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Abstract

A common problem of interest within a randomized clinical trial is the evaluation of an 

inexpensive response endpoint as a valid surrogate endpoint for a clinical endpoint, where a chief 

purpose of a valid surrogate is to provide a way to make correct inferences on clinical treatment 

effects in future studies without needing to collect the clinical endpoint data. Within the principal 

stratification framework for addressing this problem based on data from a single randomized 

clinical efficacy trial, a variety of definitions and criteria for a good surrogate endpoint have been 

proposed, all based on or closely related to the “principal effects” or “causal effect predictiveness 

(CEP)” surface. We discuss CEP-based criteria for a useful surrogate endpoint, including (1) the 

meaning and relative importance of proposed criteria including average causal necessity (ACN), 

average causal sufficiency (ACS), and large clinical effect modification; (2) the relationship 

between these criteria and the Prentice definition of a valid surrogate endpoint; and (3) the 

relationship between these criteria and the consistency criterion (i.e., assurance against the 

“surrogate paradox”). This includes the result that ACN plus a strong version of ACS generally do 

not imply the Prentice definition nor the consistency criterion, but they do have these implications 

in special cases. Moreover, the converse does not hold except in a special case with a binary 

candidate surrogate. The results highlight that assumptions about the treatment effect on the 

clinical endpoint before the candidate surrogate is measured are influential for the ability to draw 

conclusions about the Prentice definition or consistency. In addition, we emphasize that in some 

scenarios that occur commonly in practice, the principal strata sub-populations for inference are 

identifiable from the observable data, in which cases the principal stratification framework has 

relatively high utility for the purpose of effect modification analysis, and is closely connected to 

the treatment marker selection problem. The results are illustrated with application to a vaccine 

efficacy trial, where ACN and ACS for an antibody marker are found to be consistent with the 

data and hence support the Prentice definition and consistency.
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1 Introduction

An important goal of many biomedical research fields is identification of surrogate 

endpoints based on randomized clinical efficacy trials. With precise notation defined in 

Section 1.1, we have one randomized treatment (Z) for which two endpoints S and Y are 

both measured in each of the groups Z = 0 and Z = 1. S is an inexpensive study endpoint 

(typically a biomarker) measured shortly after randomization that is a candidate surrogate 

for the true clinical endpoint Y of interest. The primary objective of the trial is to learn about 

the treatment effect on Y, which is done by directly measuring P(y|Z). Where possible, future 

research of the same or similar treatments would proceed by additional randomized trials 

that also directly assess the treatment effect on Y. However, a valid surrogate endpoint S for 

Y can accelerate research to apply and develop effective treatments against Y, given that 

large resources are often required to directly measure P(y|Z) (e.g., taking several years of 

follow-up) and such assessment is often infeasible or unethical once moderately protective 

treatments are identified. Using the meaning surrogate = replacement, S is a valid surrogate 

for Y if in some sense measurement of P(s|Z) alone can inform us about P(y|Z), without 

needing to collect data on Y. This concept of a valid surrogate may be implemented in 

various ways, for example in terms of hypothesis testing, estimation, or both. For a perfect 

surrogate, P(s|Z) alone would provide the same information about P(y|Z) as if Y were 

measured along with S, for example providing a way to calculate the same point and 

confidence interval estimates of the treatment effect on Y. However, given the challenge in 

meeting this high bar the surrogate endpoint assessment literature has focused on learning 

something about P(y|Z) from P(s|Z) but not everything that would be learned by measuring 

P(y|Z) as well; for example the Prentice definition defines validity in terms of obtaining a 

valid hypothesis test of P(y|Z = 0) = P(y|Z = 1) based on P(s|Z) alone but does not consider 

estimation.

The term “surrogate” has been used for many objectives of biomarker research in clinical 

trials, and in our view it may be most clearly used for the “replacement endpoint” concept, 

thereby distinguishing surrogate/replacement endpoint assessment research from other 

biomarker assessment research. For example, as discussed below, studying biomarker-based 

subgroup effect modifiers of clinical treatment efficacy is useful for targeting treatments/

interventions to subgroups where they will work and for selecting biomarker study 

endpoints for evaluating treatments in new Phase 1–2 trials. Biomarker response endpoints 

are also useful for exploring biological mechanisms of clinical treatment efficacy and for 

studying mediators of clinical treatment efficacy, which are distinct research activities with 

different objectives than surrogate/replacement endpoint evaluation.

Ideally, validation of a surrogate endpoint would be based on a synthesis of information 

from a large number of previous randomized trials of the same or similar treatments versus 

control where the surrogate and clinical endpoints were both measured [e.g., Gail et al. 

(2000) considers this approach]. However, it often occurs that data on the surrogate and 

clinical endpoint are available from only a single randomized trial, such that it is of interest 

to study definitions and criteria for useful surrogate and biomarker endpoints that are 

applicable for the identical setting as this single trial. While these definitions and criteria 

will be insufficient for validating surrogates or biomarkers for the ultimate goal of inferring 
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clinical treatment effects of new treatments in the same or new setting, they are useful as a 

first step toward this objective and they aide clinical research in other ways that we discuss. 

We focus on the Prentice (1989) definition of a valid surrogate endpoint and on the principal 

stratification framework. This article is primarily about relating statements about the full-

data distribution, although identifiability by the observed data distribution is also discussed 

and addressed in the application.

We state some of our conclusions up front. First, the literature discussing the utility of the 

Prentice (1989) surrogate framework has been inadequately clear in discriminating the 

Prentice definition (on obtaining a valid test of the null hypothesis of no clinical treatment 

effect from the surrogate alone) from criteria (e.g., conditions on the observed data 

distributions p(y|S,Z) and p(s|Z)) for checking the definition. The definition is clear and 

useful whereas the criteria, without modification, can be misleading and lead to disasters 

such as the surrogate paradox. For example, Frangakis and Rubin (2002) criticize a 

“statistical surrogate” defined as a biomarker satisfying a version of the Prentice (1989) 

criteria, which on the surface seems to criticize the whole Prentice framework but upon 

examination leaves the Prentice definition unscathed (e.g., the surrogate paradox cannot 

occur if the Prentice definition holds). We consider here the definition but not published 

operational criteria. In addition, while transportability of treatment effects via a surrogate 

endpoint is the paramount application of a surrogate as noted above, it is still useful to check 

the Prentice definition for the identical setting as the single trial, because it constitutes a first 

step/minimal bar for plausibility that the surrogate could also be used for estimating 

treatment effects in new settings.

Secondly, the principal stratification/principal surrogate framework does not in general 

provide a way to check the Prentice definition. We show that, depending on the problem 

context, principal stratification-based criteria can provide no discriminating information, 

partial discriminating information, or complete discriminating information about the 

Prentice definition. Therefore, the principal stratification framework has main utility for 

assessing whether and how treatment efficacy varies by subgroups defined by levels of 

biomarker response, thus being closely alighed with the utility of the treatment marker 

selection problem. In special cases, however, principal stratification criteria can establish the 

Prentice definition or one of its components specificity or sensitivity, and can also guarantee 

avoidance of the surrogate paradox (as illustrated in the application). In addition, the 

principal surrogate framework does fit the valid replacement endpoint concept, but in a 

different way than the Prentice definition. In particular, by providing a point and confidence 

interval estimate about clinical treatment efficacy for individuals based on their biomarker 

response values, it provides information about the clinical treatment effect for future 

subjects (from the same population) based on the biomarker endpoint alone without 

measurement of the clinical endpoint.

