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Abstract
microRNAs (miRNAs) are powerful regulators of post-
transcriptional gene expression and play an important 
role in pathophysiological processes. Circulating miRNAs 
can be quantified in body liquids and are promising 
biomarkers in numerous diseases. In cardiovascular 
disease miRNAs have been proven to be reliable dia-
gnostic biomarkers for different disease entities. In 
cardiac fibrosis (CF) and heart failure (HF) dysregulated 
circulating miRNAs have been identified, indicating their 
promising applicability as diagnostic biomarkers. Some 
miRNAs were successfully tested in risk stratification 
of HF implementing their potential use as prognostic 
biomarkers. In this respect miRNAs might soon be 
implemented in diagnostic clinical routine. In the young 
field of miRNA based research advances have been 
made in identifying miRNAs as potential targets for 
the treatment of experimental CF and HF. Promising 
study results suggest their potential future application 
as therapeutic agents in treatment of cardiovascular 
disease. This article summarizes the current state of the 
various aspects of miRNA research in the field of CF and 
HF with reduced ejection fraction as well as preserved 
ejection fraction. The review provides an overview of 
the application of circulating miRNAs as biomarkers in 
CF and HF and current approaches to therapeutically 
utilize miRNAs in this field of cardiovascular disease. 
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Core tip: Recent study results suggest microRNAs 
(miRNAs) as promising biomarkers in the diagnosis of 
heart failure (HF) with reduced ejection fraction (HFrEF) 
and with preserve ejection fraction (HFpEF). The thera-
peutic application of antagomirs and mirmimics in 
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heart failure is still in its infancy but promising experi-
mental results are reported. This review provides an 
overview of miRNAs as diagnostic and prognostic 
biomarkers in HF and gives details on the utilization of 
miRNAs in the differentiated diagnosis of HFpEF and 
HFrEF. The manuscript evaluates the therapeutic appli-
cability of miRNAs in HF and thus provides valuable 
information for researchers dealing with miRNAs in HF.

Schulte C, Westermann D, Blankenberg S, Zeller T. Diagnostic 
and prognostic value of circulating microRNAs in heart failure 
with preserved and reduced ejection fraction. World J Cardiol 
2015; 7(12): 843-860  Available from: URL: http://www.
wjgnet.com/1949-8462/full/v7/i12/843.htm  DOI: http://dx.doi.
org/10.4330/wjc.v7.i12.843

INTRODUCTION
The term “microRNA” (miRNA) was established in 
1993 when researchers started to study the function 
of small RNAs[1]. Lin-4 was the first miRNA described[2] 
and after its discovery scientists began to recognize 
miRNAs’ importance as regulators in gene expression. 
Ever since miRNAs have not only been assessed for 
their promising regulatory role in various diseases, but 
also their diagnostic potential in risk prediction as well 
as their use as circulating biomarkers[3-5]. Furthermore, 
promising data have depicted miRNAs as gene specific 
therapeutic targets in disease modeling[6]. 

Numerous studies have analyzed miRNAs with 
respect to their utilization as disease-specific biomarkers. 
In cardiovascular disease, miRNAs have successfully 
been proven to be quantitatively modified in particular 
disease entities such as myocardial fibrosis and heart 
failure (HF)[7-12]. 

In this article we will review the value of miRNAs in 
cardiac fibrosis (CF) and HF. We will discuss the current 
knowledge about their role in two different entities of 
the disease - HF with reduced ejection fraction (HFrEF) 
and HF with preserved ejection fraction (HFpEF). In 
particular, we will provide an overview about the use of 
miRNAs as diagnostic and prognostic biomarkers in CF 
and HF as well as potential therapeutic agents.

miRNA: GENERALLY SPEAKING
miRNAs are non-coding RNAs with a length of 19-25 
nucleotides[13,14]. By binding to the 3’-untranslated 
region of target messenger RNAs (mRNAs), miRNA 
either initiate translational repression or degradation of 
mRNAs thereby regulating gene expression at the post-
translational stage[15,16] (Figure 1). Every single miRNA 
has target sites in hundreds of different genes[17]. At the 
same time computational prediction of target mRNAs 
suggests that more than 60% of all mammalian protein-
coding genes are conserved targets of miRNAs[18]. At 
the time of writing this review 2588 mature homo 

sapiens miRNAs were listed in “miRBase” (mirbase.org).
miRNA quantification showed organ- and cell-

specific expression patterns of certain miRNAs[19] while 
quantification measures have shown concentration-
dependent effects in pathologically altered organs[20]. 
In-vitro findings suggest groups of miRNAs being 
specifically up and down-regulated and polymorphisms 
in the miRNA regulatory pathway - so called miRSNPs 
- have been found to be associated with different types 
of disease[21-24]. miRNAs fulfill several criteria of an 
ideal biomarker: stability in the circulation, tissue- and 
pathology-specific regulation as well as high sensitivity 
and specificity. These characteristics predestine 
miRNAs as biomarkers. In fact, there is evidence that 
miRNAs’ applicability as circulating biomarkers for 
certain diseases might even exceed that of protein-
based biomarkers[25,26]. The field of miRNA research has 
paved the way for the development of new means of 
biomarker-based risk stratification for cardiovascular 
events. In this regard promising data have been 
collected in large-scale prospective clinical studies[27].

HF 
The discovery of miRNAs as promising new biomarkers 
in cardiovascular disease has ignited great expectations 
and especially in the field of HF, the last years have 
witnessed great success. The syndrome of HF ranges 
among the leading causes of death and morbidity world-
wide[28] with mortality rates of up to 50% in patients 
with new onset HF[29]. HF can be classified by the 
contraction of the left ventricle into HFrEF and HFpEF. 
While HFrEF is defined by a reduced left ventricular 
ejection fraction (LVEF), HFpEF describes HF patients 
with normal or only mildly reduced LVEF (over 50%)[30]. 
Approximately half of all HF patients present with 
preserved LVEF[31,32] illustrating its clinical importance, 
while morbidity and mortality are suggested to be 
equally distributed. 

HF, CARDIAC HYPERTROPHY AND 
FIBROSIS
There are three major causes of HF: hypertensive heart 
disease, ischemic heart disease and idiopathic dilated 
cardiomyopathy. Hypertension initiates molecular 
pathways that lead to increased cardiomyocyte size 
and protein synthesis as well as augmented sarcomer 
organization[33,34]. Persisting hypertrophy is associated 
with an unfavorable outcome and can result in HF 
and sudden death[35,36]. Independently from the under-
lying pathology failing hearts remodel in regard to 
extracellular matrix and myocyte size. This leads to 
augmented hypertrophy and death of cardiomyocytes 
followed by tissue fibrosis and scarring[37]. CF results 
in increased myocardial stiffness affecting systolic as 
well as diastolic left ventricular function[37,38]. The initial 
molecular steps in the development of HF can hardly 
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be analyzed using imaging techniques and protein 
biomarkers may be involved at later stages only[39]. In 
this respect the diagnosis of HF is most often been made 
at an advanced stage of the disease when symptoms 
and physical confinement have already developed. 
The fact that so-called early HFpEF usually is clinically 
apparent merely under exercise conditions complicates 
an early diagnosis[40-42]. This determines the clinical 
need for markers identifying the disease at the earliest 
possible stage.

miRNAS IN CARDIAC HYPERTROPHY 
AND FIBROSIS
Given that cardiac remodeling and fibrosis are signi-
ficant factors in the development of ventricular wall 
stiffness with compromised ventricular contractility 
and compliance, the expression of miRNAs is directly 
linked to the development of HF - with preserved and 
with reduced ejection fraction. miRNAs were identi-
fied to play a major role in the transcriptional and 
translational changes in gene expression with respect 
to cardiac hypertrophy and fibrosis[36,43]. The regulatory 
involvement of miRNAs in the development of cardiac 
hypertrophy and fibrosis ultimately suggests their causal 
roll in HF. 

