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Abstract

Functional magnetic resonance imaging typically makes inferences about neural substrates of 

cognitive phenomena at the group level. We report the use of a single-stimulus BOLD response in 

the cingulate cortex that differentiates individual children with autism spectrum disorder from 

matched typically developing control children with sensitivity and specificity of 63.6% and 73.7% 

respectively. The approach consists of passive viewing of ‘self’ and ‘other’ faces from which an 

individual difference measure is derived from the BOLD response to the first ‘self’ image only; 

the method, penalized logistic regression, requires no averaging over stimulus presentations or 

individuals. These findings show that single-stimulus fMRI responses can be extracted from 

individual subjects and used profitably as a neural individual difference measure. The result 

suggests that single-stimulus fMRI can be developed to produce quantitative neural biomarkers for 

other developmental disorders and may even be useful in the rapid typing of cognition in healthy 

individuals.
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Functional magnetic resonance imaging has become a major tool in cognitive neuroscience 

where cognitive variables are correlated with blood oxygenation level (BOLD) 

measurements throughout the brain to identify spatiotemporal neural dynamics associated 

with variable(s) of interest (Huettel, Song, & McCarthy, 2008). This general approach is 

carried out almost exclusively in terms of averages of BOLD responses over multiple 

presentations of stimuli because of relatively low signal-to-noise issues in the raw BOLD 

signal. Averaging within a single individual is often followed by averaging across 

individuals to generate group level summaries about neural responses to stimuli. The 

presumed need for averaging presents one barrier to using fMRI as a method for generating 

rapid, individual difference responses useful for characterizing healthy or diseased 

cognition. Moreover, the intrinsic sluggishness and spatial imprecision of the BOLD 

response contributes to the general perception that fMRI is a useful neuroimaging modality 

only in ‘averaging mode’. Here we present new results that suggest that this view is 

incomplete and that fMRI can be used to generate a single stimulus measurement useful as 

an individual difference measure and biomarker in one of the most common 

neurodevelopmental disorders – autism spectrum disorder (ASD).

Our investigation of the possibility of using a single-stimulus approach in ASD stems from 

extensive prior work, which demonstrated that the middle cingulate cortex is particularly 

responsive during social exchange in a manner that is consistent with the hypothesis that this 

region is important for cognitive processes related to perspective taking. Specifically, 

Tomlin et al., showed that activity in the cingulate cortex tracks the active agent (i.e., “me” 

versus “not me”) during a social exchange experiment involving 100 pairs of participants 

(Tomlin et al., 2006). Following this work, Chiu and colleagues demonstrated that one of 

these agent-specific responses (the “self-response”) in the middle cingulate cortex was 

diminished in individuals diagnosed with Autism Spectrum Disorder (Chiu et al., 2008). 

Chiu et al., also showed that diminished responses in the middle cingulate cortex were 

positively correlated with symptom severity in the ASD cohort (Chiu et al., 2008). In the 

same report, Chiu and colleagues also performed a visual imagery experiment using 81 

accomplished athletes and 27 healthy adult. During an eyes-closed mental imagery task, 

these participants showed that the same pattern of activity (i.e., “self-response” along the 

cingulate cortex) could be elicited during eyes-closed mental imagery of the first-person 

perspective, but not during third-person perspective taking (Chiu et al., 2008)., Kishida and 

colleagues hypothesized that the region of the middle cingulate that was engaged during 

perspective taking, social exchange, and was diminished in the ASD cohort could be 

specifically activated by showing participants pictures of themselves (Kishida, Li, Schwind, 

& Montague, 2012). Using a passive picture viewing task in healthy adults and the region of 

interest defined in the eyes closed mental imagery task, Kishida et al., (Kishida et al., 2012) 

showed in an adult cohort that indeed the middle cingulate cortex differentiated pictures of 

“self faces” from pictures of “other faces”.