1.1 Set-Up of Randomized Trial for Assessing Clinical Efficacy

We consider a single clinical trial that randomizes n participants to active intervention (e.g., 

treatment or vaccine) versus a control intervention such as placebo, with Z the indicator of 

assignment to active intervention. Participants are followed for a fixed follow-up period for 
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occurrence of the primary endpoint Y by time τ1 post-randomization, with Y the indicator of 

endpoint occurrence. For simplicity of exposition we assume no dropout during follow-up, 

though this could be accommodated straightforwardly under a random censoring 

assumption. Let S be the candidate surrogate endpoint measured at fixed time τ < τ1 post-

randomization, which may be discrete or quantitative, and may be multivariate. Let R be the 

indicator that S is measured; frequently case-cohort, case-control, or two-phase sampling 

designs are used that only measure S in a judiciously chosen subset. Let Yτ be the indicator 

of primary endpoint occurrence before the time τ for measuring S. The observed random 

variables are (Z,R,RS,Yτ,Y). Lastly, let S(z), R(z), Yτ (z), and Y(z) be the potential outcomes if 

assigned treatment z, for z = 0,1, with W the vector of potential outcomes W ≡ 

(S(1),S(0),R(1),R(0),Yτ(1),Yτ(0),Y(1),Y(0)). We make the common assumptions for 

randomized clinical trials of SUTVA, ignorable treatment assignment (Z ⊥ W), the 

probability that S is missing in those with Yτ = 0 [i.e., P(R = 1|Yτ = 0)] depends only on 

observed data (missing at random assumption), and that the (Zi,Wi) are iid, for i = 1, n. The 

ignorable treatment assignment assumption will hold by design, and the missing at random 

assumption will hold by design if all subjects with Yτ = 0 contribute a viable sample for 

potentially measuring S at the visit at τ.

1.2 Background: Published Definitions and Criteria for a Principal Surrogate Endpoint

Joffe and Greene (2009) reviewed four frameworks for evaluating surrogate endpoints. The 

current article focuses on the principal stratification framework in comparison to the 

Prentice definition of a valid surrogate endpoint (Prentice, 1989) (but not to the Prentice 

criteria). Prentice stated his definition as “a response variable for which a test of the null 

hypothesis of no relationship to the treatment groups under comparison is also a valid test of 

the corresponding null hypothesis based on the true endpoint.” As stated in the first 

paragraph of the Introduction, S is a valid surrogate endpoint if measurement of P(s|Z) alone 

can inform us about P(y|Z), and the Prentice definition implements this concept in 

hypothesis testing but not in estimation. In particular, in our notation above a valid Prentice 

surrogate S satisfies P(Y(1) = 1) = P(Y(0) = 1) if and only if P(S(1) ≤ s1) = P(S(0) ≤ s1) for 

all s1, or, equivalently based on observable random variables given the trial is randomized, 

as P(Y = 1|Z = 1) = P(Y = 1|Z = 0) if and only if P(S ≤ s1|Z = 1) = P(S ≤ s1|Z = 0) for all s1. 

This if and only if statement allows the Prentice definition to be divided into two 

components of Specificity and Sensitivity, where Specificity means that no treatment effect 

on Y implies no treatment effect on S and Sensitivity means that a treatment effect on Y 

implies a treatment effect on S. In Section 3 we develop some criteria for separately 

checking Specificity and Sensitivity.

This article focuses on evaluating a candidate surrogate from a single randomized clinical 

trial, for evaluating its quality for the same setting as that trial. As such, within the frequency 

framework of statistics, satisfaction of the Prentice definition means that if the surrogate 

endpoint is used in an identical trial, then inference of the treatment effect on the surrogate is 

guaranteed to provide correct inference (in the dichotomous sense of correctly accepting or 

rejecting the null hypothesis) about the treatment effect on the clinical endpoint. While not 

directly relevant for answering the important question of whether the surrogate will be valid 

for a new treatment in the same or new setting, such a result is still useful because it 
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provides indirect evidence that the surrogate would approximately satisfy the Prentice 

definition for a new treatment if the treatment is similar to the original treatment (e.g., in the 

same drug class). If two candidate surrogates are assessed in a single efficacy trial and one 

satisfies the Prentice definition and one does not, then it may be rational to prioritize the 

Prentice surrogate as a study endpoint in subsequent Phase I/II trials of new and similar 

treatments that will constitute the basis for selecting the most promising new treatment to 

advance to the next efficacy trial.

Several papers have considered definitions and criteria for a useful principal surrogate 

endpoint. Within the potential outcomes framework of causal inference, Frangakis and 

Rubin (2002) defined S to be a principal surrogate if every individual with a causal treatment 

effect on the clinical endpoint Y also has a causal treatment effect on the surrogate S (i.e., 

“causal necessity”). This definition states that a valid surrogate satisfies P(Yi(1) = 1) = 

P(Yi(0) = 1) for all subjects i with Si(1) = Si(0), which departs from the Prentice definition in 

1) being required for all individuals and in 2) being unidirectional (instead of if and only if). 

Gilbert and Hudgens (2008), focusing on what could be evaluated from the sampling 

scheme of a typical randomized trial, modified the causal necessity condition to “average 

causal necessity” (ACN), i.e., no average causal treatment effect on Y in the sub-population 

with S(1) = S(0) and Yτ(1) = Yτ (0) = 0; the latter condition was added to ensure that causal 

treatment effects on S are defined. ACN can be expressed in terms of the “principal effects” 

or “causal effect predictiveness” (CEP) surface, which is defined in terms of the clinical 

risks under each treatment assignment,

With h(x,y) a known contrast function satisfying h(x,y) = 0 if and only if x = y, for example 

h(x,y) = x – y, the CEP surface is defined as

and ACN is expressed as CEP(s1,s0) = 0 for all s1 = s0. Gilbert and Hudgens (2008) defined 

S to be a principal surrogate if ACN and average causal sufficiency (ACS) hold, where a 1-

sided version of ACS (relevant for active treatment versus control trials considered here) 

states that there exists a constant C ≥ 0 such that the subgroup of subjects with a sufficient 

treatment effect on S, those with {S(1) = s1,S(0) = s0 with s1 – s0 > C}, has a beneficial 

causal effect on Y, i.e., CEP(s1,s0) has the sign indicating benefit. We refer to 1-sided ACS 

with C = 0 as 1-sided strong ACS; note that for a biomarker satisfying ACN plus 1-sided 

strong ACS, the subgroup with no individual causal effect on S has zero clinical treatment 

effect and the subgroup with positive individual causal effect on S has a beneficial clinical 

treatment effect. Thus Gilbert and Hudgen's (2008) definition of a strong (C = 0) 1-sided 

principal surrogate can be stated as P(Y(1) = 1|S(1) = S(0),Yτ(1) = Yτ(0) = 0) = P(Y(0) = 1|

S(1) = S(0),Yτ(1) = Yτ(0) = 0) and P(Y(1) = 1|S(1) > S(0),Yτ (1) = Yτ (0) = 0) < P(Y(0) = 1|

S(1) > S(0),Yτ(1) = Yτ(0) = 0).
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Moreover, both Frangakis and Rubin (2002) and Gilbert and Hudgens (2008) expressed the 

concept that studying the whole CEP surface is important for evaluating the utility of a 

candidate principal surrogate; the former authors expressed this by stating that a more useful 

biomarker will have relatively more associative than dissociative effects, whereas the latter 

authors expressed this by stating that a more useful biomarker will have wide variability in 

the CEP surface over subgroups defined by (S(1),S(0)), i.e., the biomarker is a strong effect 

modifier.

The marginal CEP curve causal parameter, closely related to the CEP surface, is also useful 

for evaluating a principal surrogate, which contrasts the risks averaged over the distribution 

of S(0): mCEP(s1) ≡ h(mrisk1(s1),mrisk0(s1)), where

While ACN and ACS are not in general defined for this causal parameter, the “wide 

variability/strong effect modifier” principal surrogate criterion is operable, and 

identifiability is achieved under weaker assumptions (Wolfson and Gilbert, 2010). Below we 

consider both the CEP and mCEP full-data causal parameters as useful quantities for 

evaluating and understanding principal surrogate quality.