In a mouse model of aortic constriction induced 

cardiac hypertrophy van Rooij et al[36] described altered 
levels of several miRNAs in murine cardiomyocytes 
while Sayed et al[44] found a set of more than 50 
miRNAs dysregulated in a similar setting with induced 
hypertrophy. Especially miR-1 was identified as signi-
ficantly down-regulated compared to sham operated 
controls, probably mediated via an inhibition of the 
translation of calmodulin-encoding mRNAs[45]. Similar 
results were reported by Carè et al[46]. They reported 
down-regulated levels of miR-1 and miR-133 in cardio-
myocytes of hypertrophic murine as well as human 
hearts[46]. Furthermore, in an in-vitro model the authors 
found a causal relationship between adeno-virus 
induced elevation of miR-1 and miR-133 levels and an 
inhibition of cardiac hypertrophy. Supporting data were 
reported from an in-vitro study involving neonatal rat 
cardiomyocytes[47]. Recently miR-150 has been described 
as a regulator in cardiac hypertrophy[48]. In a mouse 
model the authors induced cardiac hypertrophy by aortic 
banding and found miR-150 levels down-regulated 
compared to sham operated animals[48]. Several more in-
vitro and mouse model studies reported altered miRNA 
levels in cardiac hypertrophy on the one hand and 
induction of cardiac hypertrophy by artificial alterations of 
specific miRNAs on the other[49-52]. Especially miR-1[44,53], 
miR-21[54,55], miR-133[53,54], miR-195[36,56], miR-208[57-59] 
were proven to be involved in the regulation of cardiac 
hypertrophy. Alterations of miRNA levels were also 
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fibrosis[67,70,71]. On the other hand silencing of miR-21 
by means of antagomirs resulted in cardiomyocyte 
necrosis and apoptosis[72,73] indicating the integration of 
this miRNA in cardiac remodeling.

MI is frequently followed by ventricular remodeling 
processes and fibrotic structural changes in the in-
farcted areas. This process eventually leads to HF. A 
miRNA involved in post-MI CF is miR-24. In a mouse 
model of induced MI Wang et al[74] reported miR-24 
down-regulated and found a simultaneous increase 
of extracellular matrix remodeling. In-vivo lentivirus-
based intramyocardial elevation of miR-24 levels caused 
attenuation of fibrosis in the infarct border zone[74]. 
The authors described TGF-β to mediate the miR-24 
modulated effect and concluded miR-24 to be a potential 
target for the treatment of post-MI remodeling.

miR-29 is involved in fibrotic processes in different 
types of body tissue[75,76]. It controls a variety of pro-
fibrotic genes such as collagens, fibrillins, laminins, 
integrins and elastin[77]. Furthermore, miR-29 negatively 
regulates a number of anti-apoptotic genes, including 
Tcl-1, Mcl-1, YY1, p85a, CDC42 and DNMT3[77-81]. 
In a mouse model of induced MI miR-29 was down-
regulated[82]. Further analyses revealed miR-29 being 
predominantly expressed in cardiac fibroblasts and the 
in-vivo inhibition of miR-29 resulted in an induction of 
collagen mRNA expression[82]. Raising miR-29 concen-
trations using Mirmimics lead to a down-regulation of 
collagen mRNA expression[82]. Affirmative results were 
recently reported by Yang et al[83]. With respect to these 
results miR-29 can be attributed a key roll in regulation 
of tissue fibrosis and CF in particular. 

Study results like these gave rise to projects analy-
sing the roll of miRNAs in manifest HF.

miRNAS IN HF
In the process of HF development different intracellular 
signaling pathways are activated including an up-
regulation of structural fetal genes, such as β-myosin 
heavy chain (β-MHC) and down-regulation of adult 
structural genes, such as α-MHC[84-86]. miRNAs are 
involved in regulatory processes of activating fetal genes 
that are known to be up-regulated in failing hearts[87]. 
The involvement of miR-208 in α- and β-MHC regulation 
was reported by van Rooij et al[57]. Via this mechanism 
miR-208 regulates cardiomyocytes growth under stress 
conditions as reported by the authors in a transgenic 
mouse model[57]. The same working group had previously 
found a set of miRNAs up-regulated not only in a mouse 
model of induced hypertrophy but also in failing human 
hearts[36]. They found an increased expression of miR-24, 
miR-125b, miR-195, miR-199a and miR-214 in both mice 
and human hearts and postulated that these miRNAs 
are part of a molecular signature of adverse cardiac 
remodeling[36].

Besides the development of cardiac hypertrophy 
and fibrosis as described above a knockout of the 
key enzyme Dicer, essential for intracellular miRNA 

reported in induced hypertrophy of cardiomyocytes in 
engineered heart tissue[60].

The heart’s initial hypertrophic response to volume 
overload or increased afterload as well as pathological 
conditions after myocardial infarction (MI) is followed by 
the process of remodeling which leads to CF. A major 
regulatory roll of miRNAs in the process of cardiac 
remodeling and fibrosis was suggested when a key 
enzymatic step towards miRNA activation catalyzed by 
the enzyme Dicer was blocked in knock out mice[61]. 
The authors found biventricular enlargement, myocyte 
hypertrophy and pronounced CF[61]. miRNAs involved in 
regulatory pathways of hypertrophy such as miR-208 
have also been found in cardiac remodeling[57]. van 
Rooij et al[57] found mutant mice overexpressing miR-
208 to not develop cardiomyocyte fibrosis despite being 
exposed to an increased afterload. Opposite, miR-208a 
has been identified as a regulator of endoglin expression 
and increases myocardial fibrosis in volume overloaded 
hearts[62]. Comparable results were reported in a model 
of cultured rat myoblasts[59].

miR-133a was reported to be down-regulated in 
a mouse model of aortic constriction-induced hyper-
trophy[63]. Expression of miR-133a prevented this down-
regulation while the authors found less myocardial 
fibrosis along with improved diastolic function of the 
analyzed mouse hearts[63]. Similar results were reported 
from analyses of CF in canines. Shan et al[64] described 
reduced miR-133 and miR-590 levels in canine hearts 
after nicotine-induced CF mediated by up-regulation of 
transforming growth factor β (TGF-β) 1 and TGF-β RII. 
By transfection of miR-133 or miR-590 into cultured 
atrial fibroblasts it was possible to reduce fibroblast 
activity as well as collagen production while this 
effect was reversible by administration of antisense 
oligonucleotides against miR-133 or miR-590[64]. Con-
firming results of reducing CF by miR-133 induction 
were recently reported in a mouse model of aortic 
banding-induced hypertrophy[65]. Besides miR-133 also 
miR-30 was reported to control pro-fibrotic proteins 
and thus regulate changes in the extracellular matrix 
of the myocardium[66]. The decrease of miR-133 and 
miR-30 in a gene-modulated rat model of pathological 
cardiac hypertrophy was found to be linked with an up-
regulation of collagen synthesis and CF[66].