Taken together, these results suggested the hypothesis that a similar picture viewing assay 

might elicit signals in this same region-of-interest strong enough to produce a neural 

measure that might also differentiate children diagnosed with ASD from age-matched 

typically developing (TD) children (cohort level statistics are provided in Table S2). We 
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also included adult controls to ensure consistency with past findings. We designed a full-

length passive picture-viewing paradigm to test this hypothesis; however, two empirical 

findings suggested the necessity of exploring a reduced experimental design. First, the 

duration of the full-length experiment (~12 minutes) proved too long for children diagnosed 

with ASD to remain still in the fMRI scanning environment; second, in TD children, an 

effect consistent with repetition suppression of BOLD responses in the MCC to repeated 

presentations of self and other images suggested that an ‘average brain response’ to multiple 

presentations is very different than responses to a more reduced design. Following these 

results we tested the most extreme version of a ‘reduced experimental design’ and 

demonstrate that a machine learning approach and single stimulus fMRI data from an a 

priori prescribed region-of-interest can produce results consistent with a rapidly assessable 

individual difference measure for autism spectrum disorder.

Results

In a passive viewing paradigm, adults and children (typically developing, TD and diagnosed 

with autism spectrum disorder, ASD) were shown 15 presentations each of images of 

themselves (“self”) and an age- and sex-matched individual (“other”; Figure 1a). These 

images were presented in a randomized order such that the starting image for each subject 

occurs by chance. BOLD responses to “self” and “other” image presentations were then 

extracted using the “eyes closed mental imagery” ROI in the middle cingulate cortex (Figure 

1b, inset image from Kishida et al.,). Consistent with previous findings by Kishida et al., 

adults (n=33) in this study showed greater response to self-faces than to other-faces with 

averaging of all presentations (data not shown) and with a single stimulus response (Figure 

S3).

In analysing data for TD and ASD individuals we focused on the hemodynamic response to 

the first presentation of either “self” or “other stimuli for two reasons: 1) repetition 

suppression and 2) task length. Repetition suppression is the reduction of neural responses to 

repeated stimuli due to stimulus recognition and learning (Grill-Spector, Henson, & Martin, 

2006; Henson & Rugg, 2003; Segaert, Weber, de Lange, Petersson, & Hagoort, 2013). In 

our experimental paradigm, repetition suppression of the BOLD signal was evident by the 

second image presentation (Figure S1a). In our study, we found in Adults (data not shown), 

TD (Figure S2a) and ASD (Figure S2b) that cohort level differences in peak hemodynamic 

response for “self” and “other” images were maximal after the first stimulus presentation 

and did not improve with multiple presentations (See Supplement).

In addition, we found that longer experimental paradigms reduced the cohort of individuals 

that were available for analysis. Using a instantaneous movement threshold of ±3.5mm, we 

plot a Kaplan Meier curve for experimental completion for all participating subjects (Figure 

S3) by total scanning time. Our task was approximately 12 minutes total length. Unlike adult 

and TD subjects, which are able to voluntarily lie still for extended periods of time, ASD 

children showed significant head movement. After 5 minutes of scanning time, over 40% of 

the data from the ASD population could not be analysed to due excessive head movement. 

However by reducing scanning time to less than 2 minutes, i.e. “single stimulus” responses, 

we could retain over 75% of the ASD participants.
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The challenges associated with full length experiments in children diagnosed with ASD 

motivated the exploration of a reduced experimental design – in the extreme, eliciting a 

reliable brain response to a single stimulus would provide dramatically increased flexibility 

in the kinds of fMRI experiments that could be designed. In figure 2 (and figure S3), the 

cohort level hemodynamic response to the first presentation of a “self” image is displayed 

alongside the analogous time series for the first presentation of the “other” image for TD 

(n=38; Figure 2a), ASD (n=22; Figure 2b), and adult subjects (n=33; Figure S3). These data 

show two clear features at the cohort level. First, single stimulus responses elicit a large 

BOLD response in the cingulate cortex. In the TD cohort, the peak hemodynamic response 

differentiates between self versus other face (p=0.04, right sided t-test) (Figure 2a and 2c), 

consistent with analyses in adults in this study (p=0.03, respectively, right sided t-test, 

Figure S3), and previously reported findings in adults (Kishida et al., 2012). Secondly, 

unlike TD children, single-stimulus peak BOLD responses in the ASD cohort did not 

differentiate “self” from “other” images (p=0.16, right sided t-test). When comparing the TD 

and ASD cohorts, peak responses to “self” images differentiated the TD cohort and ASD 

cohorts (p= 0.04, right sided t-test) but responses to “other” images did not (p=0.22, right 

sided t-test). Thus differences across the two populations arose specifically for the time 

series responses for the ‘self’ picture (Figure 2c).

