
Abstract
Thrombotic events, both arterial and venous, are a major 
health concern worldwide. Further, autoimmune diseases, 
such as systemic lupus erythematosus, anti-neutrophil 
cytoplasmic antibody (ANCA)-associated vasculitis, and 
antiphospholipid syndrome, predispose to thrombosis, 
and thereby push the risk for these morbid events even 
higher. In recent years, neutrophils have been identified 
as important players in both arterial and venous throm-
bosis. Specifically, chromatin-based structures called 
neutrophil extracellular traps (NETs) play a key role in 
activating the coagulation cascade, recruiting platelets, 
and serving as scaffolding upon which the thrombus can 
be assembled. At the same time, neutrophils and NETs 
are emerging as important mediators of pathogenic 
inflammation in the aforementioned autoimmune dis-
eases. Here, we first review the general role of NETs in 
thrombosis. We then posit that exaggerated NET release 
contributes to the prothrombotic diatheses of systemic 
lupus erythematosus, ANCA-associated vasculitis, and 
antiphospholipid syndrome.
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Core tip: In order to capture and kill pathogens, neu-
trophils release webs of chromatin and antimicrobial 
proteins called neutrophil extracellular traps (NETs). 
These NETs are also emerging as important players in 
inflammatory and thrombotic disorders. In this review, 
we describe the mechanisms by which the various 
components of NETs promote thrombosis. Further, 
we highlight emerging evidence that NETs may play a 
particularly important role when thrombosis occurs in 
patients with systemic autoimmune diseases such as 
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INTRODUCTION
Blood vessel occlusion attributable to thrombosis is a 
major health concern in both the United States and 
worldwide. Most United States studies have suggested 
annual incidence for venous thromboembolism (VTE) on 
the order of 1/1000. For example, a classic retrospective 
study reviewed medical records in Minnesota from 1966 
through 1990, and found a VTE incidence of 117 per 
100000[1]. A more recent community study addressed 
VTE incidence in Worcester, Massachusetts and found 
a similar incidence of 104 per 100000[2]. In Norway, 
incidence of first VTE is at a similar level, estimated at 
1.43 per 1000 person years[3].

VTE morbidity is especially problematic in hospitals. 
For example, a multinational cross-sectional study of the 
acute inpatient setting noted that VTE, and specifically 
pulmonary embolism, accounted for 5%-10% of deaths 
in hospitalized patients[4]. It should also be noted that 
VTE carries a high risk of not just morbidity, but also 
death. In the aforementioned Worcester population 
study, acute all-cause mortality in patients with VTE was 
6.6%[2]. Another United States community-based study, 
found 28-d mortality following VTE to be 11%, with that 
risk climbing to 25% in patients with cancer-associated 
thrombosis[5]. The aforementioned Norwegian study 
found the risk of death to be especially high following 
pulmonary embolism, specifically 2.1-fold higher than 
for deep vein thrombosis (DVT)[3].

Similar to VTE, cardiovascular disease (CVD), es-
pecially myocardial infarction and stroke, is a major 
cause of worldwide morbidity and mortality. CVD results 
from an inflammatory vasculopathy of arteries called 
atherosclerosis, which places patients at risk for acute 
arterial occlusions and downstream ischemia. Global 
data from the late 1990s suggest that on the order of 
one-third of all deaths worldwide are caused by CVD[6]. 
It has also been suggested that access to healthcare 
plays a critical role in the morbidity attributable to events 
like strokes, with countries in eastern Europe, north Asia, 
central Africa, and the south Pacific having particularly 
high levels of disability following such events[7].

While thrombotic events are clearly a major problem 
in the general population, the risk is further amplified in 
the setting of many systemic autoimmune diseases. For 
example, a meta-analysis of VTE risk in such diseases 
(excluding pregnant and postoperative patients) found 
an increased risk that was particularly striking in syste-
mic lupus erythematosus (SLE) and anti-neutrophil 

cytoplasmic antibody (ANCA)-associated vasculitis, with 
odds ratios of 7.29 and 7.97, respectively[8]. Another 
study of SLE patients found a 7.6% risk of thrombosis 
over approximately 10 years, which climbs as high 
as 20.1% in the presence of a particular class of auto-
antibodies referred to as antiphospholipid antibodies 
(discussed in more detail below)[9]. When an ANCA-
associated vasculitis cohort was followed for six years, 
there was a 12% prevalence of VTE[10]; interestingly, the 
incidence was 1.8 per 100 person-years when disease 
was quiescent, and climbed to 6.71 per 100 during 
active disease[10]. 

