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Abstract
Future long-distance space missions will be associated 
with significant exposures to ionizing radiation, and the 
health risks of these radiation exposures during manned 
missions need to be assessed. Recent Earth-based 
epidemiological studies in survivors of atomic bombs 
and after occupational and medical low dose radiation 
exposures have indicated that the cardiovascular 
system may be more sensitive to ionizing radiation than 
was previously thought. This has raised the concern of 
a cardiovascular disease risk from exposure to space 
radiation during long-distance space travel. Ground-
based studies with animal and cell culture models play 
an important role in estimating health risks from space 
radiation exposure. Charged particle space radiation has 
dense ionization characteristics and may induce unique 
biological responses, appropriate simulation of the space 
radiation environment and careful consideration of the 
choice of the experimental model are critical. Recent 
studies have addressed cardiovascular effects of space 
radiation using such models and provided first results 
that aid in estimating cardiovascular disease risk, and 
several other studies are ongoing. Moreover, astronauts 
could potentially be administered pharmacological 
countermeasures against adverse effects of space 
radiation, and research is focused on the development 
of such compounds. Because the cardiovascular re-
sponse to space radiation has not yet been clearly 
defined, the identification of potential pharmacological 
countermeasures against cardiovascular effects is still in 
its infancy.
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Core tip: This review article provides an overview of 
studies in experimental models that have begun to 
shed light on the potential risks of damage in heart and 
blood vessels after exposure to space radiation. 
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INTRODUCTION
Participants of future long-distance space missions will 
be exposed to significant doses of ionizing radiation in 
space, and the health risks of these exposures need to 
be assessed. Because the cardiovascular system has 
recently been shown to be more sensitive to ionizing 
radiation than was previously thought, there is current 
concern that exposure to radiation during long-distance 
space travel may be associated with a cardiovascular 
disease risk. This review article provides an overview 
of studies in experimental models of ionizing radiation 
exposure relevant to that found in space that have 
started to shed light on the potential risks for heart and 
blood vessels. 

Characteristics of ionizing radiation
Exposure of living cells and tissues to ionizing radiation, 
forms of radiation that can remove electrons from the 
atoms in these cells or tissues, may result in molecular 
damage, which can eventually lead to early and late 
injury. Exposure of cells or tissues to ionizing radiation 
causes DNA damage, which has long been considered 
as the primary cause of cellular injury and cell death. 
However, additional mechanisms are now recognized 
as important in normal tissue radiation injury[1]. Doses 
of ionizing radiation are indicated in Gray (1 Gy equals 
1 Joule of absorbed energy per kilogram of mass, 
e.g., tissue). Because equal doses of different types of 
ionizing radiation may not have equal biological effects, 
one can express radiation exposure as equivalent dose 
in Sieverts (Sv), which is the absorbed dose multiplied 
by a unit-less radiation weighting factor and accounts 
for difference in the biological response[2]. 

Ionizing radiation can take many forms, including 
electromagnetic waves and high energy charged 
particles; the latter deposit their energy along densely 
ionizing cylindrical tracks. These forms of radiation can 
be distinguished, among other characteristics, by the 

amount of energy the radiation transfers to the target 
material per unit of track length, or linear energy transfer 
(LET)[2]. Ionizing radiation in the form of electromagnetic 
waves, such as X-rays or γ-radiation, are considered 
forms of low-LET radiation and deposit their energy 
uniformly in target volumes, while high energy charged 
particles release their energy along dense tracks of 
ionization and are considered high-LET radiation. Space 
travel is associated with low-dose-rate exposure to high-
LET radiation if the form of galactic cosmic rays (GCR) 
and occasional high dose rate solar particle events 
(SPEs)[3]. 