To test whether TD and ASD subjects were actively viewing the face image stimuli we 

extracted responses from bilateral fusiform face area (FFA) in 21 control adults in a separate 

task using a passive viewing paradigm of faces and objects (Figure S5) following 

(Kanwisher & Yovel, 2006). Using a general linear model (GLM) contrast, we assessed 

visual responses in the fusiform gyrus with particular attention to the fusiform face area to 

determine whether participants viewed the images. We found that the bilateral FFA, 

activates robustly in both cohorts in response to “self” and “other” face images. While some 

studies report decreased FFA activity in ASD patients (Deeley et al., 2007; Humphreys, 

Hasson, Avidan, Minshew, & Behrmann, 2008), others showed that familiarity (Pierce, 

Haist, Sedaghat, & Courchesne, 2004), age (Pierce & Redcay, 2008), and attention 

(Hadjikhani et al., 2004) engage the FFA in autism. The lack of differences in FFA 

activation between TD and ASD children (Figure S5) during image presentations suggests 

that both cohort’s brains detected the face images throughout the task (punc<0.005, k=10) 

(Pessoa, McKenna, Gutierrez, & Ungerleider, 2002).

Across the ASD and TD cohorts, the hemodynamic time series differences to “self” images 

(Figure 2a,b) provided an opportunity to develop an individual difference measurement, i.e. 

a single parameter value that summarizes an individual’s BOLD response time series to a 

single stimulus “self” image (Figure 3). One simple approach is to discriminate the control 

and diseased population using the peak response. Discriminant classification of disease 

status based solely on the percentage signal change in the peak activation of the BOLD 

response resulted in sensitivity and specificity of 54.6% and 57.9% respectively and an AUC 

of 0.591 (Figure 4a, Figure S6); this is a subpar classification of disease state for individuals. 

However, we show that we can improve classification by including more data from the time 

series. Focusing only on data captured by a peak hemodynamic response discards 

information encoded elsewhere in the dynamics of the ROI response. In addition, the 

hemodynamic response to any stimulus already has included a profound smoothing effect 
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that is compounded by further averaging. To improve classification we utilized the 

information of an entire time series in the pre selected region-of-interest and employed a 

penalized logistic regression. This classification method generates, for each time series 

sample following a self picture presentation, the probability of being assigned to the ASD 

group ex: p(status =ASD | M), given the model (M).

In ordinary logistic regression the objective function is the cross entropy loss (see 

Supplemental information) (Bishop, 2006). While this method is commonly used and results 

in low bias classification, models that include a large number of covariates often have high 

variance due to over-fitting. Such over-parameterized models can have low prediction 

accuracy for future datasets (Tibshirani, 1996). Accordingly, we used a variable selection 

technique that employs an L1 penalization, which shrinks some coefficients and sets others 

to zero. One variation of this method is called the “least absolute shrinkage and selection 

operator” or LASSO. The LASSO objective function includes a penalty term, λ, which is a 

non negative regularization parameter (Count, 2010) (see Methods). Akin to choosing the 

number of predictors in a regression model, λ is changed to increase or decrease the number 

of nonzero, p, components. Larger values of λ result in more β coefficients being set to zero. 

The value of λ that minimizes misclassification error can be computed using K fold cross 

validation. Penalization created a ‘reduced’ model that excluded covariates that do not affect 

the outcome variable. Practically, if a model contains multiple correlated covariates, as we 

would expect for time-series data, most coefficients will be set to zero (See Supplemental 

Methods for more detail).