Patients with systemic autoimmune diseases are 
also at high risk for CVD. For example, in a prospec-
tive cohort of SLE patients, 48% of deaths were 
attributable to CVD, with risk factors including smoking, 
endothelial activation, elevated C-reactive protein, and 
antiphospholipid antibodies[11]. SLE patients may be at 
particular risk for cerebrovascular events[12], with some 
studies suggesting that more than 20% of mortality 
may be attributable to stroke[13]. CVD has similarly been 
documented at increased levels in ANCA-associated 
vasculitis, with a rate of acute myocardial infarction that 
is at least 2.5-times higher than expected based on 
traditional cardiovascular risk factors[14].

NEUTROPHIL EXTRACELLULAR TRAPS
The neutrophil, as the most abundant leukocyte in cir-
culating blood, plays a critical role in the innate immune 
system[15-20]. Formed in the bone marrow from myeloid 
precursors[21], neutrophils are then released into the 
bloodstream. From there, they can be recruited to sites 
of inflammation/infection in response to endogenous 
or pathogen-derived chemoattractants[17,20]. One stra-
tegy by which neutrophils target and kill microbes 
is phagocytosis[22]. Once pathogens are captured in 
intracellular vacuoles, they are destroyed by reactive 
oxygen species (oxidative burst)[23] and antimicrobial 
proteins (degranulation)[24]. Upon the completion of 
phagocytosis, neutrophils generally undergo apoptosis 
before being ingested by neighboring macrophages as 
inflammation resolves[25-27]. For decades, phagocytosis 
was considered to be the primary mechanism by 
which neutrophils targeted infections; however, that 
perception changed with the discovery of neutrophil 
extracellular traps (NETs) - one of the most interesting 
and intensively-studied aspects of neutrophil biology in 
recent years.

NETs target pathogens
NET release (or NETosis), as first described by Brinkmann 
et al[18] in 2004, is an active form of neutrophil death that 
releases a web of chromatin and antimicrobial proteins 
into the extracellular space. At the core of NETs are 
chromatin fibers (about 17 nm in diameter) composed 
of DNA and histones, positively-charged proteins that 
normally function in the nucleus to package DNA and 
regulate gene expression. These fibers are further 
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lined by granule-derived antimicrobial proteins such as 
neutrophil elastase, myeloperoxidase (MPO), cathepsin 
G, proteinase 3 (PR3), defensins, and cathelicidin LL-37. 
NETs target pathogens by a combination of sequestration 
(preventing their dissemination in the body) and highly-
localized microbicidal activity[18]. Both Gram-negative 
(Shigella flexneri[18], Klebsiella pneumoniae[28]) and 
Gram-positive (Streptococcus aureus[29], Listeria monocy
togenes[30]) bacteria can be targeted by NETs, as can 
fungi (Candida albicans[31], Aspergillus nidulans[32], 
Aspergillus fumigatus[33]). NETs have also been shown 
to be effective in killing particular protozoans and 
viruses[34-36]. Intriguing recent work has demonstrated 
that neutrophils are capable of sensing differences in 
microbe size such that NETs are preferentially released 
when the neutrophil is confronted by larger pathogens 
and microbial clusters that cannot be engulfed by 
phagocytosis[37].

It is also interesting to note that certain microbes 
have evolved mechanisms for evading NETs. For 
example, surface modification may dampen neutrophil 
activation and NET binding[38-40]. Also, pathogen-
derived nucleases are well established as destabilizers 
of NETs[41-43]. That NETs form an important arm of 
antimicrobial innate immunity is exemplified by the fact 
that defects in NET generation, or experimental NET 
depletion, increase susceptibility to various kinds of 
infections in mice and humans[28,44-49].

Mechanisms of NET release
NET release can be triggered by a variety of stimuli 
including microbes, pharmacological agents (phorbol 
12-myristate 13-acetate and calcium ionophore[50]), 
inflammatory cytokines (interleukin 8[51], tumor necrosis 
factor α[52]), growth factors (granulocyte colony-stimu-
lating factor[53]), activated endothelial cells[54], activated 
platelets[55], and immune complexes[56]. Following this 
initial trigger, various pathways intersect to facilitate the 
extrusion of NETs. For example, some think of NETosis 
as a variant of autophagy since netting neutrophils 
display characteristics of autophagy including the 
formation of autophagosomes[57]. Indeed, inhibition of 
autophagy-associated signaling prevents NETosis in some 
contexts[58]. Generation of reactive oxygen species (ROS) 
by the nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase complex has also been considered by 
many as an absolute prerequisite to NET formation[48,59,60]. 
Mechanistically, protein kinase C activation[61] and 
RAF/MEK/ERK signaling[62] lead to phosphorylation of 
gp91phox[63], p67phox[64], and p47phox[65], which results in 
assembly of the functional NADPH oxidase complex 
for ROS generation. However, recent evidence has 
also shown that activation of SK3 potassium channels, 
mediated by calcium influx, may lead to an alternative, 
NADPH oxidase-independent mechanism of NETosis[66].