In a transgenic mouse model miR-21 was discovered 
as a key regulator of signaling pathways in cardiac 
fibroblasts controlling the extent of cardiac hypertrophy 
and interstitial fibrosis[55]. A different working group 
was able to show that elevated miR-21 expression 
was highly related to CF[67]. These findings are in line 
with the observation that miR-21 is involved in the 
regulation pathway of cardiac fibroblasts in infarcted 
mouse hearts[68]. Cardin et al[69] were able to suppress 
atrial fibrosis in miR-21 knock out mice after induced 
MI. Also, the authors succeeded in depressing post 
infarction fibrosis by means of anti-miR-21 reduction of 
miR-21 availability. More recent studies validate these 
findings of miR-21 promoting cardiac remodeling and 
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processing, leads to dilatative cardiomyopathy (DCM) 
and HF[88]. The authors found reduced Dicer expression 
in human failing hearts and reported a significant 
increase of Dicer expression in hearts of patients with 
improved cardiac function after implantation of left 
ventricular assist device (LVAD) for HF[88]. These results 
depict the importance of miRNAs in the regulation of 
pathophysiologic processes involved in the development 
of HF and have lead to considerations of clinical impli-
cations of miRNAs dysregulated in cardiomyopathies 
and HF in particular. Matkovich et al[89] drove the Dicer-
related findings by Chen et al[88] (mentioned above) a 
step further and analyzed a miRNA expression profile of 
cardiac tissue from HF patients with and without LVAD-
based recovery compared to healthy controls. The 
authors found 28 miRNAs up-regulated in failing hearts 
compared to healthy controls and 20 of these miRNAs 
returned to near normal levels in the LVAD-treated 
group with significant improvement of left ventricular 
performance[89]. While these results link defined miRNAs 
to clinically apparent HF and suggest their potential 
in treatment monitoring, a more distinct analysis of 
miRNAs in different types of cardiomyopathies was 
performed by Ikeda et al[90]. In left ventricular biopsy 
samples of 67 humans with ischemic cardiomyopathy 
(ICM), DCM, aortic stenosis and healthy controls they 
analyzed miRNA expression[90]. Using a genome-wide 
miRNA expression profiling they detected 87 miRNAs 
and found their expression profiles significantly altered in 
the three heart diseases compared to healthy controls. 
While seven miRNAs were altered in the same direction 
in all three disease entities, the global pattern of miRNA 
expression was distinct in different types of HF[90]. miR-19 
appeared as the most strongly down-regulated miRNA 
in DCM and AS but not in ICM, while miR-1 was down-
regulated in all three diseases. miR-214 - considered 
pro-hypertrophic[36] - was most strongly up-regulated. 
Surprisingly, miR-133 and miR-208 levels, which 
are associated with myocardial hypertrophy[46,57-59,63] 
and fibrosis[59,62,64], were unchanged. These reported 
data suggest miRNAs to be specifically dysregulated 
in different types of HF pathology. In this regard an 
interesting study was recently reported by Leptidis et 
al[91] who performed miRNA deep sequencing analyses 
in myocardial biopsies of end stage DCM, hypertrophic 
cardiomyopathy (HCM) and healthy controls to analyze 
the human heart’s miRNOME with respect to these two 
different HF pathologies. They were able to identify a set 
of ten miRNAs (miR-23b, miR-30d, miR-125a, miR-143, 
miR-145, miR-193, miR-197, miR-342, miR-365, 
miR-455) that is differentially expressed in HCM and 
DCM compared to healthy controls and had not been 
linked to HF previously[91]. The authors were able to 
confirm previously described dysregulated levels of 
miR-133a, miR-1, miR-21, miR-214, miR-212, miR-29, 
miR-129, miR199a in HCM, while miR-119 and miR-214 
expression was reported only to be altered in DCM[91]. 
miR-145 was identified as a new regulator of pathologic 
left-ventricular remodeling. Satoh et al[92] who analyzed 

miRNA expression in cardiac tissue from myocardial 
biopsies of patients with DCM reported higher levels 
of miR-208, miR-208b and miR-499 than in healthy 
controls. Follow-up revealed baseline miR-208 levels to 
be strong predictors of clinical outcome[92] indicating a 
potential utilization of miRNAs in risk prediction of HF. 

Based on these results, the potential applicability of 
miRNAs as distinct biomarkers for the diagnosis of HF 
and for different entities of the disease seems possible. 
miRNAs seem to be promising biomarkers in risk 
prediction of HF patients. For obvious reasons, though, 
the availability of heart tissue is limited and therefore 
different sources of biomaterial for miRNA analysis are 
needed. In this respect body fluids appear to present an 
ideal origin to non-invasively win such biomaterial. 

CIRCULATING miRNAS
Besides regulating gene expression and phenotypic 
control in the cell of origin[93] and mediating metabolism 
on an intracellular level[94] miRNAs are also secreted 
from the producing cell and capable of transmitting 
their silencing signals to different cells[95]. miRNAs have 
been detected in numerous body fluids such as serum 
and plasma as well as saliva and urine[25,26] and can be 
found in pericardial fluid of HF patients[96]. Consequently, 
miRNAs have been tested to function as detectable 
extracellular messengers in cell-to-cell communication[97]. 
Their structure prevents miRNAs from early degradation 
in circulating blood[25,98-102] and their ideal biomarker 
characteristics including size, abundance and tissue 
specificity suggest circulating miRNAs as blood-based 
biomarkers for tissue injury[12,103-105].

CIRCULATING miRNAS IN THE 
DIAGNOSIS OF HF
The ability to detect and measure miRNAs in a minimal-
invasive way has led to their evaluation as potential 
circulating biomarkers for cardiovascular disease[3,106]. 
The promising results of disease-specific cellular miRNA 
dysregulation in HF and their suitable characteristics with 
regard to circulating biomarker diagnostics have led to 
their evaluation as blood based biomarkers in HF. In a 
rat model of induced left ventricular hypertrophy with 
consecutive development of HF the authors reported 
significantly elevated plasma levels of miR-16, miR-20b, 
miR-93, miR-106b, miR-223 and miR-423-5p[107]. These 
results were in line with earlier findings of Tijsen et al[108] 
who were amongst the first researchers to evaluate 
circulating miRNAs as diagnostic biomarkers in HF in a 
clinical approach. The authors reported that besides 6 
miRNAs (miR-18ba, miR-129-5p, miR-1254, miR-675, 
oncomir HS_202.1 miR-622), that were moderately 
elevated in plasma of 30 HF patients compared to 20 
dyspnea patients and 20 healthy controls, miR-423-5p 
was found to be a significant predictor of HF diagnosis in 
a multivariate logistic regression model[108]. Despite the 
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small sample size and suboptimal matching of baseline 
characteristics[109] these were promising initial results 
that were confirmed by Goren et al[110] in a similar 
study setup. The authors were one of the first groups to 
perform a screening of circulating miRNAs on a larger 
scale in cardiovascular disease and HF. They screened 
186 miRNAs in serum of 30 HF patients compared to 30 
healthy controls and were able to detect four miRNAs 
(miR-423-5p, miR-320a, miR-22, miR-92b) that were 
up-regulated in the serum of HF patients compared 
to the control group[110]. Furthermore, the authors 
succeeded in generating a score out of these miRNAs 
that discriminates HF patients from healthy controls. 
The group was able to describe a significant association 
between the miRNA score and several established 
prognostic HF parameters such as NT-proBNP, a wide 
QRS complex and left ventricular (LV) dilatation under-
lining the significance of these results not only with 
respect to diagnostic but also to prognostic applicability 
of circulating miRNAs[110]. At that time the analyzed 
combination of miRNAs miR-320 and miR-423-5p had 
previously been associated with HF[86,111,112]. 

Ellis et al[113] analyzed miRNA plasma levels of 44 
HF patients compared to 32 Chronic obstructive pul-
monary disease (COPD) patients, 59 patients with 
breathlessness for other diagnoses and 15 healthy 
controls after an initial miRNA screening phase. Not 
only were seven miRNAs (miR-103, miR-142-3p, miR-
342-3p, miR-199a, miR-23a, miR-27b, miR-324-
5p) associated with the diagnosis of HF in regression 
and receiver operating characteristics (ROC) analysis, 
plasma levels of four miRNAs (miR-103, miR-142-3p, 
miR-30b and miR-342-3p) were able to distinguish 
between HF and exacerbation of COPD, other causes 
of dyspnea and controls[113]. Although miR-423-5p 
could not be identified as a predictor of HF diagnosis, 
the addition of miR-423-5p to NT-proBNP significantly 
improved the area under the operating receiver curve 
(AUC) for predicting the diagnosis HF[113]. These findings 
confirm previous results of the potential applicability of 
miR-423-5p as circulating biomarker in HF diagnosis.