Our results below use an additive difference contrast h(x,y) = x – y, with advantage that, 

under EECR defined below and a no-harm monotonicity assumption [P(Y(1) = 1,Y(0) = 0) = 

0], –CEP(s1,s0) has interpretation as a conditional probability of the disease being averted 

by assignment to Z = 1: –CEP(s1,s0) = P(Y(1) = 0,Y(0) = 1|S(1) = s1,S(0) = s0,Yτ(1) = Yτ(0) = 

0); similarly –mCEP(s1) = P(Y(1) = 0,Y(0) = 1|S(1) = s1,Yτ(1) = Yτ(0) = 0). Other principal 

surrogate evaluation literature has considered the CEP surface (Zigler and Belin, 2012) or 

closely related causal parameters. Taylor, Wang, and Thiebaut (2005) studied the proportion 

associative (PA) summary measure of principal surrogate value,

which is the proportion of the study population with a beneficial clinical effect that also has 

a positive surrogate effect. (This definition assumes no clinical events before τ.) With the 

additive difference contrast h(x,y) = x – y and no-harm monotonicity defined above, 

straightforward calculation shows that PA = ∫s1 > s0 CEP(s1,s0) dP(s1,s0)/CE, where P(s1,s0) 

is the joint cdf of S(1) and S(0) conditional on Yτ(1) = Yτ(0) = 0 and CE ≡ h(P(Y(1) = 

1),P(Y(0) = 1)) is the overall clinical treatment effect. For the special case of binary S, Li, 

Taylor, and Elliott (2010) studied the 16 causal parameters constituting the joint distribution 

of (S(1),S(0)) and (Y(1),Y(0)). Under the same assumptions given above, these parameters 

for Y(1) = 0 and Y(0) = 1 map to the CEP surface: P(S(1) = s1,S(0) = s0,Y(1) = 0,Y(0) = 1) = 

CEP(s1,s0)P(s1,s0)/CE for (s1,s0) ∈ {0,1}.

Additional work clarified the value or limitations of the above criteria for a biomarker's 

utility as a principal surrogate, and suggested new criteria. Vander-Weele (2011) showed 

that ACN can hold yet the treatment has a causal effect on Y not mediated through S. For 
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example, this situation may occur if there are two independent biological mechanisms of 

clinical protection, one that operates directly through S and one that does not. On the 

positive side for ACN, VanderWeele (2011) also showed that failure of ACN does imply 

that the treatment has a causal effect on Y not mediated through S; thus ACN is a valid 

criterion to ‘disprove’ full mediation but cannot affirm it. (Thus Frangakis and Rubin's 

(2002) principal surrogate definition is about a one-way implication, different from the if 

and only if implications of the Prentice definition.) In addition, Gilbert, Hudgens, and 

Wolfson (2011) emphasized that, for the purpose of iteratively developing increasingly 

efficacious treatments, ACN and ACS may be less important for a useful principal surrogate 

than the strong effect modifier criterion that CEP(s1,s0) widely varies across subgroups 

defined by (s1,s0). Strong effect modification may occur in many ways not implying ACN 

nor ACS, and strong effect modification alone, combined with an overall beneficial clinical 

treatment effect implies that there is at least one subgroup with relatively large clinical 

efficacy. Strong effect modification “sets the target” for future development of improved 

treatments, where the goal is to find refined treatments that generate S in the “high efficacy 

zone” for a greater percentage of active treatment recipients; combining these data results 

with context-dependent bridging assumptions [e.g., Pearl and Bareinboim (2011) initiated a 

framework for combining data with bridging assumptions] would predict that the refined 

treatment would confer greater overall clinical efficacy. One way that wide variability could 

lead to erroneous bridging for improving a treatment would be if new subjects added to the 

high efficacy zone by the new treatment have a different distribution of clinical effect 

modifiers than the subgroup in the high efficacy zone in the original trial. Nevertheless, 

wide variability is a useful criterion for research areas that study a battery of biomarker 

endpoints as potential surrogates; this criterion may be used for prioritizing/ranking the 

biomarker endpoints to use in Phase I/II trials for comparing refined treatments and for 

selecting the most promising treatments to advance to the next efficacy trial.

Another criterion for a good surrogate endpoint is the original Prentice (1989) definition of a 

valid replacement endpoint for the clinical endpoint, and below we provide results on the 

implications of ACN + 1-sided strong ACS on the Prentice definition and vice versa. The 

results show how the implications depend on assumptions about causal treatment effects on 

the clinical endpoint before and after the biomarker is measured. These implications yield 

alternative criteria to the original Prentice criteria for checking the Prentice definition of a 

valid surrogate endpoint.

Many authors including Chen, Geng, and Jia (2007), Ju and Geng (2010), and VanderWeele 

(2013) rightly assert that a reasonable surrogate endpoint should be assured to avoid the 

“surrogate paradox” pitfall, defined as the scenario where the effect of the treatment on the 

surrogate is positive, the surrogate and clinical outcomes are positively correlated, yet the 

overall clinical treatment effect CE indicates harm by the active treatment. Below we note 

scenarios, which commonly occur in practice, for which ACN plus 1-sided strong ACS 

guarantee a “consistent surrogate” (defined as the surrogate paradox cannot happen).

The remainder of this article is organized as follows. Section 2 clarifies that principal 

surrogate analysis is essentially subgroup effect modification analysis. Section 3 provides 

results on ACN and 1-sided ACS as criteria for checking the Prentice surrogate definition. 
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Section 4 provides results on these criteria for checking a consistent surrogate. Section 5 

illustrates the relationships with a Zoster vaccine efficacy trial, Section 6 provides 

discussion, and the appendix contains proofs of results.

2 Principal Surrogate Assessment: Subgroup Effect Modification Analysis

2.1 Connection to the Treatment Marker Selection Problem

Principal surrogate analysis is subgroup analysis (hence suggesting a name such as principal 

stratification effect modification analysis), with objective to characterize how clinical 

treatment efficacy varies over subgroups, where these subgroups are defined by post-

randomization principal strata (which by construction may be treated as baseline covariates) 

and possibly also by actual baseline covariates. The analysis essentially repeats the overall 

intention-to-treat analysis for each of a range of these subgroups, assessing the effect of 

treatment assignment on disease risk within each subgroup, and, like the overall analysis, 

provides little or no direct information about mechanisms or mediators of protection. As 

such, the principal surrogate problem has a close connection with the “treatment marker 

selection problem,” which has goal to determine if and how clinical treatment efficacy 

varies over subgroups defined by biomarkers measured at baseline [e.g., Huang, Gilbert, and 

Janes (2012)]. While the statistical approaches for these two problems are highly related, the 

applications are partly overlapping and partly distinct; for instance both fields seek to rank 

biomarker endpoints by their strength of effect modification and hence utility for treatment 

development, but, unlike the treatment marker selection field that often focuses on 

individual decision-making for tailored allocation of therapy, the principal surrogate field 

has focused on different applications including the prediction of overall treatment efficacy 

from the biomarker distribution in a similar or new setting (Follmann, 2006; Huang, Gilbert, 

and Wolfson, 2013). In addition, the treatment marker selection field does not endeavor to 

identify “perfect or “valid” treatment selection markers; rather it focuses on characterizing 

efficacy over subgroups and the ranking of biomarkers by the strength of effect 

modification. Similarly, principal surrogate evaluation is primarily about comparing 

candidate surrogates and ranking them by the degree of their utility as effect modifiers, and 

the field should not be dominated by the objective to identify perfect/valid surrogates. 

Nevertheless, the joint criterion of ACN together with strong ACS has particular value in 

checking the Prentice definition or the individual components of the Prentice definition as 

described below.

