the world, with massive socio-sanitary 
costs[2].

Despite repeated attempts to develop a unifying 
hypothesis that explains the clinical syndrome of HF, no 
single conceptual paradigm for HF has withstood the test 
of time. The last model that has been developed, after 
the cardiorenal and the cardiocirculatory models focusing 
respectively on salt-water retention and low cardiac 
output/peripheral vasoconstriction, is the neurohormonal 
model[3]. This model has the great virtue of highlighting 
the role of the heart as an endocrine organ, as well as 
to shed some light on the key role on HF progression 
of neurohormones and peripheral organs and tissues 
beyond the heart itself. However, while survival in clinical 
trials based on neurohormonal antagonist drugs has 
improved, HF currently remains a lethal condition, with 
50% mortality within 5 years of diagnosis and less than 
15% survival after 10 years[2,4].

At the borders of the neurohormonal model, a 
partially unexplored path trough the maze of HF patho-
physiology is represented by the feedback systems 
(Figure 1). There are indeed several evidences, from 
both animal studies and humans reports, that the 
deregulation of baro-, ergo- and chemo-reflexes in HF 
patients elicits autonomic imbalance associated with 
parasympathetic withdrawal and increased adrenergic 
drive to the heart, thus fundamentally contributing to 
worsening arrhythmias and haemodynamics. Hence, on 
top of guideline-recommended medical therapy mainly 
based on neurohormonal antagonisms, all visceral 
feedbacks have been recently considered in HF patients 
as additional therapeutic targets: baroreflex activation 
therapy for baroreceptors[5], physical training for muscle 
metaboreceptors[6], and carotid body (CB) denervation 
for chemoreceptors[7].

BAROREFLEX
The baroceptors are mechanoreceptors located in the 
sinus caroticus and in the aortic arch, where terminal 
nerve endings are endowed in the wall of these vessels 

and activated by blood pressure-induced wall stretch. 
Information deriving from these sites travel along a path 
constituted by the nerve of Hering, that merges with 
the fibres of the glossopharingeal nerve; those travelling 
from the aortic arch take the path of the afferent fibres 
of the vagus nerve. Inputs hence travel towards the 
principal centre of integration of information regarding 
the cardiovascular system, that is the nucleus tractus 
solitarii in the dorsal area of its medial and lateral 
divisions. Here signal are processed and integrated 
with information ascending from the periphery and des-
cending from central nervous system and given back to 
the heart and peripheral arterial vessels via the vagus 
nerve[8]. The response is a vagally-mediated change in 
heart rate and a sympathetic modulation of vasomotion, 
in order to preserve blood pressure stability over time 
and avoid fluctuations[9]. Altered baroreflex sensitivity 
(BRS) has been demonstrated to independently con-
tribute to worsen prognosis in HF, mainly by failing to 
counteract the adrenergic activation with consequent 
electrical instability and arrhythmic sequelae, in both the 
pre- and post-betablocker era[10,11].

The baroreflex has been the first neurovegetative 
feedback to be clinically targeted in HF. BRS activation 
was first indirectly attempted by vagal nerve stimulation 
(VNS). After the first safety and tolerability reports on 
VNS (side effects: Hoarseness, cough and sensation 
of electrical stimulation) some preliminary studies also 
showed amelioration of symptoms and indexes of left 
ventricular (LV) remodelling[12,13]. These observations led 
to a phase Ⅲ sham-controlled trial. The neural cardiac 
therapy for HF trial enrolled 87 patients with systolic 
HF [LV ejection fraction (LVEF) < 35%] who underwent 
device implantation and randomization to device in ON 
or OFF modality, but failed to demonstrate any effect 
of VNS on both primary (LV end systolic diameter) and 
secondary endpoints (LV end systolic volumes, LVEF, 
oxygen consumption and natriuretic peptide levels)[14].

Baroreceptor stimulation could also be achieved by 
directly stimulating carotid sinus by subcutaneously 
implanted device: This approach is known as baroreflex 
activation therapy (BAT). The first promising results 
obtained in an animal model of HF (dog with HF induced 
by microembolization) in terms of reverse remodelling, 
improved systolic function and amelioration of neuro-
hormonal profile (reduced adrenergic activity), where 
secondarily confirmed also in a proof of concept study 
performed in humans, where an amelioration of symp-
toms was also observed[15]. Few on-going randomized 
studies are currently addressing the efficacy and 
therapeutic potential of baroreflex activation therapy 
in HF; in particular, the CVRx® Rheos® Diastolic Heart 
Failure Trial (clinicaltrial.org: NCT00718939) and the 
Rheos® HOPE4HF Trial (NCT00957073) will address the 
impact of BAT on diastolic HF (LVEF > 40%), whereas in 
systolic HF patients, the only ongoing randomized trial 
is the Barostim HOPE4HF (Hope for Heart Failure) study 
(NCT01720160).
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CHEMOREFLEX
The chemoreflex is physiologically in charge of pro-
portionally modulating ventilation in response to a 
change in the respiratory gases, namely oxygen (O2) 
and carbon dioxide (CO2), in order to keep pH constant 
for enzymatic processes. Classical physiology indicates 
two separate chemoreceptor groups: Peripheral che-
moreceptors (PC) located in carotid-aortic bodies and 
sensitive both to hypoxia and hypercapnia/acidosis, and 
central chemoreceptors (CC) located in different regions 
of the brainstem, cerebellum, hypothalamus and glia 
and considered to be sensitive only to hypercapnia/
acidosis.