IONIZING RADIATION AND THE 
CARDIOVASCULAR SYSTEM
Ionizing radiation has long been known to cause injury 
in heart and blood vessels. These effects first became 
apparent from follow-up of patients after radiation 
therapy, which delivers high doses of low-LET radiation 
locally to the tumor but in some cases also exposes 
normal (non-cancer) tissues such as the heart and 
blood vessels[4-8]. Several previously published review 
articles[9-11] have provided a comprehensive overview 
of the effects of low-LET radiation on the cardiovascular 
system. In short, manifestations of radiation-induced 
heart disease as a result of exposure to high doses of 
ionizing radiation include accelerated atherosclerosis, 
myocardial fibrosis, and cardiac conduction and valve 
abnormalities. Most deleterious effects in heart and 
blood vessels are observed years to decades after 
exposure to ionizing radiation. Therefore, long post-
radiation follow-up is required for a full assessment 
of cardiovascular risk. Mechanisms by which ionizing 
radiation has its effects in the cardiovascular system are 
not yet fully known.

Recent reports of health assessments in atomic bomb 
survivors[12-15] have shown an increased incidence of 
cardiovascular disease, including ischemic heart disease 
and stroke, in people several decades after exposure 
to doses of γ-radiation as low as 2 Gy. Moreover, other 
epidemiological studies in occupational exposure and 
low-dose exposure due to medical treatments indicate 
that cardiovascular disease may occur after lower doses 
of ionizing radiation than was previously thought[16-20]. 
The main cardiovascular effects seen in atomic bomb 
survivors include hypertension and ischemic heart 
disease, suggesting that after low-dose radiation ex-
posure a vascular component may play a central role in 
the cardiovascular disease risk.

These recent reports on health effects from expo-
sure to low doses of low-LET radiation have raised the 
concern about potential risk of cardiovascular disease 
from exposure to ionizing radiation during space trav-
el[21]. However, care should be taken when the results 
of terrestrial radiation exposures such as those from 
atomic bombs are used to support the potential for 
a cardiovascular disease risk from space radiation, 
since certain conditions such as dose rate are different 
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between atomic bomb events and radiation exposure in 
space. The remainder of this review is focused on studies 
in experimental models that have aimed to shed light on 
the cardiovascular risk of exposure to space radiation.

SPACE RADIATION
Characteristics of space radiation
While astronauts in the International Space Station are 
somewhat protected from exposure to space radiation 
due to the earth’s magnetosphere, future long-dis-
tance space travel (beyond low-Earth orbit) will be 
accompanied by exposure to higher cumulative doses 
of space radiation, and short-term and long-term health 
risks need to be assessed[22,23]. 

GCR and solar emissions are dominated by protons 
and iron, silicon, oxygen, and carbon that are highly 
energetic. The greatest particle abundance is found for 
particles with energies ranging from hundreds of MeV 
per nucleon (MeV/n) up to about 1 GeV/n[24]. Practical 
levels of current shielding materials cannot easily protect 
against these particles[25]. Chronic exposure occurs at a 
dose rate of 1.3 mGy/d, or the dose equivalent of 4.8 
mSv/d, when assuming the radiation weighting factors of 
the International Commission on Radiological Protection 
Publication 60 outside the earth’s magnetosphere[26,27]. 
The exposure is characterized by the traversal of most 
cells in the body by one or more protons and electrons 
per day, with infrequent traversals (days to weeks) by 
ions of higher atomic number (Z). 

SPEs consist predominantly of protons, and exposure 
to the largest SPEs occurs at dose rates up to 0.5 Sv/h 
over hours to a few days[28]. Energies of SPE protons 
are less than those for GCR and therefore have shorter 
ranges in material, which may enable effective shielding 
inside a spacecraft but not inside a thin spacesuit. These 
higher dose rate exposures may put an astronaut at risk 
for acute radiation effects, sometimes collectively called 
acute radiation sickness[29]. Both SPEs and GCR may 
also cause long-term degenerative disease in various 
tissues, including the heart and blood vessels.

Experimental data obtained from animal and cell 
culture models play an important role in estimating 
health risks from exposure to space radiation. Appro-
priate simulation of the space radiation environment, 
including the long-term low-dose rate exposures to 
various charged particles and the appropriate energy 
of these particles, and the choice of the most relevant 
animal or cell culture model are challenging but key to 
providing relevant estimates of health risks[30-32]. The 
concern of adverse cardiovascular effects of exposure 
to space radiation is relatively new, and studies on 
the cardiovascular effects in animal models of space 
radiation exposure are not yet abundant. An overview 
of existing studies on heart and blood vessels is given 
below. Since much of this work is ongoing, we have had 
to occasionally refer to proceeding abstracts, but hope to 
find the results in peer-reviewed publications in the near 
future.