We used age, a “First or Not First” (FNF) covariate that indicates whether the first stimulus 

was also the starting image, and the time series data for the BOLD response for the “self” 

image, as 12 covariates in our model. To evaluate classification, we initially performed a 

logistic regression using a standard general linear model package in R. As expected, the full 

model is over-parameterized due to autocorrelation resulting in poorly estimated parameters 

(Table 1a), and is difficult to interpret. Area under the curve (AUC), for the receiver-

operating curve (ROC) for this ‘full’ model was, 0.817 (Figures 4a). To improve parameter 

estimation, we employed leave-one-out cross–validation (LOOCV) and penalization to 

identify a model that minimizes misclassification (Friedman, Hastie, & Tibshirani, 2010). 

We found that the optimal model reduced the number of covariates to 12 to 8 (Figure 4b). 

AUC for this ‘reduced’ model was 0.773 (Figure 4c) and sensitivity and specificity for this 

model are 63.6% and 73.7% respectively (Table 1b). The coefficients emphasize not only 

the difference in amplitude in self-responses, but also differences in the relaxation and 

latency of the BOLD response (Figure 2a,b). Evaluating misclassification error for different 

numbers of variables revealed that the penalized model would have similar expected 

misclassification error on future datasets as a full model (Figure 4b). The computed 

individual difference measurements for each individual can be aggregated into separate 

distributions; D-prime (D’) between the two cohorts was computed to be 1.50 in the reduced 

model (Figure 4d).

To evaluate the specificity of our response to the single-stimulus “self” image, we also 

employed the procedure to the BOLD time series for the first presentation of the “other” 

image. After applying the same LOOCV and penalization we found that the generated 
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model did not include any time-series information from the “other” images (coefficients 

were set to zero) (Figure S7a). This model only included a constant and the “age” covariate. 

This model generated a ROC curve with an AUC of 0.607, marginally better than chance 

(Figure S7b). These results are consistent with (though not definitive) the specificity of self-

faces but not other-images for eliciting differentiating responses in the MCC across TD and 

ASD individuals.

Discussion

ASD is a highly heterogeneous (Lichtenstein, Carlström, Råstam, Gillberg, & Anckarsäter, 

2010; Schaaf & Zoghbi, 2011) disorder with concomitant diagnostic complexities. 

Neuroimaging and neuropathology studies have revealed that brain growth and organization 

in ASD is fundamentally different (Johnson & Myers, 2007), thus usage of magnetic 

resonance imaging (MRI) as a biological assay holds great interest as a supplement to 

current diagnostic techniques. Studies to classify normally developing and ASD children 

have utilized anatomical differences in grey and white matter volume (Neeley et al., 2007) 

and cortical thickness (Jiao et al., 2010), and whole brain pattern classification (Ecker et al., 

2010). Like many of these previous proof-of-concept studies exploring alternative assays to 

diagnose ASD, our study is not powered to evaluate test and retest reliability.

Prior fMRI work has relied primarily on averaging over multiple presentations to determine 

group level responses to stimuli. To our knowledge this is the first fMRI experiment to 

exploit a single stimulus induced BOLD time series that also produced a neural individual 

difference measure. The literature (Henson & Rugg, 2003) and our data (discussed above) 

suggest that it is not yet clear how the meaning of a stimulus changes with repeated 

presentations within a subject’s experimental trial. Our successful elicitation of a single-

stimulus result in part relies heavily on our prior work defining the region of interest, the 

cognitive variable, and their relationship to the population of interest. We present evidence 

of repetition suppression in our region-of-interest, which begins to occur by the second 

presentation. Minimally, these results imply unanswered questions about how the cognitive 

interpretation of a stimulus changes over repeated presentations and how brain responses 

change respectively. Future work will be needed to further explore the difference between 

single and multiple presentation paradigms.

Although our measurement provided a moderate to high discrimination, we in fact, expected 

that a proportion of ASD and TD samples would be misclassified. First, hemodynamic 

responses to stimuli vary across the population and our study numbers are not powered to 

properly map this variation. Second, the MCC has been linked to “perspective-taking” in 

individuals (Lombardo et al., 2010), an ability that matures with age (Mitchell & O’Keefe, 

2008; Sally & Hill, 2006). One plausible interpretation is that the conflation of disease status 

and cognitive maturation hamper our ability to discriminate between ASD and TD 

individuals. Third, while our measurement may map loosely onto current DSM IV clinical 

criteria for ASD, in particular the axis regarding poor social interaction, these axes leave 

substantial room for interpretation and have already changed in DSM V. Lastly, given the 

heterogeneity in ASD presentations (Ronald et al., 2006), we suspect that the most relevant 
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finding in this single stimulus experiment may be the relatively low misclassification rate of 

putatively typically developing children.