Once activated, neutrophils preparing for NETosis 
flatten and adhere tightly to the substratum. ROS 
are generated and cytoplasmic granules disintegrate 
releasing their contents into the cytoplasm. Neutrophil 

elastase then migrates to the nucleus, where it degrades 
linker histone H1 and processes core histones, thereby 
promoting chromatin relaxation[28]. This is followed by 
the translocation to the nucleus of MPO, which also binds 
chromatin and promotes decondensation, albeit by an 
unknown mechanism[28]. In addition, the relaxation of 
chromatin is further promoted by post-translational 
modification of histone arginine residues to neutral 
citrullines by the enzyme peptidylarginine deiminase 
4 (PAD4)[46,67-69]. Following dissolution of the nuclear 
membrane, the plasma membrane ruptures casting 
NETs into the extracellular space[48].

It should be noted that the above description is of 
what is sometimes called “suicidal” NETosis. However, 
NETs can also be released in more rapid fashion, in a 
manner that does not lead to neutrophil death. This 
concept of “vital” NETosis, which especially occurs in the 
context of the direct interaction between neutrophils 
and microorganisms, has been described in detail in a 
recent review article[70].

HOW DO NETS PROMOTE THROMBOSIS?
Thrombosis results from dysregulation of normally-
protective hemostatic systems, with the end result being 
a clot in the vessel lumen and obstruction of blood flow. 
If the occlusion is not resolved, it can have marked 
consequences including infarction, embolization, and 
even death. Blood coagulation can be initiated by two 
classic pathways. The first, historically termed “extrinsic”, 
starts with the release of thrombogenic tissue factor from 
endothelium and leukocytes, while the second “intrinsic” 
pathway is initiated by the activation of circulating 
clotting factors on negatively-charged surfaces. Both of 
these pathways converge at a common point (factor Ⅹ) 
with the subsequent activation of the protease factor 
Ⅱ (also called thrombin). Thrombin then converts 
fibrinogen into insoluble fibrin, which is indispensable for 
clot formation[71]. Platelet activation (associated with the 
release of procoagulant polyphosphates among other 
bioactive molecules) and platelet aggregation (to form 
a platelet plug) are also important processes in normal 
hemostasis, as well as pathologic thrombosis[72,73]. These 
pathways are further regulated by natural anticoagulants 
like tissue factor pathway inhibitor, antithrombin, throm-
bomodulin, and protein C, which act on various targets 
to limit thrombin generation[74].

NETs are now known to be an integral component of 
thrombi, and actually essential for thrombosis in many 
contexts (Figure 1). NETs serve as structural scaffolding 
for entrapment and aggregation of platelets and 
erythrocytes[75]. Additionally, negatively-charged NETs 
bind plasma proteins like fibrinogen, fibronectin, and von 
Willebrand factor (VWF), thereby stabilizing the clot[75]. In 
animal models, it has been shown that dismantling NETs 
by deoxyribonuclease (DNase) treatment or knocking 
out PAD4 (an enzyme essential for NET formation) 
diminishes thrombosis[76-79]. Mechanistically, interesting 
studies, using both in vitro and in vivo systems, have 
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been shown that factor XIIa (the activated form) can 
contribute to thrombus formation by both factor XI-
dependent and independent mechanisms[81,82].

Histones
As mentioned above, histones are positively-charged 
proteins that normally function to package DNA in the 
nucleus; they are also the most abundant proteins in 
NETs. Histones trigger platelet activation and thrombin 
generation in a dose-dependent manner[83,84]. Indeed, 
upon treatment with histones, platelets exhibit several 
activation-associated characteristics such as aggregation, 
exposure of phosphatidylserines, and surface expression 
of P-selectin[83,84]. The ability of histones to activate 
platelets seems to be at least partially dependent on 
signaling through platelet Toll-like receptor 2 (TLR2) 
and TLR4[83,84], with a further contribution from several 
notable intracellular pathways including ERK, Akt, p38, 
and nuclear factor-κB. Importantly, when histones 
complex with DNA (as is observed in NETs), their ability 
to promote platelet activation and thrombin generation 
is further amplified[84]. Intersecting with coagulation 
pathways, histone-activated platelets release polypho-
sphates, which potently promote thrombin activation[84]. 
Independent of platelets, it has also been suggested 
that histones contribute to the activation of thrombin 
by sequestering thrombomodulin and protein C (a 
natural anticoagulant), and thereby preventing throm-
bomodulin-dependent activation of protein C[85]. These 
varied experiments (primarily done with purified com-
ponents in vitro) have been supported by work in animal 
models, where infusion of histones promotes DVT 
formation in mice in the context of inferior vena cava 

shown that several NET components are capable of 
contributing to coagulation and thrombus formation 
(Table 1).