Cardiac response in animal models of charged particle 
exposure
Studies in animal models of charged particle exposure 
have shown cardiovascular effects at doses lower than 
those required to cause cardiovascular changes if low-
LET radiation is used. This may not be surprising, since 
high-LET radiation typically causes more damage per 
unit of absorbed dose. Among studies with charged 
particles, some previous research has focused on the 
cardiac response to fission spectrum neutrons in animal 
models[33-36]. More recently, studies were designed to 
provide answers about the cardiovascular risk from 
exposure to high-LET radiation in space. Exposure of 
male C75Bl/6NT mice at 8-10 mo of age to protons (1 
GeV, 0.5 Gy) or iron ions (1 GeV/n, 0.15 Gy) induced 
cardiac infiltration of CD68-positive cells (monocytes and 
macrophages), increased DNA oxidation, myocardial 
fibrosis, and modified cardiac function, both at baseline 
and in response to myocardial infarction, in a radiation-
type specific manner[37-39]. Exposure of male CBA/CaJ 
mice at 10-12 wk of age to silicone ions (300 MeV/n) 
at doses between 0.1 and 0.5 Gy caused prolonged 
apoptosis and increased expression of the common 
pro-inflammatory cytokines interleukin (IL)-1β, IL-6, 
or tumor necrosis factor-α in the heart[40]. Low doses 
of high-LET radiation have been shown to cause long-
term alterations in DNA methylation in various organ 
systems in vivo and cells in culture[41-43]. Similarly, we 
recently found changes in cardiac DNA methylation in 
male C57BL/6J mice exposed at 10 wk of age to protons 
(150 MeV, 0.1 Gy) or iron ions (600 MeV/n, 0.5 Gy) 
(Figure 1), suggesting that epigenetic alterations may 
contribute to the cardiac radiation response[44]. Analysis 
of the response in individual cardiac cell types is also 
ongoing[45].

Vascular response in animal models of charged particle 
exposure
Whole-body exposure of rats to iron ions at doses of 0.5 
and 1 Gy induced long-term indications of endothelial 
dysfunction and increased aortic stiffness[46]. It is 
difficult to assess the effects of ionizing radiation on 
atherosclerosis when using regular rodent models, 
due to the low prevalence of atherosclerosis in these 
animals. Targeted exposure of the atherosclerotic-
prone apolipoprotein E-deficient (Apo-/-) mouse model 
to iron ions (600 MeV/n) at doses of 2 and 5 Gy caused 
accelerated atherosclerosis in the exposed parts of the 
aorta[47]. Additional studies with lower doses of particle 
irradiation may provide a more comprehensive estimate 
of cardiovascular risk in this mouse model. Studies 
on adhesiveness of endothelium in charged particle-
exposed animal models are also underway[48].

The microvasculature also plays an important role 
in normal organ function, degenerative tissue effects, 
and tissue injury from ionizing radiation[49,50]. Exposure 
of 10-wk old male C57BL/6 mice to iron ions (600 
MeV/n) at doses between 0.5 and 2 Gy caused a long-
term loss of endothelial cells in the hippocampus[51]. 
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recombinant human granulocyte colony stimulating 
factor (G-CSF)], for instance, was recently approved 
by the American Food and Drug Administration as a 
countermeasure against acute injury from accidental 
radiation exposure. G-CSF has also been shown to 
protect animal models against acute injury from 
exposure to SPE-like protons[61]. 