The analogy with the treatment marker selection literature also suggests that if very strong 

baseline effect modifiers exist, then it may be unimportant to develop a biomarker response 

effect modifier– one can simply predict clinical treatment effects based on actual baseline 

variables, avoiding the identifiability challenges of the principal stratification framework 

(Ross Prentice has voiced this point). While true, in practice a response to treatment may be 

a stronger effect modifier, motivating principal surrogacy assessment, and many such 

examples exist. The analogy also raises the question as to when the principal strata 

subgroups are identifiable from the observable data, as an affirmative answer to this 

question places the principal stratification problem much closer to the treatment marker 

selection problem where subgroups are obviously directly observable.
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2.2 Is the Principal Stratum for Inference Observable?

A key issue for the utility of principal stratification research in general is whether the 

principal stratum for inference is observable versus latent and never observable. Many 

principal strata of interest in a variety of applications are not observable, rendering the 

approach un-helpful for decision-making for individual patients or for health policy [e.g., 

Joffe (2011)]. However, for present application there is a special case where the principal 

stratum for inference is identifiable from the observable data, the “Constant Biomarker 

scenario (i.e., the conditional distribution S(0)|Yτ (0) = 0 is degenerate), which has been 

considered in several papers. In Case CB the CEP surface collapses to the mCEP curve, and 

ACN and ACS may be assessed based on the mCEP curve. Case CB is important because 

the principal strata subgroups are specified by {S(1) = s1,Yτ(1) = Yτ(0) = 0}, which are 

identifiable (equating to {S(1) = s1,Yτ(1) = 0}) under the no early-protection monotonicity 

assumption P(Yτ(1) = 0, Yτ(0) = 1) = 0. Where this assumption fails, the principal strata 

subgroups will be approximately equal to the identifiable subgroups if at most a very small 

subgroup receives clinical protection by τ, which is especially likely to hold if the rate of 

disease by τ is much less than the rate of disease after τ.

While Case CB has been motivated by vaccine efficacy trials, it also may occur in general 

active treatment versus control randomized trials with S defined as the difference in a 

biomarker readout between time τ and the time of randomization (Gabriel and Gilbert, 

2014). In this scenario, if τ is reasonably close to baseline and the passage of time from 

baseline to τ is not expected to alter the biomarker during that time for subjects assigned Z = 

0, then it may be reasonable to set S(0) = 0 for all subjects. While in many applications the 

measured differences S may have some variability about 0, sometimes this scatter may be 

assumed to be random measurement error, in which case it is of interest to assess the ‘de-

noised’ variable S as a principal surrogate that does have S(0) = 0 for all subjects. Another 

advantage of this “difference biomarker” scenario is that the baseline biomarker may be 

predictive of S, which aides identifiability and efficiency of estimation of the CEP surface 

and mCEP curve via the baseline immunogenicity predictor (BIP) augmented trial design 

(Follmann, 2006; Gilbert and Hudgens, 2008; Qin et al., 2008; Huang and Gilbert, 2011; 

Huang, Gilbert, and Wolfson, 2013; Long and Hudgens, 2013, Gabriel and Gilbert, 2014).

In sum, if the principal strata subgroups are identifiable from observable random variables, 

then principal stratification effect modification assessment has utility similar to baseline 

covariate subgroup analysis of effect modification, whereas otherwise, the utility is reduced, 

but still present for the purposes of ranking candidate biomarkers and for providing inputs 

into bridging formulas for predicting overall treatment efficacy.

3 Connection of ACN and 1-Sided ACS with the Prentice Definition of a 

Valid Surrogate Endpoint

3.1 Prentice Definition

A criterion for a good principal surrogate endpoint is satisfaction of Prentice's (1989) 

definition as a valid replacement endpoint for the clinical endpoint. This definition may be 

expressed as perfect population-level specificity and sensitivity of the surrogate. Henceforth 
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we use h(x,y) = x – y such that CE = P(Y(1) = 1) – P(Y(0) = 1) and CE < 0 indicates clinical 

benefit, and CEP(s1,s0) = risk1(s1,s0) – risk0(s1,s0).

We define 2-sided and 1-sided versions of Specificity and Sensitivity as follows:

We use the contrapositive forms of 2-Sided Specificity and 1-Sided Specificity to 

distinguish them: S(1) ≠d S(0) ⇒ CE ≠ 0 and S(1) >st S(0) ⇒ CE < 0, respectively. In the 

above definitions >st indicates stochastically larger, i.e., S(1) >st S(0) means that P(S(1) > s) 

≥ P(S(0) > s) for all s with > for at least one s. Because CE is an intention-to-treat parameter, 

in the above definitions we include “undefined” (*) as one of the values of S, such that S(1) 

=d S(0) means that P(S(1) ≤ s) = P(S(0) ≤ s) for all defined s and P(S(1) = *) = P(S(0) = *), 

where this last equality is equivalent to no early average clinical treatment effect P(Yτ(1) = 

1) = P(Yτ(0) = 1).

Specificity means that rejecting the null hypothesis of no treatment effect on the surrogate 

implies a treatment effect on the clinical endpoint (CE ≠ 0 or a one-sided version), whereas 

Sensitivity means that accepting the null hypothesis of no treatment effect on the surrogate 

implies no treatment effect on the clinical endpoint (CE= 0).

3.2 Overall Clinical Efficacy Averaged Over the CEP Surface

Criteria for checking Specificity and Sensitivity may be derived solely based on observable 

random variables, without the need for potential outcomes, following Prentice (1989) and 

subsequent work. However, in this work we study the relationship of Specificity and 

Sensitivity to ACN and 1-sided ACS, which requires potential outcomes notation. In Section 

5 we provide an example where principal stratification effect modification analysis supports 

ACN + 1-sided strong ACS for a biomarker endpoint, generating the question of what does 

this imply about whether Specificity and/or Sensitivity hold? As a preliminary step, we 

partition CE as a weighted average of the CEP surface across subgroups. The results are 

developed for the additive difference contrast function h(x,y) = x–y; additional research 

would be needed for alternative contrasts. For concreteness in the following results we 

suppose S is discrete with J levels {0,···,J – 1} (in addition to the level S = *). While we 

present the results for discrete S, they carry over to the case of continuous S by replacing 

sums with integrals.

Define P(s1,s0) ≡ P(S(1) = s1,S(0) = s0|Yτ (1) = Yτ (0) = 0) for (s1,s0) ∈ {0,···,J – 1} × {0,···,J 

– 1}, P*(j,k) = P(Yτ(1) = j,Yτ(0) = k) for j,k ∈ {0,1} × {0,1}, and  for j = 

0,1. We refer to the subgroups defined by {Yτ(1) = 0,Yτ(0) = 0}, {Yτ(1) = 0,Yτ(0) = 1} and 

{Yτ(1) = 1,Yτ(0) = 0} as the early-always-at-risk, early-protected and early-harmed principal 

strata, respectively. In addition, define
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Throughout we assume P*(0,0) > 0, which should be safe to assume in almost all 

meaningful applications for evaluating a surrogate endpoint. We state a result for easy 

reference in the forthcoming results.

CE Decomposition—

(1)

(2)

(3)

(4)

The above decomposition is useful for judging the utility of ACN, ACS, and wide variability 

in CEP(s1,s0) as criteria for a useful biomarker. In general we wish for high power to reject 

H0 : CE ≥ 0 in favor of a beneficial clinical treatment effect H1 : CE < 0. If ACN holds, then 

by equation (1)–(4), for a biomarker to correctly reflect a ‘big’ overall clinical treatment 

effect, we need -CEP(s1,s0) large when P(s1,s0) is large. This equation indicates that for 

developing highly efficacious treatments, there is nothing essential about ACS; what is 

needed is large -CEP(s1,s0) for some subgroups defined by {S(1) = s1,S(0) = s0,Yτ(1) = Yτ(0) 

= 0} and the ability of an improved treatment to generate large subgroups of this kind. It 

also indicates that ACN is not essential either; this is related to the comment above on the 

limitation of ACN that it does not imply full mediation. Therefore, strong effect 

modification/wide variability of CEP(s1,s0) is a more important criterion for developing new 

treatments than ACS and even ACN, and greater attention to criteria for valid bridging to 

new subgroups is needed (Pearl and Bareinboim, 2011); the latter issue is paramount but 

beyond the scope of this article.