In a larger clinical trial serum miRNA levels of 81 
HF patients were compared to 60 non-HF patients and 
15 healthy subjects[114]. The authors reported a set 
of 24 miRNAs significantly down-regulated in the HF 
group compared to controls. miR-26b-5p, miR-145-
5p, miR-92a-3p, miR-30e-5p and miR-29a-3p inversely 
correlated with NT-proBNP and directly correlated with 
EF, while ROC analysis to predict differentiation of HF 
patients from non-HF cases revealed strong AUC values 
between 0.84 and 0.91, suggesting these miRNAs to be 
potentially strong circulating biomarkers in the diagnosis 
of HF[114].

Recently, Wong et al[115] identified miR-1233, miR-
183-3p, miR-190a, miR-193b-3p, miR-193b-5p, 
miR-211-5p, miR-494 and miR-671-5p to be able to 
distinguish HF from healthy controls in plasma levels of 
60 HF patients and 30 healthy subjects.

Circulating blood cells and endothelial cells contain 

higher miRNA concentrations than serum and plas-
ma[116]. Thus, further approaches in quantification efforts 
of circulating miRNAs with respect to HF were aimed at 
analyzing their concentration in circulating blood cells 
such as peripheral blood mononuclear cells (PBMCs). 
Gupta et al[117] analyzed miRNA concentrations in PBMCs 
of 44 DCM HF patients compared to 48 healthy controls. 
Real time polymerase chain reaction (RT-PCR) revealed 
miR-548c and miR-548i significantly down-regulated in 
PBMCs of DCM patients, while miR-138 was up-regulated 
in PBMCs of those patients. ROC analysis showed an AUC 
of 0.85 for miR-548c with respect to its discriminatory 
power to distinguish DCM from controls[117]. 

Frequently, HF consecutively develops after ischemic 
events such as MI. Corsten et al[10] analyzed whole 
blood samples, plasma and urine of 32 acute myocardial 
infarction (AMI) patients compared to 36 non-AMI 
controls and reported plasma miR-208b and miR-499 
to correlate with cardiac injury markers and, hence, 
to correlate with myocardial damage. miR-499 was 
significantly up-regulated in a subgroup of patients with 
acute HF. Another group that analyzed a predefined set 
of circulating miRNAs in plasma of 12 post-MI patients 
compared to 12 healthy controls was able to find levels 
of miR-1, miR-21, miR-29a, miR-133a and miR-208 
altered in the time course after MI[118]. These miRNAs 
had previously been described to affect myocardial 
growth, hypertrophy, fibrosis and viability[118] implying 
that the same miRNAs that have been shown to be 
associated with these pathophysiological processes 
preceding HF can be found dysregulated in plasma of 
patients with cardiovascular disease.

Independently from the pathophysiological cause 
miRNAs have been reported to complement biomarker-
based prediction of outcome in HF. In a study including 
20 clinically stable and 22 decompensated HF patients 
as well as 15 healthy controls the authors performed a 
microarray-based miRNA profiling and reported a large 
number of miRNAs to be quantitatively dysregulated in 
HF patients compared to controls[119]. More importantly, 
Cox regression identified miR-182 to be able to predict 
cardiovascular mortality. Remarkably, the prognostic 
value of miR-182 was identified to be superior to NT-
proBNP as well as high-sensitive C-reactive protein by 
ROC analysis[119]. Table 1 gives an overview of cellular 
and circulating miRNAs dysregulated in heart failure. 

The above studies suggest blood-based circulating 
miRNAs as potential strong tools in the diagnosis and 
risk evaluation of HF. On the other hand, most trials 
included rather small sample sizes and most identified 
miRNAs were not confirmed in repetitive studies.
 
miRNA SIGNATURES IN HF
Combining two or more biomarkers as a defined set for 
diagnostic purposes can enhance discriminatory power 
compared to the use of single biomarkers. In the field 
of miRNA biomarker research the assessment of sets 
(so-called signatures) of miRNAs might deliver superior 
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Table 1  Systematic overview of microRNAs dysregulated in heart failure

miRNA Study type Bio-material Group/size Detection method Effect Value as biomarker Ref.

Single miRNAs
   Let-7 Clinical Tissue ICM n = 10 qRT-PCR Up-regulated in DCM and ICM Diagnostic [90]

DCM n = 25
AS n = 13
HC n = 10

   miR-1 Clinical Tissue ICM n = 10 qRT-PCR Down-regulated in DCM Diagnostic [90]
DCM n = 25

AS n = 13
HC n = 10

   miR-15b Clinical Tissue ICM n = 10 qRT-PCR Up-regulated in DCM Diagnostic [90]
DCM n = 25

AS n = 13
HC n = 10

   miR-16 Experimental Plasma Rats, hypertension-
induced HF

qRT-PCR Up-regulated in HF Diagnostic [107]

   miR-17-5p Clinical Tissue ICM n = 10 qRT-PCR Down-regulated in DCM Diagnostic [90]
DCM n = 25

AS n = 13
HC n = 10

   miR-18b Clinical Plasma HF n = 30 qRT-PCR Up-regulated in HF Diagnostic [108]
Dyspnea n = 20

HC n = 20
   miR-20b Experimental Plasma Rats, hypertension-

induced HF
qRT-PCR Up-regulated in HF Diagnostic [107]

   miR-211 Clinical Tissue LVAD-patients Micro-array Up-regulated in HF Experimental [89]
   miR-22 Clinical Serum HFrEF n = 30 qRT-PCR Up-regulated in HFrEF Diagnostic/ [110]

HC n = 30 prognostic
   miR-23a Clinical Tissue LVAD-patients Micro-array Up-regulated in HF Experimental [89]
   miR-24 Experimental Tissue Mice, human hearts Micro-array Up-regulated in HF, CH Experimental [36]
   miR-26b-5p Clinical Plasma HF n = 81 qRT-PCR Down-regulated Diagnostic [114]

HC n = 15
   miR-28 Clinical Tissue ICM n = 10 qRT-PCR Down-regulated in DCM Diagnostic [90]

DCM n = 25
AS n = 13
HC n = 10

   miR-29a-3p Clinical Plasma HF n = 81 qRT-PCR Down-regulated Diagnostic [114]
HC n = 15

   miR-30b Clinical Plasma HF n = 44 RT-PCR Down-regulated in HF Diagnostic [113]
COPD n = 32

Dyspnea n = 59
HC n = 15

   miR-30e-5p Clinical Plasma HF n = 81 qRT-PCR Down-regulated Diagnostic [114]
HC n = 15

   miR-92b Clinical Serum HFrEF n = 30 qRT-PCR Up-regulated in HFrEF Diagnostic/ [110]
HC n = 30 prognostic

   miR-92a-3p Clinical Plasma HF n = 81 qRT-PCR Down-regulated Diagnostic [114]
HC n = 15

   miR-93 Experimental Plasma Rats, hypertension-
induced HF

qRT-PCR Up-regulated in HF Diagnostic [107]

   miR-103 Clinical Plasma HF n = 44 RT-PCR Down-regulated in HF Diagnostic [113]
COPD n = 32

Dyspnea n = 59
HC n = 15

   miR-106a Clinical Tissue ICM n = 10 qRT-PCR Down-regulated in DCM Diagnostic [90]
DCM n = 25