DNA backbone
Coagulation factor XII, a plasma serine protease capable 
of activating factor XI and prekallikrein, is recognized 
as the traditional initiator of the intrinsic pathway. 
factor XII is well known to be activated by negatively-
charged surfaces both in vitro and in vivo, and it turns 
out that the anionic backbone of NETs (i.e., DNA) is a 
capable activator of factor XII[80]. It has consequently 

Table 1  Neutrophil extracellular trap-associated molecules 
that may play a role in promoting thrombosis

NET component Role in thrombosis

DNA backbone Negatively charged surface capable of activating 
factor XII[80]

Coassembly of TFPI and serine proteases at 
thrombus[86]

Histones Platelet activation[83,84]

Prevent activation of natural anticoagulant, protein C[85]

Elastase Cleavage of TFPI[86]

Cleavage of antithrombin[87]

Strips proteoglycan layer of arterial media to expose 
VWF[88]

Cathepsin G Cleavage of TFPI[86]

Platelet activation[89,90]

Tissue factor Platelet activation[91,104]

Thrombin generation by extrinsic pathway of 
coagulation[91,104]

TFPI: Tissue factor pathway inhibitor; VWF: Von Willebrand factor; NET: 
Neutrophil extracellular trap.
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PR3
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Figure 1  Schematic representation of potential mechanisms by which neutrophil extracellular traps may promote thrombosis in systemic autoimmune 
diseases. First, a number of stimuli may promote NETosis in systemic autoimmune diseases including ribonucleoprotein (RNP)/anti-RNP complexes in systemic lupus 
erythematosus, anti-neutrophil cytoplasmic antibody (ANCA) engagement with surface proteinase 3 (PR3) in vasculitis, and the interaction of anti-beta-2 glycoprotein 
I (β2GPI) with surface β2GPI in antiphospholipid syndrome. The DNA component of NETs activates factor XII (FXII), initiating a cascade (along with factor XI) that 
ultimately leads to the formation of thrombin. Histones in NETs activate platelets and sequester certain anticoagulant molecules like thrombomodulin and protein C. 
Neutrophil serine proteases present in NETs, such as neutrophil elastase and cathespin G, cleave the anticoagulant molecules tissue factor pathway inhibitor (TFPI) 
and antithrombin, and also activate platelets through various pathways including protease-activated receptor 4. NETs also may present procoagulant tissue factor in 
some contexts. Finally, NETs serve as scaffolding for the assembly and aggregation of platelets and red blood cells (RBCs). NET: Neutrophil extracellular trap.
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flow restriction[76].

Serine proteases: Neutrophil elastase and cathepsin G
Granule-derived serine proteases, which are among the 
most abundant non-histone proteins in NETs, potentially 
engage with blood coagulation in a number of ways. 
For example, mice deficient in neutrophil elastase and 
cathepsin G exhibit defects in tissue factor activation, 
fibrin formation, and thrombus stabilization[86]; in this 
system, at least one function of the proteases is to 
degrade an antagonist of coagulation, tissue factor 
pathway inhibitor (TFPI). Interestingly, the DNA com-
ponent of NETs is required for the coassembly of TFPI 
and the proteases, thereby inactivating TFPI at the point 
of thrombosis[86].

Other mechanisms have also been described. 
Neutrophil elastase promotes the proteolytic cleavage 
of the anticoagulant antithrombin[87]. Elastase (in 
cooperation with matrix metalloproteinase 9) also 
degrades the proteoglycan network of the arterial 
media, thereby exposing collagen for VWF binding and 
platelet adhesion[88]. Further, cathespin G can promote 
a procoagulant state by cleaving and activating platelet 
protease activated receptor 4 signaling, thereby 
enhancing thrombus formation and fibrin deposition 
under flow conditions[89,90].

Tissue factor
In 2012, von Brühl et al[80] showed that the combination 
of intravascular NET formation and tissue factor are 
essential for development of thrombi in a mouse model 
of DVT. The NETs were not only decorated with tissue 
factor, but also with protein disulfide isomerase, which 
can activate it. In this system, the tissue factor was 
felt to originate especially from monocytes, before 
migrating to, and activating on, the NETs[80]. However, 
in neutrophils isolated from patients with sepsis, neutro-
phils themselves seem to be the source of tissue factor, 
utilizing the machinery of autophagy to deliver tissue 
factor to the NETs[91]; indeed, in this context, tissue 
factor-bearing NETs can stimulate both thrombin 
generation and platelet activation ex vivo. 

NETS AND THROMBOTIC EVENTS
Arterial and venous thrombotic events, despite certain 
common risk factors, are pathophysiologically-distinct 
processes[92,93]. For example, arterial thrombosis is 
particularly dependent on platelets since, under the high 
shear stress of arterial flow, platelets are effective at 
adhering to the vessel wall[94]. Rupture of atherosclerotic 
plaques (as in CVD) leads to marked platelet activation 
and aggregation, and ultimately to the development 
of platelet-rich “white” clots. In contrast, an important 
factor in venous thrombosis is a reduction in blood flow 
(stasis) with the development of red blood cell-rich 
“red” thrombi that result from the local accumulation 
and activation of circulating coagulation factors[95]. 
Interestingly, as the components of NETs are capable of 

activating both platelets and the coagulation cascade, 
NETs may be a unifying link/risk factor for the two 
processes. This notion has been validated in the animal 
models and clinical studies that are highlighted below. 