Several studies have explored the sensitivity and specificity of well-known ASD surveys 

Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview-

Revised (ADI-R), diagnosis of ASD in comparison to “gold standard” clinical assessment 

(Gray, Tonge, & Sweeney, 2008; Ventola et al., 2006). In these studies, patients suspected 

(by survey) of ASD have yielded sensitivity of and specificity of 0.88–0.99 and 0.67–0.82 

(ADOS), and 0.53–0.77 and 0.61–0.70 (ADI-R) respectively. While our results appear 

comparable at first glance, our results may be skewed favourably by selection and model 

bias. Namely our enrolled subjects are already diagnosed with ASD by “gold standard” 

clinical assessment, while evaluations of ADOS/ADI-R are conducted on suspected patients 

with blinded physicians. Proper external validation of this paradigm and model will require 

a large subject pool recruited using a screening tool, blinding of the evaluating physicians, 

and model validation using an external cohort, not just cross-validation.

The clinical adoption of a magnetic resonance imaging (MRI) biomarker for 

psychopathology will require, at minimum, reliable and accurate classification of disease. 

Further, the success of any potential clinical diagnostic strategy also depends on operational 

reliability, reliability that often derives from simple and cost-effective procedures. Although 

the simplicity and brevity of single-stimulus paradigms should reduce operator variability, 

this question has not been adequately explored. Our work suggests that single stimulus 

methodologies, in a MCC ROI that was previously identified in several hundred normal 

individuals in other “self” and “other” tasks (Chiu et al., 2008; King-Casas et al., 2005; 

Kishida, King-casas, & Montague, 2011; Tomlin et al., 2006), may provide accurate 

classification of disease in ASD patients. Further, BOLD time series data from simple and 

short paradigms, which had previously been thought to be highly smoothed and noise-

ridden, may nonetheless provide useful diagnostic information. We are cautiously optimistic 

that this work may provide a small step toward developing MRI based applications for 

screening of psychopathology or other-more typical-cognitive phenotypes.

Methods

Stimuli

Photographs of subjects were taken prior to scanning. Subjects were draped around the 

shoulders to ensure image uniformity. They were instructed to gaze directly at the camera 

while assuming different head angles. Head angle was varied to reduce habituation to 

repeated presentations of face images. In the scanner, each participant was shown 15 

pictures of the subject (‘self’), and 15 unique pictures of an age- and gender-matched 

individual (‘other’) (Figure 1) for four seconds. A computer-controlled projector was used to 

generate the images that were displayed to subjects using an overhead mirror mounted on 

the radiofrequency coil. Images were shown for 4 seconds in random order with random 

inter stimulus intervals drawn from a Poisson distribution with parameter value (λ) equal to 

14 seconds. As such the starting image for each subject is randomized. Subjects were 

instructed to focus on the faces or on the white fixation cross (displayed during the inter-

stimulus window). Only TD subjects were used as ‘other’ (i.e. control) images.
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Participants

We recruited 39 adults with no known neuropsychiatric disorders, 51 TD children and 35 

children with ASD (Table S2) from the Houston metropolitan area by word of mouth and 

advertisements. In addition ASD participants were also referred from the Texas Children’s 

Hospital’s Autism Center; after initial assessment using basic fMRI exclusion criteria, the 

remaining qualified subjects (n=45 TD, and n=27 ASD) were invited to Baylor College of 

Medicine (BCM) for familiarization with the scanning environment, scanning and 

assessments. Autism Diagnostic Observation Schedule (ADOS) scores were available for 20 

of the 27 children (Lord, C., Rutter, M., DiLavore, P. D., & Risi, 2001). In 12 of these 20 

subjects, the diagnoses was reconfirmed by the Autism Diagnostic Interview – Revised 

(ADI-R) (Le Couteur, A., Lord, C., & Rutter, 2003). The remaining seven of 20 patients 

were evaluated in autism centers at tertiary hospitals and diagnosed based on clinical 

presentation and developmental history. Lastly scores from the Social Responsiveness Scale 

(SRS) (Constantino & Todd, 2003), and Kaufman Brief Intelligence Test, Second Edition 

(KBIT-2) (Kaufman AS, 2004) were obtained for a subset of ASD and TD subjects (Table 

S2). The institutional review board at BCM approved the study protocol. Parents signed 

informed written consent and children provided assent.