AS n = 13
HC n = 10

   miR-106b Experimental Plasma Rats, hypertension-
induced HF

qRT-PCR Up-regulated in HF Diagnostic [107]

   miR-125b Experimental Tissue Mice, human hearts Micro-array Up-regulated in HF, CH Experimental [36]
   miR-126 Clinical Plasma HF n = 10 qRT-PCR Down-regulated in HF Diagnostic [150]

HC n = 17
   miR-133 Clinical Tissue LVAD-patients Micro-array Up-regulated in HF Experimental [89]
   miR-138 Clinical PBMC DCM n = 44 qRT-PCR Up-regulated in DCM Diagnostic [117]

HC n = 48
   miR-142-3p Clinical Plasma HF n = 44 RT-PCR Down-regulated in HF Diagnostic [113]

COPD n = 32

Schulte C et al . miRNAs in HFpEF and HFrEF



850 December 26, 2015|Volume 7|Issue 12|WJC|www.wjgnet.com

Dyspnea n = 59
HC n = 15

Clinical Plasma HFpEF n = 8 qRT-PCR Down-regulated in stable and Diagnostic [121]
Stable DCM n = 10 decompensated DCM

Decompensated 
DCM n = 13

HC n = 8
   miR-145-5p Clinical Plasma HF n = 81 qRT-PCR Down-regulated Diagnostic [114]

HC n = 15
   miR-182 Clinical Serum HF n = 42 Micro-array Up-regulated in HF Prognostic [119]

HC n = 15
   miR-183-3p1 Clinical Plasma HF n = 60 (HFpEF n = 

30; HFrEF n = 30)
qRT-PCR Down-regulated in HF Diagnostic [115]

HC n = 28
   miR-190a Clinical Plasma HF n = 60 (HFpEF n = 

30; HFrEF n = 30)
qRT-PCR Down-regulated in HF Diagnostic [115]

HC n = 28
   miR-193b-3p1 Clinical Plasma HF n = 60 (HFpEF n = 

30; HFrEF n = 30)
qRT-PCR Down-regulated in HF Diagnostic [115]

HC n = 28
   miR-193b-5p1 Clinical Plasma HF n = 60 (HFpEF n = 

30; HFrEF n = 30)
qRT-PCR Down-regulated in HF Diagnostic [115]

HC n = 28
   miR-195 Experimental Tissue Mice, human hearts Micro-array Up-reglated in HF, CH Experimental [36]

Clinical Tissue ICM n = 10 qRT-PCR Down-regulated in DCM Diagnostic [90]
DCM n = 25 and ICM

AS n = 13
HC n = 10

   miR-199a Experimental Tissue Mice, human hearts Micro-array Up-reglated in HF, CH Experimental [36]
Clinical Tissue ICM n = 10 qRT-PCR Down-regulated in Diagnostic [90]

DCM n = 25 DCM and ICM
AS n = 13
HC n = 10

   miR-208 Experimental Tissue Mice Micro-array Up-regulated in HF, CF, CH Experimental [57]
Clinical Tissue DCM n = 82 qRT-PCR Up-regulated in DCM Diagnostic/ [92]

HC n = 21 prognostic
   miR-208b Clinical Tissue DCM n = 82 qRT-PCR Up-regulated in DCM Diagnostic [92]

HC n = 21
   miR-211-5p1 Clinical Plasma HF n = 60 (HFpEF n = 

30; HFrEF n = 30)
qRT-PCR Down-regulated in HF Diagnostic [115]

HC n = 28
   miR-214 Experimental Tissue Mice, human hearts Micro-array Up-reglated in HF, CH Experimental [36]
   miR-222 Clinical Tissue ICM n = 10 qRT-PCR Down-regulated in Diagnostic [90]

DCM n = 25 DCM and ICM
AS n = 13
HC n = 10

   miR-223 Experimental Plasma Rats, hypertension-
induced HF

qRT-PCR Up-regulated in HF Diagnostic [107]

   miR-320a Clinical Serum HFrEF n = 30 qRT-PCR Up-regulated in HFrEF Diagnostic/ [110]
HC n = 30 prognostic

   miR-342-3p Clinical Plasma HF n = 44 RT-PCR Down-regulated in HF Diagnostic [113]
COPD n = 32

Dyspnea n = 59
HC n = 15

   miR-422b Clinical Tissue ICM n = 10 qRT-PCR Down-regulated in Diagnostic [90]
DCM n = 25 DCM and ICM

AS n = 13
HC n = 10

   miR-423-5p Experimental Plasma Rats, hypertension-
induced HF

qRT-PCR Up-regulated in HF Diagnostic [107]

Clinical Plasma HF n = 30 qRT-PCR Up-regulated in HF Diagnostic/ [108]
Dyspnea n = 20 prognostic

HC n = 20
Clinical Serum HFrEF n = 30 qRT-PCR Up-regulated in HFrEF Diagnostic/ [110]

HC n = 30 prognostic
Clinical Plasma HF n = 44 RT-PCR Down-regulated in HF Prognostic when [113]

COPD n = 32 combined with 
Dyspnea n = 59 NT-proBNP

HC n = 15
   miR-4941 Clinical Plasma HF n = 60 (HFpEF n = 

30; HFrEF n = 30)
qRT-PCR Down-regulated in HF Diagnostic [115]

HC n = 28
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results compared with the application of single miRNAs. 
In order to assess circulating miRNAs as biomarkers for 
HFrEF, Vogel et al[120] performed miRNA quantification 
measures in whole blood samples of 53 HFrEF patients 
with non-ischemic HF compared to 39 healthy controls. 
In a two-step screening-validation study the authors 
found a signature of eight miRNAs (miR-520d-5p, 
miR-558, miR-122*, miR-200b*, miR-622, miR-519e*, 
miR-1231 and miR-1228*) which reliably predicted the 
diagnosis of HFrEF with an AUC of 0.81[120] (Table 1). 
Compared to the most powerful single miRNAs miR-558, 
miR-122a, and miR-520d-5p (AUC between 0.7 and 0.71) 
this miRNA signature further improved discrimination 
of HFrEF patients from controls[120] confirming the idea 
to improve sensitivity and specificity when utilizing 
combinations of more than one miRNA.

miRNAS IN THE DIFFERENTIATED 
DIAGNOSIS OF HF WITH PRESERVED 
EJECTION FRACTION
Pathophysiologically, HFpEF is the clinical manifestation 
of LV diastolic dysfunction as a major differentiating 
factor from HFrEF. Therefore, diastolic dysfunction 
appears as a useful parameter in the early diagnosis of 
HFpEF. 

Initial results proving the involvement of miR-21 
in cardiac remodeling and fibrosis[55,67-73] (see above) 
suggested its roll in HFrEF. These findings were taken 
up by Dong et al[67] in order to analyze this miRNA with 

respect to HFpEF. The authors created a rat model of 
aortic constriction-induced HFpEF. HFpEF was diagnosed 
via echocardiographic parameters and quantitative RT-
PCR (qRT-PCR) analyses showed higher cellular miR-21 
levels in HFpEF rats compared to healthy controls[67]. 
These results confirm the former pathophysiologic 
miR-21 findings and indicate their potential to be 
transferrable to a functional level in HFpEF. In order 
to assess whether circulating miRNAs as opposed to 
cellular miRNAs can be utilized as biomarkers in the 
detection of HFpEF and in a differentiated diagnosis 
compared to HFrEF, results were published recently by 
Nair et al[121]. They analyzed miRNA plasma levels of HF 
patients with diastolic dysfunction. The authors found 
miR-454, miR-500 (both down-regulated) and miR-1246 
(up-regulated) significantly dysregulated in diastolic 
dysfunction indicating that circulating miRNAs can 
serve as biomarkers for diastolic dysfunction[121]. This 
suggests itself to further considerations for miRNA-based 
diagnostics to differentiate HFrEF from HFpEF. Wong 
et al[115] performed a miRNA quantification of whole 
blood and plasma samples in 39 HFrEF and 19 HFpEF 
patients as well as 28 healthy controls and identified 
344 miRNAs dysregulated between the three groups. 
Of these, 90 serum derived miRNAs were identified 
that showed high correlation with or an AUC > 0.7 
for LVEF. Again a selection of 32 miRNAs with conside-
rably high detection levels was made. These analytical 
steps allowed for a qualitative selection of promising 
miRNAs and those, that can easily be detected in serum. 
Further analyses of these 32 miRNAs in plasma of an 

   miR-499 Clinical Tissue DCM n = 82 qRT-PCR Up-regulated in DCM Diagnostic [92]
HC n = 21