Venous thrombosis
In one clinical study, 150 patients with symptomatic 
DVT were compared to controls who had clinical 
suspicion for DVT, but negative objective testing[96]. As 
compared to controls, patients with DVT had higher 
levels of both circulating nucleosomes and activated 
neutrophils, with elevated levels of either suggesting 
an approximately three-fold risk of DVT[96]. Another 
group obtained venous thromboembolism specimens 
from 11 patients and classified these into various stages 
of thrombus organization based on morphological 
characteristics[97]. Immunochemical staining suggested 
that NETs were especially present in organizing venous 
thrombi, indicating that they play an important role in 
thrombus maturation[97].

Experimentally, restriction (stenosis) of blood flow 
in the iliac vein of baboons[75] or the inferior vena cava 
of mice[76,80], results in elevation of plasma DNA levels 
and development of NET-containing venous thrombi. 
Further, in this model, infusion of histones increases 
both thrombus size and plasma levels of VWF, with the 
latter potentially contributing to platelet activation and 
recruitment[76]. Importantly, neutrophil depletion results 
in comparatively smaller thrombi[80], as does treatment 
with DNase[76]. Thrombus formation is also abrogated 
in PAD4-knockout mice, which are deficient in NET 
production[79]. In the PAD4 knockouts, thrombosis 
could be rescued by infusion of wild-type neutrophils[79], 
arguing that PAD4’s role in thrombosis is at the level of 
neutrophils (and presumably NETosis).

Cardiovascular disease and arterial thrombosis
Correlation studies have hinted at a relationship bet-
ween DNA, NETosis, and atherosclerotic/atherothro-
mbotic disease[98]. In a cohort of 282 patients with 
well-characterized coronary artery disease, severity of 
disease was predicted by levels of circulating cell-free 
DNA as well as a number of NET markers (nucleosomes, 
citrullinated histone H4, and MPO-DNA complexes)[98]. 
Further, these markers also correlated with evidence of 
active coagulation (soluble CD163 and thrombin-antith-
rombin complexes)[98]. In mice, NETs can be detected 
in close association with plaques in the carotid lumen 
of atherosclerosis-prone ApoE(-/-) mice[99], while the 
PAD4 inhibitor Cl-amidine (which also blocks NETosis) 
prevents NET formation and decreases atherosclerotic 
lesion area in this model[77]. Mechanistically, the cathe-
licidin-derived proteins LL-37 (human) and CRAMP 
(mouse), which are abundant in NETs, seem to pro-
mote atherosclerosis[100,101]. For example, Döring et 
al[102] demonstrated that CRAMP-DNA complexes 
stimulate plasmacytoid dendritic cells (pDCs) to produce 
type Ⅰ interferons that promote plaque growth, a 
phenotype that could be reversed by either CRAMP 
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deficiency or degradation of the DNA backbone of NETs.
Regarding arterial thrombosis, coronary thrombi 

can be rich in NETs as detected by immunochemical 
staining[103]; the authors of this study were particularly 
interested in the role of neutrophil interleukin-17A/F, 
and indeed both cytokines were present in not only 
neutrophils, but NETs themselves[103]. It has also been 
suggested that NETs present in the thrombi of acute 
myocardial infarctions expose tissue factor, which 
is functional in activating both thrombin generation 
and platelets when studied ex vivo[104]. However, that 
functionality was lost with digestion of the DNA backbone 
of NETs[104]. Finally, in a mouse model of arterial wall 
injury by ferric chloride, NET nucleosomes, as well as 
neutrophil serine proteases (elastase and cathepsin G), 
are essential for thrombus formation[86].

SLE
SLE is a systemic autoimmune disease that preferentially 
affects women. While the etiology of SLE is not fully 
understood, it is widely accepted that a hallmark of 
SLE is the near universal detection of an “antinuclear” 
autoimmune response. In particular, autoantibodies 
form to double-stranded DNA and to ribonucleoprotein 
(RNP) complexes. These autoantibodies participate in 
immune complex formation, with subsequent deposition 
in organs such as the kidneys (where they cause glomer-
ulonephritis). Given the key roles of both autoantibodies 
and immune complexes in SLE pathogenesis, the 
majority of research over the years has understandably 
focused on abnormalities in the adaptive immune 
system, with particular attention paid to B cells, T cells, 
and antigen-presenting cells. However, in recent years, 
increasing attention has been paid to mediators of the 
innate immune response, especially neutrophils, which 
release NETs[105], and pDCs, which manufacture large 
quantities of type I interferons[106].