Image Acquisition

Imaging was performed using a 3-T Siemens Allegra head only scanner and 3-T Siemens 

Trio full-body scanner. More specifically, 39 out of the 45 TD children and 26 out of the 27 

ASD children were scanned in the Trio scanner. An analysis of peak differences between 

and within ASD and TD populations showed that no differences in hemodynamic responses 

were found to be attributable to the employed scanner. A localizer image was acquired first 

followed by high-resolution T1-weighted structural images (192 slices; in plane resolution: 

256 × 256; field of view: 245 mm; slice thickness: 1 mm). Continuous whole-brain imaging 

was then performed as subjects viewed self and other faces on the screen. Regional brain 

activation was measured using changes in blood oxygen level dependent (BOLD) fMRI 

signal. The parameters for the functional sequence are as follows: echo-planar imaging, 

gradient recalled echo; repetition time = 2000ms; echo time = 30ms; flip angle = 90; 64 × 64 

matrix (in-plane resolution); 34 4 mm axial slices positioned 30° to the anterior commissure/

posterior commissure line.

Data were preprocessed and analyzed using the SPM8 software package (http://

www.fil.ion.ucl.ac.uk/spm/software/spm8/) (Friston, Penny, Ashburner, Kiebel, & Nichols, 

2006). During preprocessing, functional brain images were temporally realigned using linear 

interpolation to correct for variability in the timing of slice acquisition, spatially realigned 

using a six-parameter rigid-body transformation to correct for head movements, and co-

registered onto high-resolution/high-contrast structural images. In adults, images are 

typically spatially normalized to a Montreal Neurological Institute template (MNI; SPM’s 

EPI template) by applying a 12-parameter affine transformation to facilitate inter-subject 

comparison.

For the children in our study we generated customized T1 template and tissue probability 

maps (i.e. gray matter, white matter and cerebrospinal fluid priors) using the SPM8 toolbox 
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Template-O-Matic (https://irc.cchmc.org/software/tom.php). This toolbox is based on data 

obtained from 404 children as part of the normal brain development study of the National 

Institutes of Health (Wilke, Holland, Altaye, & Gaser, 2008). The toolbox takes in the ages 

and gender of the sample population as input and automatically generates references images 

based on parameters obtained from the NIH cohort. Children’s images were then segmented 

and normalized using the unified segmentation model. During normalization, bounding box 

parameters of structural and functional images were matched to the adult masks to ensure 

that image dimensions and origin were the same. Normalized images, in all cohorts, were 

then spatially smoothed using an 8 mm Gaussian kernel and temporally filtered (cut-off 

period of 128s).

ROI Analysis

ROI analysis was performed using independently identified MCC voxels (Figure 1a, inset) 

from (Kishida et al., 2012). This MCC ROI, which was generated from adult patients, was 

resliced to our custom children’s template using nearest neighbour interpolation. We have 

included in the Supplement, axial, coronal, and sagittal cuts of the ROI overlaid on the 

standard adult template and on our child templates generated with the Template-O-Matic 

toolbox (Figure S8). Raw time courses for this ROI were extracted using SPM functions, 

detrended and then averaged. Time series were captured for the period 6 seconds prior to 

stimulus presentation to 16 seconds post-stimulus presentation including the 4-second 

presentation interval. Data in this period were linearly interpolated (Matlab function 

interpl.m). Time series were captured for the first presentation of ‘self’ image and ‘other 

images for each individual. BOLD responses were presented as percentage signal change 

from baseline BOLD rates (−6s to 0s, where t=0 is the stimulus presentation). The peak 

activation was defined as the mean response 6s to 8s post stimulus presentation relative to 

the response measured just prior to the stimulus onset (−6s to 0s).