Clinical Plasma Acute HF n = 33 qRT-PCR Up-regulation in acute HF Diagnostic [10]
HC n = 34

   miR-548c Clinical PBMC DCM n = 44 qRT-PCR Down-regulated in DCM Diagnostic [117]
HC n = 48

   miR-548i Clinical PBMC DCM n = 44 qRT-PCR Down-regulated in DCM Diagnostic [117]
HC n = 48

   miR-671-5p1 Clinical Plasma HF n = 60 (HFpEF n = 
30; HFrEF n = 30)

qRT-PCR Up-regulated in HF Diagnostic [115]

HC n = 28
   miR-675 Clinical Plasma HF n = 30 qRT-PCR Up-regulated in HF Diagnostic [108]

Dyspnea n = 20
HC n = 20

   miR-12331 Clinical Plasma HF n = 60 (HFpEF n = 
30; HFrEF n = 30)

qRT-PCR Up-regulated in HF Diagnostic [115]

HC n = 28
miRNA signatures
   miR-520d-5p Clinical Whole blood HFrEF n = 53 qRT-PCR Dysregulated in HF - superior to Diagnostic [120]
   miR-558 HC n = 39 single miRNAs
   miR-122*

   miR-200b*

   miR-622
   miR-519e*

   miR-1231
   miR-1228*

1See also Table 2; *Most microRNAs have two mature products, one derives from the 5’ arm of the miRNAs hairpin and the other from the 3’ arm of the 
hairpin; the latter is marked “*”. miRNA: microRNA; HF: Heart failure; CF: Cardiac fibrosis; CH: Cardiac hypertrophy; HC: Healthy control; ICM: Ischemic 
cardiomyopathy; DCM: Dilated cardiomyopathy; AS: Aortic stenosis; COPD: Chronic obstructive pulmonary disease; MI: Myocardial infarction; HFpEF: 
Heart failure with preserved ejection fraction; HFrEF: Heart failure with reduced ejection fraction; PBMC: Peripheral blood mononuclear cell; LVAD: Left 
ventricular assist device; qRT-PCR: Quantitative real time polymerase chain reaction.
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independent cohort of 30 HFrEF and 30 HFpEF patients 
as well as 30 controls identified 12 miRNAs that could 
segregate HFrEF and HFpEF from non-HF controls as 
well as HFrEF from HFpEF[115]. In detail, miR-125a-
5p, miR-183-3p, miR-193b-3p, miR-211-5p, miR-494, 
miR-638 and miR-671-5p differed significantly between 
HFrEF and controls while miR-1233, miR-183-3p, miR-
190a, miR-193b-3p, miR-193b-5p and miR-545-5p 
showed significant differences in expression between 
HFpEF and controls[115]. miR-125a-5p (up-regulated in 
HFrEF - normal in HFpEF), miR-190a (down-regulated 
in HFpEF - normal in HFrEF), miR-550a-5p (directionally 
opposite expression pattern between HFrEF and HFpEF) 
and miR-638 (down-regulated in HFrEF - normal in 
HFpEF) were revealed to distinguish between HFrEF 
and HFpEF. Clinically relevant, the combinatory use of 
NT-proBNP with miR-125a-5p improved the AUC value 
to differentiate HFrEF from HFpEF from 0.83 for NT-
proBNP alone to 0.91 for the combinatory use and 
thus significantly increased NT-proBNP’s discriminative 
diagnostic abilities[115]. Another aspect that was ad-
dressed in this study was the application of panels of 
miRNAs. The authors reported that miRNA panels had 
comparable performance to NT-proBNP with respect 
to the discrimination of HFrEF from HFpEF while single 
miRNAs tended to perform slightly inferior to NT-pro-
BNP[115]. 

In order to identify a miRNA signature helping 
to differentiate HFpEF from HFrEF Watson et al[122] 
performed miRNA quantification analyses in sera of 90 
HFpEF patients compared to 90 HFrEF patients and 90 
healthy controls. The diagnosis of HFrEF and HFpEF 
was made echocardiographically. In an initial miRNA 
screening in serum samples of 15 individuals per group 
five candidate miRNAs (miR-30c, miR-146a, miR-221, 
miR-328 and miR-375) were identified as differentially 
expressed between the three groups and validated in 
an independent study cohort of 225 individuals[122]. The 
authors performed AUC analyses to differentiate HFpEF 
from HFrEF and reported an equal predictive value of 
any of the single miRNAs compared with the use of brain 
natriuretic peptide (BNP)[122]. Importantly, combinations 
of two or more of miR-146a, miR-221, miR-328 and 
miR-375 with BNP significantly improved the predictive 
power to differentiate HFpEF from HFrEF as compared 
with BNP alone in the AUC model[122]. The latter two very 
recent studies were the first to investigate circulating 
miRNAs as promising new biomarkers to differentiate 
HFpEF from HFrEF. They similarly provide evidence 
that combinatory utilization of miRNAs can improve 
discriminative power compared to single miRNAs. 
Critically evaluated, though, there was no overlap in 
the identified miRNAs in these studies that were able to 
distinguish between HFrEF and HFpEF. Schmitter et al[123] 
discussed potential explanations for these differences. 
The authors regarded several explanations relevant in 
this respect. First, methodological variances such as 
the choice of body liquid, detection methods and the 
importance to perform microarray screenings prior to 

qRT-PCR analyses were identified to be contributors to 
a lack of comparability. Also, pre-analytical variations 
like sample storage, degree of hemolysis, extraction 
efficiency and standardization methods are mentioned 
as important contributors to a reduced comparability[123]. 
The authors furthermore define the need for more 
large-scale studies with well-defined control- and 
validation cohorts limiting the influence of different 
HF etiologies, concomitant diseases, and treatments. 
Another important factor to be considered when 
interpreting miRNA quantification results is the influence 
of confounding medications and classical cardiovascular 
risk factors[123].

Taken together the very recent results in miRNA-
based diagnostics of HFpEF and HFrEF are highly 
promising but urgently need verification in large-scale 
studies with harmonized methods and well-defined 
study samples. 

Table 2 gives an overview of miRNAs in the diagnosis 
of HFpEF and HFrEF. 

miRNAS IN DISEASE TREATMENT
Molecular diagnostics and therapeutics represent an 
important contributor to improve outcome for HF[123]. 
In contrast to traditional treatments, gene therapy 
is capable of modifying the genetic structure of the 
cell and can modulate the disease phenotype[124]. In 
this respect miRNAs are promising new players in the 
development of molecular therapeutics in cardiovascular 
disease and HF in particular. The regulation of selected 
miRNAs highly involved in cardiac remodeling could be 
a key factor in influencing the development of HF by 
controlling hypertrophy and fibrosis.