Regarding NETs, some patients with SLE have a 
deficiency in circulating DNase function, and therefore 
an impaired ability to degrade NETs in plasma[107,108]. 
This DNase defect fluctuates, and has been shown to 
correlate with both glomerulonephritis and hypocomple-
mentemia[109]. Not surprisingly, the levels of circulating 
NETs themselves have also been shown to correlate with 
nephritis[110].

While impaired degradation surely plays a role in 
the increased levels of circulating NETs[110], the situation 
is further exacerbated by the increased propensity of 
SLE neutrophils to undergo NETosis[111-113]. In some 
cases this is likely a result of stimulation by circulating 
autoantibodies, such as anti-RNP and anti-LL-37, which 
are common in SLE patients[111,112,114]. In other cases, 
enhanced NETosis may be attributable to environmental 
factors, like low vitamin D levels[115], or increased 
susceptibility to infection resulting from treatment with 
immunosuppressive drugs. Accelerated NETosis may also 
stem from inherent differences in SLE neutrophils, as 
evidenced by their lower density (sometimes referred to 

as low-density granulocytes) and their proinflammatory 
phenotype[113]. Further, SLE NETs may be especially 
potent stimulators of the immune system. For example, 
they contain LL-37, which stimulates both pDCs and 
macrophages[112,116]. The immunostimulatory potential 
of SLE NETs may also be further amplified by acetylated 
histones and demethylated DNA[117,118].

As is discussed above, the risk of thrombotic 
events, both arterial and venous, is significant in SLE 
patients[119,120]. From an arterial perspective, the relative 
risk for myocardial infarction and stroke are both 
increased (10- and 7-fold, respectively) relative to that 
seen in the general population[121]. Similarly, the risk 
of DVT and pulmonary embolism is increased at least 
10-fold in SLE[122]. Other venous complications, such 
as retinal vein occlusion[123], also stand out as more 
common. Further, it should be noted that with improved 
treatment of organ-threatening SLE manifestations 
such as kidney disease, 50% of SLE patients now die of 
some type of cardiovascular disease[11].

NETs, endothelial damage, and thrombosis in SLE
An important intersection between NETs and the vascu-
lature involves the ability of SLE NETs to engage TLRs and 
thereby promote the formation of type Ⅰ interferons by 
pDCs[111-113]. Type Ⅰ interferons then play a multifaceted 
role in endothelial dysfunction, accelerating foam cell 
formation and impairing endothelial progenitor numbers 
and function[124,125]. Further, given the abundance of 
neutrophils in circulation (especially relative to rare cells 
like pDCs), it is noteworthy that netting neutrophils 
may themselves be a source of type Ⅰ interferons in 
SLE[113,126].

In addition to promoting the production of potentially 
anti-vascular cytokines like type Ⅰ interferons, NETs 
may also play a direct role in endothelial damage in 
SLE[113]. For example, SLE NETs contain matrix meta-
lloproteinase-9, which activates endothelial matrix 
metalloproteinase-2, and thereby triggers endothelial 
cell death[127]. Endothelial damage may be further 
compounded in SLE by the NET- and MPO-mediated 
oxidation of high-density lipoprotein (HDL), which causes 
HDL to lose its normally vasculoprotective properties[128].

The best evidence for a role of NETs in not just the 
vascular damage, but also the prothrombotic diathesis 
of SLE, comes from mouse models of the disease. 
Indeed, NETs play an important role in pathogenesis of 
some[78,129], but not all[130], SLE models. In the NZM2328 
model, NET release can be prevented by treatment with 
an inhibitor of PAD4 that prevents histone citrullination 
and consequently NETosis[78]. Over time, PAD inhibition 
protects against endothelial damage as measured by an 
acetylcholine-dependent vascular relaxation assay[78]. 
NZM2328 mice are also prothrombotic at baseline, 
rapidly forming carotid thrombi after photochemical 
injury of the endothelium. These carotid thrombi are 
rich in neutrophils and NETs, and can be prevented 
by treatment with either DNase or a PAD inhibitor[125]. 
These findings are reminiscent of work in models of 
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atherosclerosis, where NETs are important in not just 
vascular damage[100,102], but also thrombosis[77]. Whether 
prevention of NETosis can protect against thrombotic 
disease in patients with SLE remains to be determined, 
although it is noteworthy that antimalarial drugs like 
chloroquine both block NETosis[128], and track with a 
reduced risk of thrombosis in patients[131].