The overall efficacy CE is a weighted average of the CE( j,k) for the early always-at-risk, 

early-protected, and early-harmed principal strata, with weights P*(0,0), P*(0,1), and 

P*(1,0). The P*(j,k) are not identifiable from the observed data without assumptions about 

early clinical treatment effects, but with ENHM defined below they are identified, with 

 and .

3.3 Results on the Relationship of ACN and 1-Sided ACS to Specificity and Sensitivity

We consider a menu of assumptions that will be selected from to infer results.
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Equal Early Clinical Risk (EECR)—P(Yτ(1) = Yτ (0)) = 1, i.e., treatment has no early 

clinical effect for any individual

Early No-Harm Monotonicity (ENHM)—P*(1,0) ≡ P(Yτ(1) = 1,Yτ(0) = 0) = 0, i.e., 

treatment does not cause early harm for any individual (the early-harmed subgroup is empty)

Population Early Monotonicity (PEM)—CE(1,0)P*(1,0)+ CE(0,1)P*(0,1) = P(Y(1) = 

1,Yτ(1) ≠ Yτ(0)) – P(Y(0) = 1,Yτ(1) ≠ Yτ(0)) ≤ 0, i.e., the union of the early-protected and 

early-harmed subgroups does not have population-level clinical harm

No Negative Marker Effects (NNMEs)—P(S(1) ≥ S(0)|Yτ(1) = Yτ (0) = 0) = 1, i.e., 

active treatment versus control does not reduce the biomarker for any individual in the early-

always-at-risk subgroup

Monotonicity—CEP(s1,s0) ≤ 0 for all subgroups defined by biomarker levels {S(1) = 

s1,S(0) = s0} ∈ {0,···,J – 1} × {0,···,J – 1}, i.e., treatment does not cause harm for any 

individual in the early-always-at-risk subgroup

Case CB—P(S(0) = 0) = 1

The following results attain, with proofs in the appendix. For these results we re-define 

ACN and 1-sided ACS slightly as follows. ACN is CEP(s1,s1) = 0 for all s1 with P(s1,s1) > 0 

and 1-sided ACS is CEP(s1,s0) < 0 for all s1 – s0 > C and P(s1,s0) > 0. The results are 

organized by the strength of the assumption about early clinical treatment effects, from 

strongest to weakest.

Result 1 (Under EECR)—EECR + ACN + Case CB imply Sensitivity. Conversely, 

EECR + Sensitivity + Case CB imply ACN. Apart from Case CB, EECR + ACN do not 

imply Sensitivity and EECR + Sensitivity do not imply ACN, even under all four of the 

extra assumptions PEM + NNMEs + Monotonicity + Case CB.

EECR + ACN + 1-sided strong ACS imply Specificity under any of NNMEs, Monotonicity, 

or Case CB. Conversely, EECR + Specificity + Sensitivity do not imply 1-sided ACS for 

any C ≥ 0, even under all four of the extra assumptions.

Result 2 (Under ENHM)—ENHM + ACN do not imply Sensitivity even under all four of 

the extra assumptions. Conversely, ENHM + Sensitivity + Monotonicity + Case CB imply 

ACN.

Similar to Result 1, ENHM + ACN + 1-sided strong ACS imply Specificity under any of 

NNMEs, Monotonicity, or Case CB, whereas ENHM + Specificity + Sensitivity do not 

imply 1-sided ACS for any C ≥ 0 even under all four of the extra assumptions.

Result 3 (General)—ACN does not imply Sensitivity even under all four of the extra 

assumptions. Conversely, Sensitivity + PEM + Monotonicity + Case CB imply ACN.
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ACN + 1-sided strong ACS + PEM imply Specificity under any of NNMEs, Monotonicity, 

or Case CB. As for Results 1 and 2, Specificity + Sensitivity do not imply 1-sided ACS for 

any C ≥ 0 even under all four of the extra assumptions.

Results 1 and 2 show that the principal surrogate conditions can be used to check the two 

parts of the Prentice definition. They show that EECR + Case CB are needed for inferring 

the full Prentice definition from ACN and 1-sided strong ACS, where relaxing either one 

loses the implication. Results 1 and 2 also show the importance of EECR for the principal 

surrogate criteria to have implications on the Prentice definition (required for inferring 

Sensitivity), even under all four extra assumptions PEM, NNMEs, Monotonicity, and Case 

CB. Results 1 and 2 also show that the Prentice definition does not imply ACS even under 

many possible assumptions; the basic reason is that there are many ways for CE ≠ 0 with 

CEP(s1,s0) zero for some s1 ≠ s0 and below zero for other s1 ≠ s0.

A useful application of Result 3 is that in general applications where PEM and NNMEs or 

Monotonicity hold (which is often plausible), if the estimated vaccine efficacy curve takes 

the classic shape of being near zero at s1 = 0 (supporting ACN) and rising above zero for 

positive values s1 > 0 (e.g., as in our example illustrated in Figure 2), then one may conclude 

Specificity. That is, a classic vaccine efficacy curve indicates that an inference of beneficial 

overall vaccine efficacy follows from the observation that vaccine recipients tend to have 

higher biomarker responses than placebo recipients.

Next we state Result 1 for the special case that S is binary. The results on implications of 

ACN and ACS for Sensitivity and Specificity are unchanged, whereas the reverse 

implications are strengthened. In contrast, Results 2 and 3 are unchanged for S binary 

compared to S categorical with more than two categories.

Result 1-Binary (Binary S Under EECR)—In the special case of S binary and EECR + 

Case CB, ACN implies Sensitivity and Sensitivity implies ACN. In addition ACN plus 1-

sided strong ACS imply Specificity and Sensitivity + Specificity imply 1-sided strong ACS.

Result 1-Binary shows that EECR + Case CB + S binary constitutes a scenario where both 

principal surrogate conditions hold if and only if the Prentice definition holds. For a binary S 

the Prentice definition does not have implications on ACS if EECR is relaxed, however, 

further highlighting the importance of EECR.

3.4 Results Under Minor Violations of Case CB and EECR

In the example described in Section 5, there may be minor violations of the Case CB and 

EECR assumptions, raising the question of whether the results are approximately correct 

under such violations. We state a variant version of Result 1 to address this question with 

proof in the appendix, and note that the other results have similar properties under minor 

violations. We use the following extension of the notation.

Define Case CB-ε as P(S(0) > 0) = ε for ε a small positive constant, EECR-ε as P(Yτ(1) ≠ 

Yτ(0)) = ε, ENHM-ε as P(Yτ(1) = 1,Yτ(0) = 0) = ε, Sensitivity-ε as S(1) =d S(0) ⇒ CE → 0 

as ε → 0, 1-sided Specificity-ε as S(1) >st S(0) ⇒ CE → c as ε → 0 for some negative 
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constant c, ACN-ε as CEP(s1,s1) → 0 as ε → 0 for all s1 ∈ {0,···,J – 1}, and ACN-ε(0,0) as 

CEP(0,0) → 0 as ε → 0.

Result 4 (Result 1 Under Minor Violations of Case CB and EECR)—EECR + 

ACN-ε + Case CB-ε imply Sensitivity-ε. Conversely, EECR + Sensitivity-ε + Case CB-ε 

imply ACN-ε(0,0) but not ACN-ε. EECR + ACN-ε + 1-sided strong ACS imply Specificity-

ε under any of NNMEs, Monotonicity, or Case CB-ε. The same implications hold replacing 

EECR with EECR-ε.