Participant Inclusion Criteria

One adult of 39 was excluded because of technical problems during image acquisition 

(adults: n = 38, 14 males: 24 females; mean age = 29.9 ± 9.5 years old). Of the 51 TD, 

children, six were initially excluded from analysis: two, because of technical problems 

during scanning; one, due to subject’s decision to discontinue with the study; one, because 

the subject fell asleep during the task, and; three, because of excessive head movement (> 

3.5 mm), resulting in 37 TD subjects. Out of the 35 subjects with ASD, eight were initially 

excluded (27 remaining) from the analysis: one because of atypical brain morphology; five 

because of excessive head movement (inclusion criteria were instantaneous head motion 

±3.5 mm 6s pre- and 16s post-stimulus onset for the first presentation of self and other 

picture); and two, because technical issues related to scanning prevented recording of these 

subjects’ brain responses to the first stimulus presentation.

For the region of interest (ROI) analysis, a second inclusion criterion was used to remove 

hyper-variable hemodynamic responses to ensure data quality. Subjects with high MCC 

signal variability on the first presentation of self or other image were excluded to ensure that 

outlier values do not dominate the BOLD response and confound the results. Removal of 
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BOLD responses that may be contaminated with noise can be especially important when 

looking at a “single-stimulus” response.

Signal variability was measured as the standard deviation of the BOLD time course from 

seconds 6 seconds prior to presentation to 16 seconds post presentation. Outliers for signal 

variability were defined as having values in the signal greater than median (of population) ± 

3 × IQR (inner quartile range) for all hemodynamic responses (Figure S9, Table S3). As 

signal variation in ASD and TD children were not statistically different (data not shown), 

these data were combined and analysed as a single “child” population”. Subjects with MCC 

signal standard deviation greater than 0.80% for TD and ASD subjects and 0.53% for Adults 

were removed from our “single-stimulus” ROI analysis. Thus, 33 of 38 adults, 38 of 44 TD 

children and 22 of 27 ASD children were retained for our ROI analysis. Excluded 

individuals did not have “single-stimulus” hemodynamic trajectories that resemble typical 

BOLD responses (Figure S10). In fact many appear to have large negative inflections or a 

sinusoidal pattern. Incidentally, all individuals who were excluded for variable “self” 

responses were also independently excluded for high variability “other” responses. This 

finding further reinforced the hypothesis that these BOLD trajectories were due to a 

common factor such as head movement (Power, Barnes, Snyder, Schlaggar, & Petersen, 

2012) or some other unknown factor.

Classifier Development for Penalized Regression Model

Penalized regressions was computed using the glmnet package (Friedman, Hastie, Höfling, 

& Tibshirani, 2007; Friedman et al., 2010; Tibshirani, 1996) (R 2.15.1). ROC curves were 

plotted on Matlab 2012b using the perfcurve function. Before computing parameter values 

we first reweighted the value of individual samples such that the optimization uses 

ostensibly equal sized populations. Given our sample numbers of 38 TD and 22 ASD, this 

was akin to increasing the value of each ASD sample by 1.72 (38/22). Reweighting the 

samples and improves sensitivity and specificity of the classifier for the minor population 

(Cramer, 2013).

Penalized regression is a variable selection technique that shrinks some coefficients and sets 

others to zero. The least absolute shrinkage and selection operator, or lasso function, is a 

variable selection technique that utilizes an L1-norm penalty. The L1-norm penalty, alters the 

standard cross entropy loss objective function (See Supplement) to the following:

λ is a nonnegative regularization parameter, or amount of penalization (Count, 2010). Akin 

to choosing the number of predictors in a regression model, λ is changed to increase or 

decrease the number of nonzero components. Larger values of λ result in more β coefficients 

being set to zero. The value of λ that minimizes misclassification error can be computed 

using K-fold cross validation (Friedman et al., 2007) (Figure S11).
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Cross Validation

Cross-validation for different levels of penalization also allows us to visualize how models 

with different amounts of covariates were perform on independent datasets. In K-fold cross-

validation (Bishop, 2006), the data is partitioned into K subsets. For K repeats, one subset is 

selected as the “validation set” and the remaining K-1 subsets are iteratively used to train the 

model and tested against the validation set. The test statistic, misclassification error or 

deviance, is computed for each repeat and then averaged to provide a single estimate. Using 

cross validation, it is possible determine λ such that the desired statistic is optimized. Cross 

validation is included in the glmnet computational package. λ is selected using the “1se” 

heuristic. This heuristic favours a more parsimonious model where the expected error is 

within one standard error cross validation error (Friedman et al., 2010) of the minimal error.