ANCA-ASSOCIATED VASCULITIS
ANCA-associated vasculitis describes a group of closely-
related relapsing-remitting diseases, characterized by 
(1) small-vessel inflammation that especially targets the 
lungs and kidneys; and (2) autoantibodies against the 
neutrophil granule proteins MPO and PR3. The two best 
characterized syndromes are microscopic polyangiitis, 
in which patients are typically positive for anti-MPO, and 
granulomatosis with polyangiitis (Wegener’s), which 
classically has anti-PR3 positivity. Neutrophils/NETs and 
ANCA likely interact in two important ways: (1) NETs 
contain both MPO and PR3 and may thereby stimulate 
the autoimmune response to these antigens; and (2) 
ANCA can interact with neutrophils to promote NET 
release, with NETs then contributing to vascular and 
organ damage.

Consistent with NETs playing a role in ANCA induction,
netting neutrophils are more efficient than apoptotic 
neutrophils in loading murine myeloid dendritic cells with 
MPO and PR3[132]. This efficiency is dependent on the 
DNA backbone of NETs, as it can be almost completely 
abrogated with DNase[132]. NET-loaded dendritic cells 
induce glomerulonephritis in mice[132], while myeloid
dendritic cells can be detected interacting with netting 
neutrophils in skin samples from patients with micro-
scopic polyangiitis[132]. The ability of NETs to induce 
ANCA has also been observed anecdotally in patients, 
for example, in the setting of infectious endocarditis 
apparently driving both anti-PR3 formation and glomeru-
lonephritis[133].

Mechanisms of ANCA-mediated NET release
Mechanistically, ANCA likely promote NETosis by 
engaging granule proteins that have migrated to the 
cell surface in primed neutrophils[134]. Indeed, one study 
found that ANCA are more potent than SLE IgG in 
this regard, and further that ANCA-associated NETosis 
correlates well with vasculitic disease activity[135]. The 
mechanism of NET induction by a nontraditional ANCA, 
anti-lysosomal membrane protein-2 (LAMP-2), has 
recently been investigated in detail. It appears that anti-
LAMP-2 directs neutrophils away from apoptosis and 
toward NETosis by activating the vacuolization typically 
seen in autophagy[136]. Whether autophagy machinery is 
also required for NETosis mediated by traditional ANCA 
(anti-PR3 and anti-MPO) remains to be elucidated.

When NETs form in ANCA patients, they are rela-
tively resistant to degradation by plasma DNase, an 
effect that is not explained by a direct effect of ANCA on 
DNase itself[135]. Along similar lines, the anti-thyroid drug 

propylthiouracil (PTU) is a recognized inducer of ANCA 
production in humans; in an animal model, PTU leads to 
the formation of NETs that are particularly resistant to 
DNase-mediated degradation, thereby exacerbating both 
pulmonary capillaritis and glomerulonephritis[137]. It was 
recently shown that ANCA-induced NETs appear to be 
relatively potent activators of the alternative complement 
cascade[138], and can also promote both platelet activation 
and conversion of pentameric C-reactive protein (CRP) 
into prothrombotic monomeric CRP[139]. 

ANCA-mediated NETs and thrombosis
NETs have been found in close proximity to inflamed 
glomeruli in vasculitic kidneys[134], as well as in vasculitic 
skin lesions[140], arguing that NETs play a role in tissue 
toxicity. It has also been suggested that NETs play a 
particular role in ANCA-associated thrombotic events, 
especially venous. For example, thrombi obtained from 
ANCA vasculitis patients are particularly rich in both 
NETs[141] and histone citrullination[142].

An intriguing mechanistic role has also been sugge-
sted for tissue factor[143]. Specifically, Kambas et al[143] 
demonstrated tissue factor-positive NETs in sera, bron-
choalveolar lavage fluids, and renal biopsies of ANCA 
vasculitis patients. Further, tissue factor-positive NETs 
and microparticles correlated with higher disease activity 
(similar to thrombosis), and could be induced when 
control neutrophils were treated with ANCA in vitro[143]. 
How unique these phenotypes are to ANCA-associated 
NETs, as compared to NETs that form in other infectious 
and inflammatory diseases, remains to be determined.

ANTIPHOSPHOLIPID SYNDROME
Antiphospholipid syndrome (APS), an autoimmune 
disease of unknown etiology, is among the most common 
acquired causes of both thrombosis and pregnancy 
loss in the United States. About half of APS cases are 
diagnosed in patients with lupus, and the remainder as 
a standalone syndrome called primary APS[144]. Primary 
APS manifests not just with thrombosis and pregnancy 
loss, but also with additional features including livedo 
reticularis, thrombocytopenia, chorea, leg ulcers, cog-
nitive dysfunction, seizures, alveolar hemorrhage, and 
nephropathy[145]. This heterogeneity of manifestations 
clearly points to APS as a truly systemic autoimmune 
disease on the spectrum of lupus, rheumatoid arthritis, 
and small-vessel vasculitis.