Result 4 implies that the principal stratification criteria do correctly check the Prentice 

definition under minor violations converging to zero in that Sensitivity-ε and Specificity-ε 

hold when Case CB is relaxed to Case CB-ε and EECR is relaxed to EECR-ε. In addition, 

while Result 4 shows that the Prentice definition does not imply ACN-ε if Case CB is 

minorly violated, it shows that the Prentice definition does imply ACN-ε(0,0), which may be 

what matters in practice given that the principal stratum {S(1) = S(0) = 0} constitutes the 

only causal necessity principal stratum containing study subjects as ε → 0. See the appendix 

for a proof of Result 4.

Result 2 extends to a result where ENHM-ε + Sensitivity-ε + Monotonicity + Case CB-ε 

imply ACN-ε and ENHM-ε + ACN-ε + 1-sided strong ACS imply Specificity-ε under any 

of NNMEs, Monotonicity, or Case CB-ε. Result 3 extends to a result where Sensitivity-ε + 

PEM + Monotonicity + Case CB-ε imply ACN-ε. Result 1-Binary extends to a result where, 

for S binary and assuming EECR-ε + Case CB-ε, ACN-ε implies Sensitivity-ε and 

Sensitivity-ε implies ACN-ε(0,0) but not ACN-ε; moreover ACN-ε plus 1-sided strong ACS 

imply Specificity-ε and Sensitivity-ε + Specificity-ε imply 1-sided strong ACS.

3.5 Interpretation and Testability of the Assumptions

The first two assumptions EECR and ENHM are about the effect of treatment on Y before 

the biomarker is measured. The stronger assumption EECR assumes no effect for any 

individual, and has been used for all but one paper on evaluating a principal surrogate, given 

the great help it provides toward identifying the CEP surface and the marginal CEP curve. 

Wolfson and Gilbert (2010) considered sensitivity analysis methods that relax EECR to 

ENHM or to no assumption about early treatment effects. EECR and ENHM are not fully 

testable but have testable implications; e.g., they can be rejected by finding early clinical 

treatment effects overall or in subgroups.

PEM is only relevant if EECR fails, as under EECR P*(1,0) = P*(0,1) = 0, such that 

CE(1,0) and CE(0,1) are irrelevant, as treatment effects in empty subgroups. There are no 

obvious testable implications of PEM. It holds under the no-harm monotonicity assumption 

considered above. Without this monotonicity assumption, it may be relatively plausible in 

settings where the early-protected subgroup is much larger than the early-harmed subgroup 

and there is reason to expect that the early-protected also receive some later protection. 

NNMEs will be plausible in many active versus control trials, and can be partially checked 

by comparing the distributions of S(1)|Yτ(1) = 0 and S(0)|Yτ(0) = 0. Monotonicity will be 

more plausible in settings with higher overall efficacy and can be partially checked similarly 
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to checking ENHM. Case CB can be checked by examining the distribution of S(0)|Yτ(0) = 

0.

4 Connection of ACN and 1-Sided ACS with Verifying a Consistent 

Surrogate

As argued by several authors including Fleming and DeMets (1996), Chen et al. (2007), Ju 

and Geng (2010), and VanderWeele (2013), a good surrogate endpoint should be assured to 

avoid the “surrogate paradox” pitfall, defined as the scenario where the treatment effect on 

the surrogate is positive (i.e., S(1) >st S(0)), the surrogate and clinical outcomes are 

positively correlated (i.e., S(z)|Y(z) = 0,Yτ(z) = 0) >st S(z)|Y(z) = 1,Yτ (z) = 0 for each z = 0,1), 

yet the overall clinical treatment effect CE is harmful (CE > 0). For scenarios that 

commonly occur in practice, examination of the CEP surface immediately establishes that 

ACN plus 1-sided strong ACS defined above guarantee that the surrogate paradox cannot 

occur, i.e., the surrogate is consistent. In particular, under EECR, ACN plus 1-sided strong 

ACS guarantee a consistent surrogate if any of NNMEs, Monotonicity, or Case CB hold. 

Under ENHM, these same conditions imply a consistent surrogate if PEM is added to the set 

of assumptions. If ENHM is also relaxed, then no combination of these conditions imply a 

consistent surrogate. As also discussed by VanderWeele (2013), while the principal 

stratification framework provides criteria for a consistent surrogate, the fundamental 

challenge to its implementation is ensuring valid estimation of the CEP surface given 

identifiability challenges. (Identifiability assumptions are discussed extensively in the 

literature.)

5 Application to the ZEST

We apply the above results to the Phase 3 Zostavax Efficacy and Safety Trial (ZEST), which 

randomized 22, 439 North American and European subjects aged 50–59 years in a 1:1 

allocation to receive attenuated Zoster vaccine (ZV or Zostavax; Merck & Co., Whitehouse 

Station, NJ) or placebo, with primary objective to assess the vaccine efficacy to prevent 

herpes zoster (HZ). Schmader et al. (2012) reported an estimated overall vaccine efficacy of 

69.8%, using a one minus relative risk (vaccine/placebo) estimand multiplied by 100%. Here 

we focus on the additive difference estimand CE ≡ P(Y(1) = 1) – P(Y(0) = 1), obtaining an 

estimated CE of -0.0065 with 95% confidence interval −0.0093 to −0.0037 and 2-sided p < 

0.001 for CE being different from zero. A study objective was to assess varicella zoster virus 

(VZV) antibody titers measured by gpELISA as a surrogate endpoint for HZ. A variety of 

principal surrogate analyses have been performed to evaluate various VZV-antibody based 

candidate surrogates (Miao et al., 2013), and here we focus attention on S defined as the 

difference in the log10 gpELISA titer at Week 6 minus the same variable at baseline. The 

biomarker S was measured following a prospective case-cohort sampling design (Prentice, 

1986), measured from a 10% random sample of subjects selected at study entry (and with Yτ 

= 0 and an available Week 6 sample) and from all subjects who experienced the disease 

endpoint Y = 1 after week 6 (n=1218 vaccine, n=1273 placebo). Figure 1A displays boxplots 

of S for the vaccine and placebo groups with Yτ = 0, showing higher levels in the vaccine 

group.
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We conduct the analysis assuming Case CB such that P(S(0) = 0|Yτ(0) = 0) = 1. While there 

is some scatter of S about zero in the Z = 0 placebo group (Figure 1A), we interpret this 

scatter to be due to measurement error. A testable implication of Case CB is that H0 : E[S(0)|

Yτ(0) = 0] = 0 must hold, and the data are consistent with this null hypothesis, with a paired 

t-test yielding p = 0.71. Under Case CB, the additive-difference CEP surface parameter 

simplifies to CEP(s1) ≡ CEP(s1,0) = risk1(s1,0) – risk0(s1,0).

EECR is plausible and ENHM highly plausible, with 5 of 11,184 vaccine recipients and 8 of 

11,212 placebo recipients experiencing the primary endpoint by τ = 6 weeks. If EECR is 

violated, the results are unlikely to be sensitive to the assumption deviation, given the small 

number of early events compared to those occurring after week 6 (25 and 91 events in the 

vaccine and placebo groups).

We applied the Weibull-model estimated-likelihood method of Gabriel and Gilbert (2014) to 

estimate CEP(s1), which assumes EECR and accommodates the case-cohort sampling 

design under a missing at random assumption. This method also accommodates the right-

censoring of T that occurred due to drop-out or to end-of-follow-up censoring, under a 

random censoring assumption. The proportional hazards version of the model was used, 

given that, based on a coefficient-based Wald test, a parametrized shape component was 

deemed unnecessary (p=0.78). This Weibull method uses the aforementioned BIP technique 

(Follmann, 2006; Gilbert and Hudgens, 2008), with the BIP, X, being the baseline/pre-

immunization value of the log10 gpELISA titer. The BIP was reasonably well-correlated 

with S (Figure 1B, Spearman rank correlation −0.58), which improves the accuracy and 

precision for estimating CEP(s1).