Because the cardiovascular response to space 
radiation has not yet been clearly defined, the identi-
fication of potential pharmacological countermeasures 
against cardiovascular effects is still in its infancy. 
Nonetheless, similar to the acute response scenario, 
potential countermeasures against cardiovascular effects 
of terrestrial radiation exposure, albeit not yet approved 
for clinical use, may be pursued in space radiation 
models. For example, the angiotensin converting 
enzyme (ACE) inhibitor captopril has been shown to 
reduce cardiac injury in animal models of localized 
irradiation of the heart[62,63]. In addition, the vitamin E 
analog γ-tocotrienol is one of the most potent dietary 
countermeasures to radiation injury currently known. It 
is safe and nontoxic and has no known drug interactions. 
It is commercially available, requires no specific storage 
conditions, and is currently in advanced stages of 
development for terrestrial applications in radiation 
protection[64,65]. In addition, γ-tocotrienol has several 
beneficial effects in the cardiovascular system. It is a 
potent inhibitor of the cholesterol biosynthesis pathway, 
thereby reducing the isoprenylation of Rho proteins 
that modify a wide range of cellular functions, including 
stress fiber formation, hypertrophy, regulation of NOS, 
and production of cytokines and growth factors[66]. 
Indeed, γ-tocotrienol reduces vascular oxidative stress 
and protects against vascular radiation injury at least 
in part via HMG-CoA reductase inhibition[67,68]. The 
protective properties of agents such as ACE inhibitors 
or γ-tocotrienol against cardiovascular effects of space 
radiation need to be assessed. 

CONCLUSION
The cardiovascular system may be more sensitive 

More research is required to assess the effects of space 
radiation on the microvasculature. 

Studies on charged particle exposure in cells culture 
models
Endothelial cells are considered to play a central role 
in the cardiovascular response to ionizing radiation. 
Endothelial dysfunction, which is characterized by a pro-
inflammatory and profibrogenic phenotype of endothelial 
cells, is a critical contributor to the patho-physiological 
manifestations of radiation injury[52-54]. Experimental 
models of exposure to low-LET radiation have shown 
that ionizing radiation can cause prolonged endothelial 
dysfunction, thereby sustaining a detrimental tissue 
environment that leads to chronic inflammation and 
adverse remodeling[55,56]. 

Because of the central role of endothelial cells in the 
radiation response, studies are addressing the effects of 
space radiation on endothelial cells in cultures[57]. Various 
tissue-relevant cell culture models are being used[58]. For 
instance, in three-dimensional culture models of human 
endothelial cells, protons (1 GeV) and iron ions (1 GeV/n) 
at doses up to 3 Gy caused alterations in vasculogenesis 
and endothelial cell death in a radiation-type specific 
manner[59,60]. These results raise the concern of damage 
of the human vasculature from exposure to charged 
particles in vivo.

Potential countermeasures against the cardiovascular 
response to space radiation
Astronauts could potentially be administered pharma-
cological countermeasures against adverse effects of 
space radiation, when the countermeasure is safe, 
stable during long-term space flight, and has a relatively 
light weight. Therefore, research is focused on the 
development of countermeasures against various 
biological effects of space radiation[29]. Interestingly, 
pharmacological countermeasures are being developed 
for low-LET radiation in exposure scenarios on earth 
and may point to potential countermeasures against 
adverse effects of space radiation. Neupogen [filgrastim, 
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Figure 1  Methylation of genomic DNA isolated from hearts of male C57Bl/6 mice at 7 d and 90 d after exposure to protons (150 MeV, 0.1 Gy) or iron ions 
(600 MeV/n, 0.5 Gy). DNA methylation of the open reading frame 1 of long interspersed nuclear element-1, a transposable element that comprises about 20% of the 
mouse genome, as assessed by pyrosequencing and indicated as fold change compared to sham-irradiated controls. Each group contained 4-5 animals. Horizontal 
lines indicate average ± standard error of the mean. aP < 0.05 vs the sham-irradiated control group.

Fo
ld

 c
ha

ng
e

90 d post-exposure
1.04

1.02

1.00

0.98

0.96

Sham                 Protons              Iron ions
                          0.1 Gy                 0.5 Gy

a

a

Boerma M et al . Space radiation and cardiovascular disease risk



886 December 26, 2015|Volume 7|Issue 12|WJC|www.wjgnet.com

to ionizing radiation than was previously thought, 
which raises the concern of a cardiovascular risk from 
exposure to ionizing radiation during long-distance space 
missions. Animal and cell culture models have started 
to shed light on risk of cardiovascular complications 
from exposure to charged particle irradiation. Additional 
studies, including those that employ low radiation 
doses/dose rates and mixed particle fields to mimic 
GCR are required to aid in assessing the cardiovascular 
risk of space radiation.
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