The concept of miRNA related disease treatment 
bases on the idea to specifically influence miRNA 
levels by raising or suppressing miRNA levels. Several 
different approaches have successfully been tested[125]. 
The major method to raise miRNA levels is the miRNA 
mimic technology (miR-mimic), which operates via 
miRNA substitution by artificially generated double-
stranded miRNA-like RNA fragments[126]. They “mimic” 
endogenous miRNAs and bind - unlike endogenous 
miRNAs - gene-specifically to their target mRNA[126]. On 
the other hand, so called antagomirs can be used to 
suppress miRNA levels[127]. Antagomirs are chemically 
engineered oligonucleotides that competitively bind to 
and thus inhibit the mature target miRNA[127,128]. This 
mechanism leads to an up-regulation of specific mRNAs 
and gene expression[129]. Furthermore, miRNA sponges 
(also referred to as “target mimicry”) are competitive 
inhibitors that contain binding sites for a miRNA family
and thus inactivate miRNAs of that particular family[130-132].
As opposed to antagomirs, sponges are specific only 
to the seed region of a miRNA and thus can interfere 
with a whole family of miRNAs[133]. Masking (also called 
“target occupiers”) describes a mechanism to prevent 
specific miRNAs from binding to their very binding 
site[134]. Consequently, fewer miRNAs remain to bind 
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Table 2  microRNAs in the diagnosis and differentiation of heart failure with preserved ejection fraction and heart failure with 
reduced ejection fraction

miRNA Study type Bio-material Groups/size Detection method Effect Value as biomarker Ref.

miR-211 Experimental Tissue Mice - HFpEF vs 
HC

qRT-PCR Up-regulated in HFpEF Diagnostic [67]

miR-30c Clinical Serum HFpEF n = 90 qRT-PCR AUC analyses Differentiating [122]
HFrEF n = 90 HFrEF from HFpEF

HC n = 90
miR-125a-5p Clinical Plasma HFpEF n = 30 qRT-PCR Up-regulated in HFrEF, Diagnostic in HFrEF + [115]

HFrEF n = 30 unchanged in HFpEF differentiating HFrEF 
HC n = 28 from HFpEF

miR-146a Clinical Serum HFpEF n = 90 qRT-PCR AUC analyses Differentiating HFrEF [122]
HFrEF n = 90 from HFpEF

HC n = 90
miR-183-3p1 Clinical Plasma HFpEF n = 30 qRT-PCR Down-regulated in Diagnostic [115]

HFrEF n = 30 HFrEF and HFpEF
HC n = 28

miR-190a* Clinical Plasma HFpEF n = 30 qRT-PCR Down-regulated in Diagnostic in HFpEF + [115]
HFrEF n = 30 HFpEF, unchanged in differentiating 

HC n = 28 HFrEF HFrEF from HFpEF
miR-193b-3p1 clinical Plasma HFpEF n = 30 qRT-PCR Down-regulated in Diagnostic [115]

HFrEF n = 30 HFrEF and HFpEF
HC n = 28

miR-193b-5p1 Clinical Plasma HFpEF n = 30 qRT-PCR Down-regulated in HFpEF Diagnostic [115]
HFrEF n = 30

HC n = 28
miR-211-5p1 Clinical Plasma HFpEF n = 30 qRT-PCR Down-regulated in HFrEF Diagnostic [115]

HFrEF n = 30
HC n = 28

miR-221 Clinical Serum HFpEF n = 90 qRT-PCR AUC analyses Differentiating [122]
HFrEF n = 90 HFrEF from HFpEF

HC n = 90
miR-328 Clinical Serum HFpEF n = 90 qRT-PCR AUC analyses Differentiating [122]

HFrEF n = 90 HFrEF from HFpEF
HC n = 90

miR-375 Clinical Serum HFpEF n = 90 qRT-PCR AUC analyses Differentiating [122]
HFrEF n = 90 HFrEF from HFpEF

HC n = 90
miR-454 Clinical Plasma HFpEF n = 8 qRT-PCR Down-regulated in HFpEF Diagnostic [121]

Stable DCM n = 10
Decompensated 

DCM n = 13
HC n = 8

miR-4941 Clinical Plasma HFpEF n = 30 qRT-PCR Down-regulated in HFrEF Diagnostic [115]
HFrEF n = 30

HC n = 28
miR-500 Clinical Plasma HFpEF n = 8 qRT-PCR Down-regulated in HFpEF Diagnostic [121]

Stable DCM n = 10
Decompensated 

DCM n = 13
HC n = 8

miR-545-5p Clinical Plasma HFpEF n = 30 qRT-PCR Up-regulated in HFpEF Diagnostic [115]
HFrEF n = 30

HC n = 28
miR-550a-5p Clinical Plasma HFpEF n = 30 qRT-PCR Up-regulated in HFrEF Differentiating [115]

HFrEF n = 30 Down-regulation in 
HFpEF

HFrEF from HFpEF

miR-638 Clinical Plasma HFpEF n = 30 qRT-PCR Down-regulated in HFrEF, Diagnostic in HFrEF + [115]
HFrEF n = 30 unchanged in HFpEF differentiating HFrEF 

HC n = 28 from HFpEF
miR-671-5p1 Clinical Plasma HFpEF n = 30 qRT-PCR Up-regulated in HFrEF Diagnostic [115]

HFrEF n = 30
HC n = 28

miR-12331 Clinical Plasma HFpEF n = 30 qRT-PCR Up-regulated in HFpEF Diagnostic [115]
HFrEF n = 30

HC n = 28
miR-1246 Clinical Plasma HFpEF n = 8 qRT-PCR Down-regulated in HFpEF Diagnostic [121]

Stable DCM n = 10
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to the target and their effect is lessened. Erasers are 
oligonucleotides complementary to a specific miRNA. By 
binding to the miRNA the eraser inhibits its endogenous 
function[127]. 

miRNA therapeutics in HF
Up to now there are no clinical trials published dealing 
with miRNA therapeutics in humans. Therefore, the 
following results relate to in-vitro studies and animal 
models. Initial studies in the field of miRNA therapeutics 
in HF were designed to identify differential regulations 
of miRNAs in HF. Sucharov et al[135] extracted miRNAs 
from 6 nonfailing, 5 idiopathic dilated cardiomyopathy 
(IDC) and 5 ischemic dilated cardiomyopathy (ISC) 
patients. The authors were able to find a set of miRNAs 
dysregulated in both IDC and ISC. In order to further 
evaluate the function of increased or decreased 
expression of those miRNAs the group introduced virus-
delivered mirmimics as well as antagomirs against 
miR-92, miR-100 and miR-133b into neonatal rat ventri-
cular myocytes and was able to cause dramatic down-
regulation or up-regulation of the particular miRNAs[135]. 
Pathophysiologically, an up-regulation of miR-100 
resulted in repression of adult genes αMyHC and SERCA 
while fetal genes ANF and βMyHC were up-regulated. 
These observations suggest the involvement of miR-100 
in the specific regulation of gene expression involved in 
the repression of adult isoforms. The study shows that 
an artificial dysregulation of miR-100 is able to affect HF 
associated gene expression.  

Raising miRNA levels as a therapeutic approach in HF
An initial project studying miRNA-associated therapeutic 
aspects in HF with respect to specifically raising miRNA 
levels was performed by Karakikes et al[136]. The authors 
addressed previous findings that proved miR-1 to be 
a key regulator of cardiac hypertrophy[44-47,90,137] and 
analyzed whether the restauration of miR-1 expression
has protective effects on maladaptive cardiac remo-
deling. They established a hypertrophy and ventricular 
dilatation model in rats by ascending aortic banding 
before they raised miR-1 expression in-vivo by syste-
mically administered adeno-associated virus-mediated 
gene transfer[136]. The authors were able to detect 
improved systolic as well as diastolic LV function in the 
miR-1 restauration group as measured by echocardio-
graphy and catheter-based pressure-volume loop 
analyses[136]. 