Computation of Coefficients—Computation of coefficients in the lasso in the glmnet 

package is completed using coordinate descent (Friedman et al., 2007, 2010). Parameter 

estimation and cross-validation is automated as part of the glmnet package (Friedman, 

Hastie, & Rob, n.d.).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A) In the scanner, each participant was shown 15 pictures of the subject (‘self’), and 15 

unique pictures of a single age-, gender-, and IQ-matched individual (‘other’) for four 

seconds. Images were shown in random order with Poisson distributed inter stimulus 

intervals (λ = 14). Demographics are reported in Table S1. B) 10 voxel mask from an Eyes-

Closed Mental Imagery task (2) defined a region-of-interest in adults (MNI coordinates).
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Figure 2. 
A) Time series for single stimulus presentation averaged over typically developing (TD) 

children (n=38), and B) Autism Spectrum Disorder (ASD) (n=22) children. C) Peak 
Hemodynamic for ASD and TD for single stimulus “self” and “other” images D) 
Hemodynamic responses to single stimulus self-images for single ASD and TD individuals. 

Trajectories for all participants can be found in Figure S2.
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Figure 3. 
Differences in BOLD MCC responses to single stimulus “self” images classifies individual 

subjects. A) ROC curves for a ‘full’ logistic model and a model based on averaging peak 

responses. B) Misclassification error versus penalization in penalized logistic regression 

model. Lambda (bottom horizontal axis) is the amount of penalization. The top of the plot 

shows the number of variables (i.e., degrees of freedom) included in the model as 

penalization changes. Less penalization, log(λ), results in more degrees of freedom. Two 

vertical lines are plotted; the left line (“min”) is the penalization that produced minimal 

misclassification error. The right line is the penalization (“1se”) that is within one standard 

cross-validation error of the minimum error. λ is selected using the “1se” rule as the error 

are statistically equivalent, but the model is more parsimonious C) ROC curves for a 

penalized logistic regression model using a Leave –One – Out Cross Validation. The 

penalized cross validated model utilizes only data from 8 covariates. D) Histograms of 

Individual Difference measure, p(status=ASD|M), given the penalized model (M). The D’ 

between the ASD and TD cohorts is 1.50 for the single shot measurements and 1.61 for the 

full model.
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Table 1

A)Comparison of coefficients for the full logistic regression model with coefficients from the penalized 

model. The model is over parameterized; parameters for time since onset (sec)= −2, 0 and 2 cannot be 

computed with precision. B) 2×2 classification table for the cross validated penalized model

A)

Full Model (logit) Penalized Model

ID Coefficient Estimate Std. Error Pr(>|z|) Estimate

0 Intercept 2.917 0.937 0.002 1.487

1 Age −0.216 0.069 0.002 −0.104

2 Start 1.102 0.509 0.030 0.443

3 −2.00 24100 56430 0.669 0.000

4 0 (Presentation) 24100 56430 0.669 0.000

5 2.00 24100 56430 0.669 0.000

6 4.00 5.327 1.358 0.000 1.591

7 6.00 −4.998 1.393 0.000 −2.270

8 8.00 −1.729 1.008 0.086 −0.226

9 10.00 2.345 0.916 0.010 0.362

10 12.00 0.012 0.979 0.991 0.000

11 14.00 0.586 0.726 0.419 0.474

12 16.00 0.301 0.536 0.574 0.122

B)

Actual

ASD TD Total

Prediction

ASD 14 10 24

TD 8 28 36

Total 22 38 60

Sensitivity 63.64% Specificity 73.68%
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