Chemoreceptors seem to act as primary inputs 
in HF. Several studies indicate that both PC and CC 
are hyperactive in HF[16-19]. The increased activity of 
chemoreceptors is commonly considered the main deter-
minants of Cheyne-Stokes respiration[16-19], a detrimental 
respiratory pattern (with prognostic significance) 
characterized by alternating cycles of hyperventilation 
and apneas, with unfavourable oxygen desaturation. 
Furthermore, PC/CC hypersensitivity also negatively 
impact on respiration kinetics during exercise with 
ventilatory inefficiency and dyspnoea on effort in HF 
patients[18,19]. The hyperactivity of PC/CC, both directly 
(baseline tonic activity and phasic stimulation during 
O2/CO2 changes)[20] and indirectly, via Cheyne-Stokes 
respiration (CSR) occurrence[21], is also responsible 
of increased adrenergic drive and arrhythmias in HF 
patients[17-19]. Finally, increased chemosensitivity to 
both hypoxia[16] and hypercapnia[19] was found to be an 
independent prognostic marker in HF. 

A partial inhibitory effect on PC was shown in HF 
patients with both transient hyperoxia, and drugs, such 
as dihydrocodeine or acetazolamide. In HF patients, 
dihydrocodeine mediated PC inhibition was only asso-
ciated with improved exercise performance[22]. In 
the same setting, acetazolamide[23] and hyperoxia[24] 
were instead associated with about 50% reduction of 
CSR severity, translating in the case of hyperoxia also 
with reduced sympathetic activity. Denervation of the 
PC chemoreceptors by CB ablation in animals with 
experimentally induced HF has recently emerged as 
a very promising option. CB ablation is indeed able to 
normalize the chemoreflex sensitivity in HF animals, with 
reduction of both adrenergic activity and disappearance 
of central apneas[7,25]. This was confirmed also by 
pharmacologic attenuation of CB activity with an inhibitor 
of hydrogen sulfide[26]. Interestingly, in a model of HF 
induced by coronary ligation in rats, CB also reduced the 
amount of myocardial fibrosis unrelated to myocardial 
infarction, with positive effect on left ventricular systolic 
function and, more importantly on short term survival[25]. 
A single report in a patient with HF has testified the 
feasibility in humans[27]. Differently from these still 
preliminary, but intriguing results on PC modulation, 
currently no studies have tested the possibility to directly 
act on CC, maybe due to the multiplicity of CC centers 
in the central nervous system, the complexity of their 
interlink, and the difficulty to directly and selectively act 
on these receptors. 

ERGOREFLEX
The ergoreflex is the neural mechanism enabling to 
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Figure 1  Schematic representation of the reflex feedbacks involved in heart failure. Arrows indicate direct effects/influences. Dotted arrows link established 
or potential therapeutic interventions with targets. CNS: Central nervous system; RIC: Remote ischemic conditioning; CSR: Cheyne-Stokes respiration; NIMV: 
Noninvasive mechanical ventilation; LV: Left ventricular; HF: Heart failure; BAT: Baroreceptor activation therapy; CRT: Cardiac resynchronization therapy.
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modulate ventilation and sympathetic outflow according 
to the intensity of physical activity[28]. Its components 
are the metaboreflex, activated by the accumulation 
of metabolites in the exercising muscles, and the 
mechanoreflex, responsive to muscle tension during 
exercise[29-31].

HF patients frequently develop a skeletal myopathy 
ascribable to deconditioning, reduced perfusion of 
the muscles, inflammation, and a systemic catabolic 
state[29,30,32]. In 1994, a “muscle hypothesis” of HF was 
formulated, suggesting that ergoreceptor contribution to 
the autonomic, hemodynamic, and respiratory responses 
to exercise would be enhanced in CHF patients[33]. Two 
years later, ergoreflex overactivity was first found in 
HF patients compared with healthy subjects[6]. These 
results were corroborated by subsequent studies, which 
correlated increased ergoreceptor sensitivity to lower 
lean body mass, reduced exercise tolerance, decreased 
left ventricular function, and worse New York Heart 
Association functional class[30]. Interestingly, in HF 
patients with preserved exercise capacity, ergoreflex 
overactivity has been also associated with increased 
central and peripheral chemoreceptor sensitivity, and 
depressed baroreceptor sensitivity[30].

Currently the only acknowledged treatment for 
modulating ergoreflex overactivity is represented by 
exercise training. The effects of training on ergoreflex 
sensitivity have been evaluated mostly in animal mo-
dels[34]. In humans, six weeks of forearm training were 
able to markedly reduce metaboreceptor sensitivity, 
while six weeks of detraining brought the situation back 
to baseline[29]. A positive effect on muscle structure and 
function has been after confirmed in other studies, still 
in HF patients[35,36]. It is reasonable to assume that the 
positive impact of exercise training on HF patients (in 
terms of increased exercise tolerance, quality of life, 
cardiac function, neuro-hormonal activation and overall 
prognosis)[37-40] partially relies upon reduced ergoreflex 
overactivity, as confirmed by a recent study[41].

CONCLUSION
The lessons learned from failures (e.g., inotropic drugs) 
and the successes (e.g., neurohormonal antagonist 
drugs) in treating HF indicate that the development of 
innovative treatments for HF should take into account 
the complex pathophysiology of the disease: In par-
ticular, new treatments should target the pathways 
involved in the evolution of the disease. As outlined 
above, peripheral reflexes are deeply involved in the 
pathophysiology of HF and represent a potential target of 
therapy. Although, some preliminary data in animals and 
humans are promising, more studies enrolling a large 
number of patients are clearly needed to reinforce the 
rationale of treating the peripheral reflex feedbacks and 
to disclose the prognostic value of these interventions. 
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