We maximized the estimated likelihood using a parametric normal model for S(1) 

conditional on X, where model diagnostics supported that the normal model provided a 

reasonable approximation. Figure 2 shows the estimated CEP(s1) curve for Y = I[T ≤ τ1] for 

τ1 fixed at 2 years. The estimated CEP(0) is 0.000079 with bootstrap 95% confidence 

interval −0.0045 to 0.0040, which is consistent with ACN. The estimated curve shows 

CEP(s1) widely varying and monotone decreasing in S(1), with p-value < 0.001 for variation 

of CEP(s1) in s1. In addition, the estimated curve is consistent with 1-sided strong ACS, 

given that it is negative for all values of s1 > 0.016 and the 95% bootstrap confidence 

intervals for CEP(s1) are below 0 for all s1 > 0.25. Therefore, this principal stratification 

analysis supports ACN and 1-sided strong ACS. In addition, we applied the weighted 

pseudo-score method of Huang, Gilbert, and Wolfson (2013) to the ZEST data, which also 

accommodates the case-cohort sampling design. This method avoids parametric assumptions 

about the joint distribution of S(1) and X by employing nonparametric estimation of the 

distribution of S(1) conditional on X and the indicator that S(1) was sampled, with X 

discretized into quartiles. This analysis also supported ACN and 1-sided strong ACS. 

Applying Result 1, Sensitivity and Specificity hold, supporting that the fold-rise in gpELISA 

titer satisfies the Prentice definition of a surrogate endpoint as well as being a useful 

principal surrogate. In addition, sufficient conditions for a consistent surrogate discussed in 

Section 4 are met (ACN + 1-sided ACS + EECR + Case CB), supporting that the biomarker 

is a consistent surrogate. Moreover, both Case CB and EECR may be slightly violated, and 
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Result 4 provides assurance that the inference about the Prentice definition is not sensitive to 

these minor violations.

We note that, as described in Huang and Gilbert (2011) and Huang, Gilbert, and Wolfson 

(2013), the employed statistical methods account for the case-cohort sampling design nested 

within a randomized trial in order to obtain unbiased estimators of CEP(s1); this is why the 

results of Section 3 hold under a sub-sampling design and the missing at random 

assumption. If a naive statistical method that ignored the sub-sampling design were used 

then the estimators of CEP(s1) would be biased and consequently the results would no 

longer be correct, highlighting the necessity of properly accounting for the sub-sampling 

design in checking of ACN and ACS.

Figure 2 also highlights the interpretability of the CEP curve analysis, for example allowing 

researchers to infer that a fold-rise in gpELISA antibody titers from baseline of 10-fold (titer 

difference = 1.0) corresponds to an estimated clinical efficacy of −0.033; under the no-harm 

monotonicity assumption, this can be interpreted as 3.3 of 100 vaccine recipients with S(1) = 

1.0 avoid zoster disease who would have experienced it had they not been assigned to 

receive vaccine. Such results are highly interpretable for vaccine researchers and public 

health policy decision-makers.

Several articles have discussed the limitation of the BIP-based methods for estimating the 

CEP surface that the modeling assumptions for risk0(s1,s0) are not fully testable (e.g., 

Gilbert and Hudgens, 2008; Zigler and Belin, 2012). This is a major reason why the BIP + 

closeout placebo vaccination design has been advocated (Follmann, 2006; Gilbert et al., 

2011; Huang, Gilbert, and Wolfson, 2013), as closeout placebo vaccination makes the 

modeling assumptions for risk0(s1,s0) fully testable. Hence in a very large study, ACN + 1-

sided ACS can be fully empirically verified in a BIP + closeout placebo vaccination design 

under EECR, SUTVA, ignorable treatment assignment, missing at random sampling of S, 

and random censoring. For applications like the ZEST where a BIP is available but closeout 

placebo vaccination was not performed, an appropriate causal analysis would include a 

sensitivity analysis that assesses how the inference depends on violations to any untestable 

modeling assumptions asserted for risk0(s1,s0). Development of such methods is the subject 

of current research.

6 Discussion

We studied implications of the principal surrogate criteria ACN and 1-sided strong ACS for 

the Prentice definition of a valid surrogate endpoint (i.e., Specificity and Sensitivity), and 

vice versa. We found that in general (for a general S, not in Case CB, and not assuming 

EECR or EHHM), these two types of criteria do not imply one other. We also found that 

Case CB together with EECR or ENHM do allow several implications, in particular EECR + 

Case CB + ACN imply Sensitivity and conversely EECR + Sensitivity imply ACN. 

Relaxing EECR to ENHM, however, loses the first implication, while the second 

implication still holds if Monotonicity is added. Apart from Case CB, the only implication 

that can be derived is that EECR + ACN imply Specificity if NNMEs or Monotonicity hold, 

and ENHM + ACN imply Specificity if NNMEs or Monotonicity hold. In the ZEST 
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example EECR, Case CB, ACN, and 1-sided strong ACS are consistent with the observed 

data, illustrating how principal surrogate criteria can be used to help validate the Prentice 

definition. In addition, we found that Case CB for a binary candidate surrogate S allows 

more implications. In fact, in the special case EECR + Case CB, ACN + 1-sided strong ACS 

hold if and only if the Prentice definition holds.

The following question arises– if the principal surrogate criteria are only useful for checking 

the Prentice definition in Case CB, of what value are the results? Previous authors (e.g., 

Chan et al., 2012 and Wolfson and Gilbert, 2010) have noted that the Prentice (1989) criteria 

cannot be checked in Case CB, because there is no variability of the biomarker in the 

placebo group. However, this article ignores the Prentice (1989) criteria and goes straight to 

checking the Prentice definition, showing that in Case CB the principal surrogate criteria can 

be used to check part or all of the Prentice definition. This is useful in practice given that the 

Prentice definition of the treatment effect on the surrogate being concordant with the 

treatment effect on the clinical endpoint is a relevant property of a useful surrogate, allowing 

reliable predictions of clinical efficacy in the same setting of the trial based on the surrogate 

and guaranteeing a consistent surrogate. Additional research is needed for evaluating the 

reliability of biomarker endpoints for making inferences about clinical efficacy of new 

treatments in the same or similar setting (the bridging or transportability surrogate problem), 

in particular for studying whether and how the principal surrogate/strong effect modifier 

and/or Prentice surrogate frameworks are useful for this problem.
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7 Appendix: Proofs of Results

We prove the results using 1-sided Specificity and 1-sided Sensitivity; the proofs are similar 

using 2-sided Specificity and 2-sided Sensitivity.

Proof of Result 1

Examining equation (1)–(4), it follows immediately that ACN implies line (1) equals zero, 

and EECR implies lines (3) and (4) are zero. Therefore under EECR + ACN

(5)

In general, S(1) =d S(0) does not imply CE = 0 (i.e., Sensitivity is not implied), because S(1) 

=d S(0) is only weakly informative about the joint distribution P(s1,s0). However, in Case 

CB, (5) simplifies to

(6)
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In addition, Case CB implies P(S(1) = 0|Y1τ = 0) = P(S(0) = 0|Y0
τ = 0) = 1, such that P(0,0) 

= 1 and P(s1,0) = 0 for all s1 > 0. As a consequence, from (6), CE = 0, such that EECR + 

ACN + Case CB imply Sensitivity.

Conversely, in Case CB

(7)

Now, Sensitivity means that S(1) =d S(0) implies CE= 0, and means that the second term in 

(7) is zero, such that CEP(0,0)P(0,0)P*(0,0) = 0. Thus ACN holds.

Next, we consider the conditions under which ACN + 1-sided strong ACS imply Specificity. 