A similar approach was pursued by Pan et al[138] who 
induced an adenovirus-mediated overexpression of 
miR-101a in rats with chronic MI and were able to find 
a significant improvement of cardiac performance in 

those subjects treated with miR-101a overexpression. 
Recently, these results were confirmed in a rat model 
of induced MI[139]. The authors found decreased miR-
101a levels at the site of the infarction and were able 
to verify this observation in cultured cardiac fibroblasts 
exposed to hypoxia and linked this effect to a TGF-β-
modulated fibrotic effect. An administration of miR-101a 
mirmimics reduced the expression of TGF-β[139] indicating 
that miR-101a mimicry might negatively regulate fibrosis 
in ischemic cardiac tissue. These findings point out a 
potential applicability of mirmimics in the field of HF 
therapy and ignited studies further evaluating this aspect. 
In a recent study the authors succeeded in modulating 
myocardial fibrosis and apoptosis in a hypertrophic 
mouse model by regulating miR-455 levels[140]. Tail vein 
injection of viral delivered miR-455 resulted in aggravated 
cardiac hypertrophy on the one hand but also reduced 
myocardial fibrosis and inhibited apoptosis suggesting 
that this treatment can prevent maladaptive ventricular 
remodeling[140]. 

A different approach was addressed by Dakhlallah 
et al[141]. The authors used mirmimics to raise miR-
133a levels in mesenchymal stem cells (MSC) and 
implanted these into ischemic rat hearts. Compared 
to non-miR-133a treated MSCs these rat hearts were 
shown to have increased cardiac function, decreased 
fibrosis and presented with improved cell engraftment 
due to better survival of miR-133a treated MSCs[141]. 
These study results indicate a potential roll of miRNAs 
in HF treatment with respect to an improvement of 
bioengineering of stem cells and are an example of the 
broad potential applicability of miRNAs in the field of HF 
treatment. 

Lowering miRNA levels as a therapeutic approach in HF 
treatment
Reduced miR-29 levels were observed to be associated 
with a decrease of cardiac remodeling in mice[142]. The 
authors used an ischemia/reperfusion model in mice 
to analyze the effect of miR-29 on post-infarction remo-
deling. They found that an antisense inhibition of miR-29 
implemented by an antagomir against miR-29 inhibited 
post infarction/reperfusion apoptosis and necrosis and 
led to a reduction of cardiac remodeling[142]. In a rat 
model of aortic constriction-induced HFpEF revealing 
higher cellular miR-21 levels in HFpEF rats compared 
to sham operated animals[67] (see above), Dong et al[67] 
performed further analyses after administering a miR-21 
antagonist. The authors were able to find a reduction 
of fibrosis in those rats’ cardiac tissues that were 
transfected with anti-miR-21 and attributed this effect 
to a reduction of Bcl-2 expression - an anti-apoptotic 

Decompensated 
DCM n = 13

HC n = 8

1See also Table 1. HC: Healthy control; miRNA: microRNAs; DCM: Dilated cardiomyopathy; HFpEF: Heart failure with preserved ejection fraction; HFrEF: 
Heart failure with reduced ejection fraction; qRT-PCR: Quantitative real time polymerase chain reaction; AUC: Area under the operating receiver curve.
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factor involved in the apoptosis of cardiac fibroblasts[67]. 
The same miRNA was analyzed in a transgenic mouse 
model of cardiac failure. Thum et al[55] were able to 
show that in-vivo silencing of miR-21 by a systemically 
applied specific antagomir inhibits interstitial fibrosis by 
a reduction of mitogen-activated protein kinase activity 
when applied to pressure-overload-induced cardiac 
dysfunction in mice. 

In order to assess the therapeutic potential of 
miR-652 in another mouse model with established 
pathological hypertrophy and cardiac dysfunction due 
to induced pressure overload Bernardo et al[143] first 
proved miR-652 expression to be elevated in pressure 
overloaded hearts compared to healthy controls. The 
authors then systemically administered antimiR-652 
and found the expression of miR-652 effectively silenced 
in heart tissue of treated mice. The authors were able to 
show that antimiR-652 treated mice had better cardiac 
function and improved cardiac diameters compared to 
controls[143].

The first discovered miRNA Let-7 recently was 
found to be a potential therapeutic target in the treat-
ment of deteriorated cardiac function after MI[144]. 
After induced MI in mice Let-7 was inhibited with a 
specific systemically applied antagomir. Molecularly, 
the expression of pluripotency-associated genes Oct4 
and Sox2 was increased in cardiac fibroblasts in vitro 
and in vivo. Let-7 antagomir treated mice showed 
preserved LVEF and improved cardiac output compared 
to controls[144].

Addressing the hallmark of phathological hyper-
trophy and HF - the reactivation of fetal cardiac genes, 
in which miR-208 is highly involved, study results were 
reported in a model of antagomir-based silencing of 
miR-208. Montgomery et al[145] were able to silence 
miR-208 in a rat model of diastolic HF (Dahl salt-
sensitive rats) by means of systemically administered 
locked nucleic acid-modified antimirs. On the one hand 
the authors found pathological myosin switching and 
cardiac remodeling lessened in antagomir-208 treated 
animals. More important from a clinical point of view 
was the observation that in diastolic HF therapeutic 
silencing of miR-208 resulted in lessened HF symptoms, 
a reduction of cardiac remodeling and an improved 
cardiac function as well as longer survival compared to 
control animals[145].

Current treatment strategies in HF are predomi-
nantly focused on HFrEF and no distinct therapy is 
established with respect to HFpEF[146-149]. The current 
non-specific therapy of HFpEF is limited and requires 
development and improvement of more distinct diag-
nostic and therapeutic options. Molecular diagnostics 
and therapeutics might provide the foundation for 
differential therapeutic approaches with regards to 
HFpEF and HFrEF. 

CONCLUSION
Numerous studies have proven miRNAs to be key 
regulators and moderators in the development of HF 

and its pathophysiological precursors hypertrophy and 
fibrosis. Their molecular construction and integration in 
cellular and intercellular transport mechanisms define 
miRNAs as ideal circulating biomarkers for diagnostic and 
prognostic purposes while they can easily be collected 
and analyzed. Therefore, the application of miRNAs as 
circulating biomarkers represents a promising tool to 
complement established protein-based biomarkers of 
HF such as NPs on the one hand or novel stand-alone 
biomarkers in the diagnosis and prognosis of HF. In the 
differential diagnostics of HFrEF and HFpEF miRNAs can 
reliably differentiate between these two disease entities, 
although this has to be confirmed in larger samples. 
This is especially interesting considering the fact that the 
diagnosis of HFpEF at an early stage might significantly 
improve secondary prevention and established 
biomarkers of HF still lack precision in the differentiated 
diagnosis of HFpEF. Nevertheless, looking at the large 
number of studies only few of them confirmed previous 
findings with identical results and still different miRNAs 
are identified to be linked to HF presumably reflecting 
the complex interaction of miRNAs and their target 
sites. In this respect analysis of combinations of several 
miRNAs - miRNA signatures - represent a promising 
way to increase diagnostic and prognostic accuracy. 
An important aspect that should get attention when 
performing miRNA analyses is the comparability and 
standardization of analytical methods and the need for 
well-defined study samples. 

Over the past years several different possibilities have 
been identified to alter levels of circulating miRNAs by 
systemically administering agents such as mirmimics or 
antagomirs. This therapeutic approach has been reported 
to significantly reduce hypertrophy and CF and improve 
LV function in animal models. It represents a promising 
approach to complement existing therapeutic options 
in the treatment of HF. Nevertheless, results of in-vitro 
and in-vivo models have not yet led to an application 
in clinical studies. A successful implementation of those 
insights in clinical trials represents the next step towards 
realizing this idea.
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