Pathophysiology of APS
Despite the name of the syndrome (anti-phospholipid), 
the best understood antigen in APS is not a phospholipid, 
but rather a lipid-binding protein that circulates at high 
levels in blood (100-200 µg/mL) called beta-2 glyco-
protein Ⅰ (β2GPI). Autoantibodies to β2GPI activate 
various types of cells in vitro[146-149], and promote both 
thrombosis and pregnancy loss when injected into 
mice[150,151]. Currently, three assays are used to diagnose 
APS clinically. These include tests for (1) anti-cardiolipin 
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antibodies; (2) anti-β2GPI antibodies; and (3) a group 
of coagulation assays collectively referred to as “lupus 
anticoagulant” - functional testing that takes advantage 
of the fact that antiphospholipid antibodies paradoxically 
prolong phospholipid-dependent clotting assays in 
vitro. It is interesting to note that ELISAs for anti-car-
diolipin are often actually detecting anti-β2GPI, with 
the reactivity to cardiolipin mediated by β2GPI protein 
present in the patient’s serum. Antibodies to thrombin 
may also sometimes cause APS, although testing has 
not been standardized, and anti-thrombin is therefore 
not routinely assessed in clinical practice. In summary, 
this group of antibodies is (despite the inaccuracy) 
referred to as antiphospholipid antibodies, with anti-
β2GPI being the best characterized and the most likely to 
be pathogenic.

While antiphospholipid antibodies are recognized 
to be pathogenic, the origin of these antibodies, and 
the reason that lupus patients are especially at risk for 
their development, are not well understood. Further, 
there are currently no targeted treatments for APS. 
Instead, therapy focuses on masking the prothrombotic 
effects of antiphospholipid antibodies with anticoagulant 
medications like warfarin and heparin. These drugs 
often need to be taken for life, and at the same time 
predispose to catastrophic bleeding complications[152]. 
While anticoagulants are somewhat effective in preven-
ting APS-associated blood clotting, they often have no 
bearing on the neurologic and renal complications of 
APS, which can progress to organ failure[145].

Heightened NET release in APS
Our group has recently made a number of important 
observations about APS neutrophils[153]. First, NETs 

circulate at high levels in the plasma of APS patients, 
even between thrombotic episodes[153]. Indeed, freshly 
isolated neutrophils from APS patients are primed to 
undergo spontaneous NETosis when cultured ex vivo 
(Figure 2). Mechanistically, anti-β2GPI IgG promotes 
NETosis by engaging β2GPI protein on the neutrophil 
surface; this process is independent of the Fc receptor, 
but does require ROS production and TLR4 signaling[153]. 
Further, and pointing to disease relevance, anti-β2GPI-
stimulated NETs promote thrombin generation in 
vitro[153]. In addition to our work, Leffler et al[154] have 
shown that some patients with APS have a defect in 
DNase-mediated NET degradation. This potentially sets 
up a vicious prothrombotic cycle, in which the threshold 
for NETosis is reduced in APS neutrophils, followed 
by the exaggerated persistence of the NETs that do 
form. A final interesting point is that antiphospholipid 
antibodies seem to engage not just neutrophils[153], but 
NETs themselves[154]. This observation deserves further 
exploration as to its potential role in APS pathogenesis.

CONCLUSION
While NETs have yet to be assigned a clear function in 
normal hemostasis, their roles in venous thrombosis, 
atherosclerosis, and arterial occlusions continue to be 
defined. It is notable that many systemic autoimmune 
diseases are not only associated with increased NETosis 
and decreased NET clearance, but also demonstrate an 
increased risk of both arterial and venous events. We 
therefore find it quite plausible that NETs contribute to 
the prothrombotic nature of diseases like SLE, ANCA-
associated vasculitis, and APS. As is detailed above, 
there are also hints that these sterile inflammatory NETs 

Control                                                            APS

25 µm25 µm

A B

Figure 2  Antiphospholipid syndrome neutrophils are prone to “spontaneous” neutrophil extracellular trap release. Freshly-isolated neutrophils from a healthy 
control (A) or antiphospholipid syndrome (APS) patient (B) were seeded onto poly-lysine-coated coverslips and incubated in serum-free media for 2 h. Samples were 
then fixed with paraformaldehyde and stained with Hoechst 33342 (DNA = blue) and anti-neutrophil elastase (Abcam, green). Cells were not specifically permeabilized 
and neutrophil elastase staining is therefore primarily extracellular. These representative micrographs show more neutrophil extracellular trap release in the APS 
neutrophils, as determined by overlapping DNA and neutrophil elastase staining.
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may differ structurally from NETs released during infec-
tion (for example, by being enriched in tissue factor or 
being more resistant to degradation), although further
study in this area is clearly needed. More work in 
disease-specific experimental models will also be 
required before clinical interventions can be considered.
In summary, there is a need to continue to explore 
the association between thrombosis and inflammatory 
disease-associated NETosis, in order to better under-
stand whether treatment algorithms can be developed 
that will allow us to prevent, rather than simply treat, 
life-threatening thrombotic episodes in these at-risk 
patients.
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