By 1-sided strong ACS, CEP(s1,s0) < 0 for all s1 > s0 with P(s1,s0) > 0. Adding ACN, from 

(5) it follows that under any of (i) NNMEs, (ii) Monotonicity, or (iii) Case CB, the second 

term

(8)

is bounded above by zero. Therefore, under any of (i), (ii), or (iii), CE < 0, such that 

Specificity holds. If none of (i)–(iii) hold, however, then ACN + 1-sided strong ACS do not 

imply Specificity, because the second term (8) may be positive, such that CE in (5) is not 

necessarily zero (nor is it necessarily negative). Next, suppose Specificity and Sensitivity 

and all the assumptions (i)–(iii) hold. Because Sensitivity + Case CB imply ACN,

Now, under Case CB S(1) ≠d S(0) implies P(s1,0) > 0 for at least one s1 > 0. Under 

Specificity, this implies CE ≠ 0, and adding Monotonicity it implies CE < 0. Nevertheless, 

1-sided ACS still may not hold for any C ≥ 0, because CEP(s1,0) could be negative for some 

s1 with P(s1,0) > 0 and nonnegative for other s1 with P(s1,0) > 0.

Proof of Result 2

Under ENHM, line (3) is zero, and under ACN, line (1) is zero. Therefore, under ENHM + 

ACN

The condition S(1) =d S(0) places only a limited restriction on P(s1,s0) and P*(0,1), such that 

under all of the extra conditions PEM, NNMEs, Monotonicity, and Case CB, CE still may 

be non-zero. In fact, under Case CB (with or without NNMEs and/or Monotonicity), S(1) =d 

S(0) implies CE = CE*(0,1)P*(0,1), which may be nonzero under ENHM. Thus ENHM + 

ACN + Case CB do not imply Sensitivity.
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Conversely, assume Sensitivity, Monotonicity, and Case CB. In Case CB

Now, Sensitivity means that S(1) =d S(0) implies CE= 0, and from the proof of Result 1, 

P(s1,0) = 0 for all s1 > 0, such that 0 = CE = CEP(0,0)P(0,0)P*(0,0) + CE(0,1)P*(0,1). Now, 

because CE(0,1) = P(Y(1) = 1|Yτ(1) = 0,Yτ(0) = 1) – 1, CE(0,1) must be non-positive. This 

implies that CEP(0,0) must be non-negative if P(0,0) > 0. However, by Monotonicity, 

CEP(0,0) ≤ 0. These results together imply CEP(0,0) = 0 if P(0,0) > 0. Thus ACN holds.

Next, we determine the conditions under which ACN + 1-sided strong ACS imply 

Specificity. As in the proof of Result 1, adding any of NNMEs, Monotonicity, or Case CB to 

ENHM + ACN, we obtain

By 1-sided strong ACS, CEP(s1,s0) < 0 for all s1 > s0 with P(s1,s0) > 0. We need to show 

that S(1) >st S(0) implies CE above is less than zero. If CE(0,1) = 0, then this holds using the 

same argument as in Result 1. Thus we may assume CE(0,1) ≠ 0, and, because CE(0,1) ≤ 0, 

we may assume CE(0,1) < 0. This can only make CE smaller, thus CE < 0 and the result 

follows.

Conversely, Sensitivity + Specificity together with NNMEs, Monotonicity, and Case CB do 

not imply 1-sided ACS for any C ≥ 0. The proof is the same as for Result 1.

Proof of Result 3

Result 2 shows that under ENHM, ACN does not imply Sensitivity even under the four extra 

assumptions. Thus with ENHM relaxed, ACN also does not imply Sensitivity. Conversely, 

assume Sensitivity, Monotonicity, and Case CB. In Case CB

Now, as in the Proof of Result 2, by Sensitivity 0 = CE = 

CEP(0,0)P(0,0)P*(0,0)+CE(1,0)P*(1,0) + CE(0,1)P*(0,1). Now, by PEM, CE(1,0)P*(1,0) 

+CE(0,1)P*(0,1) must be non-positive. This implies that CEP(0,0) must be nonnegative if 

P(0,0) > 0. However, by Monotonicity, CEP(0,0) ≤ 0. These results together imply CEP(0,0) 

= 0 if P(0,0) > 0. Thus ACN holds.

Next, we consider conditions under which ACN + 1-sided strong ACS imply Specificity. 

Adding any of NNMEs, Monotonicity, or Case CB to ENHM + ACN, we obtain
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By 1-sided strong ACS, CEP(s1,s0) < 0 for all s1 > s0 with P(s1,s0) > 0. We need to show 

that S(1) >st S(0) implies CE above is less than zero. In general, CE(1,0) can be greater than 

zero while the remaining terms can be less than zero, and they could exactly counter-balance 

one another. However, if PEM is added, then CE(1,0) ≤ 0, implying that CE < 0, such that 

Specificity holds.

Proof of Result 1-Binary

Under EECR and Case CB,

(9)

The condition S(1) =d S(0) implies P(0,0) = 1; thus CE = CEP (0,0)P*(0,0). Sensitivity 

entails that CE = CEP(0,0)P*(0,0) implies CE = 0, implying that CEP(0,0) = 0, i.e., ACN 

holds.

Next, we also assume Specificity. Specificity (accounting for the fact that ACN holds) states 

that S(1) >st S(0) implies CE = CEP(1,0)P(1,0)P*(0,0) < 0, which implies both CEP(1,0) < 0 

and P(1,0) > 0. From this it follows that if CEP(1,0) ≥ 0, then 1-Sided Specificity could not 

hold; this contradiction establishes 1-sided strong ACS.

Proof of Result 4

With Pε(s1,s0) defined the same as for P(s1,s0) with constraints under Case CB-ε, the overall 

clinical efficacy CE under EECR can be written as

(10)

(11)

Under Case-CB-ε and S(1) =d S(0), Pε(s1,s0) → 0 as ε → 0 for all (s1,s0) ≠ (0,0) and Pε(0,0) 

→ 1 as ε → 0. Examining the above formula for CEε, these convergence results imply that 

CEε → CEP(0,0) as ε → 0. Therefore Sensitivity implies ACN-ε(0,0). However, ACN-ε 

does not hold, because CEP(s1,s1) for s1 > 0 is not constrained.

Next we show that EECR + ACN-ε + Case CB-ε imply Sensitivity-ε. Under ACN-ε + Case 

CB-ε, CEε equals expression (11). By Case CB-ε, when S(1) =d S(0), every Pε(s1,s0) in this 

expression converges to 0 as ε → 0, showing that CEε → 0 as ε → 0.
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Next we note that EECR + ACN-ε + 1-sided strong ACS + Case CB-ε imply Specificity-ε. 

As above CEε equals expression (11), and under Case CB-ε and S(1) >st S(0), ∑s1<s0 

CEP(s1,s0)Pε(s1,s0)P* (0,0) → 0 as ε → 0. By 1-sided strong ACS ∑s1>s0 

CEP(s1,s0)Pε(s1,s0)P*(0,0) → ∑s1>0CEP(s1,0)P*(0,0) < 0.

Lastly, the same results attain with EECR replaced with EECR-ε, because CEε now has an 

extra term stemming from (3) and (4), , which 

converges to zero as ε → 0.
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Figure 1. 
For vaccine and placebo recipients in the immunological sub-study of ZEST (chosen as a 

10% simple random sample, n=1218 vaccine and n=1273 placebo), the (A) boxplots depict 

the distribution of S|Yτ = 0, the log10 fold-rise of gpELISA antibody titers from baseline 

(Day 1; pre-immunization) to week 6. Data points are shown for random samples of 100 

participants. (B) shows the association between S|Yτ = 0 and baseline gpELISA antibody 

titers (the BIP) in the vaccine group.
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Figure 2. 
Point and 95% confidence interval estimates of the CEP curve, CEP(s1) ≡ CEP(s1,0) = 

risk1(s1,0) – risk0(s1,0), for the ZEST data with candidate surrogate S the log10 fold-rise of 

gpELISA antibody titers from baseline to week 6. The Weibull estimated maximum 

likelihood method of Gabriel and Gilbert (2014) was used, assuming a parametric normal 

model for S(1) conditional on the BIP X and using the clinical endpoint Y = I[T ≤ t] for t = 2 

years.

Gilbert et al. Page 25

J Causal Inference. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


