
Diabetes and Its Effect on Bone and Fracture Healing

Hongli Jiao,
Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, 
PA 19104, USA

E. Xiao, and
Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, 
PA 19104, USA

Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of 
Stomatology, Beijing, 100081, China

Dana T. Graves
Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, 
PA 19104, USA

Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of 
Stomatology, Beijing, 100081, China

Abstract

Diabetes mellitus is a metabolic disorder that increases fracture risk and interferes with bone 

formation and impairs fracture healing. Type 1 diabetes mellitus (T1DM) and Type 2 diabetes 

mellitus (T2DM) both increase fracture risk and have several common features that affect bone 

including hyperglycemia and increased AGE formation, ROS generation, and inflammation. These 

factors affect both osteoblasts and osteoclasts lead to increased osteoclasts and reduced numbers 

of osteoblasts and bone formation. In addition to fracture healing, T1DM and T2DM impair bone 

formation under conditions of perturbation such as bacteria induced periodontal bone loss, which 

reduces expression of factors that stimulate osteoblasts such as BMPs and growth factors and 

increase osteoblast apoptosis.
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Introduction

Diabetes mellitus (DM) is a chronic metabolic disease with high blood glucose levels [1-3]. 

Diabetes results from deficits in the production of insulin or deficit insulin resistance 

coupled with insufficient insulin production. Type 1 diabetes mellitus (T1DM) is due to the 

lack of insulin production by the pancreas and requires daily administration of insulin. It is 

typically caused by destruction of pancreatic β-cells of autoimmune etiology. Type 2 

diabetes mellitus (T2DM) is characterized by the inability to use insulin efficiently, referred 

to as insulin resistance combined with an inability to produce a sufficient amount of insulin 

to overcome the insulin resistance. Diabetes mellitus often leads to serious complications 

that affect the heart, blood vessels, eyes, kidneys, and nerves. It has also been increasingly 

recognized that diabetes adversely affects bone health.

Insulin receptor signaling activates Ras, which leads to activation of MAP kinases and 

promotes growth. Insulin induces another intracellular cascade that leads to phosphorylation 

of insulin receptor substrate 1 (IRS1) and IRS2 and activation of phosphatidylinositide-3-

kinase (PI3K), which phosphorylates and activates Akt. One of the effects of Akt is to 

phosphorylate and deactivate Foxo1; another is to phosphorylate and inhibit glycogen 

synthase kinase-3β (Gsk3β). FOXO1 is a transcription factor that induces genes that control 

glycogenolysis and gluconeogenesis and its activity can lead to hyperglycemia. In addition 

FOXO1 is activated in tissues associated with a number of diabetic complications including 

soft tissue during wound healing and bone fracture [4, 5]. Insulin resistance may involve 

reduced expression or phosphorylation of IRS-1/IRS-2 due to various causes including 

inflammation. Diminished IRS1 and IRS2 activity reduces activation of PI3K but increases 

MAP kinase activation. Normal expression and function of IRS1 and IRS2 is needed to 

activate PI3K and Akt. Akt signaling prevents inappropriate activation of FOXO1 and is 

essential for maintaining homeostasis. Thus, a reduction in insulin signaling leads to reduced 

Akt and increased FOXO1 activation to promote hyperglycemia. This may contribute to 

organ failure and diabetic complications due to insulin resistance.

High levels of glucose contribute to diabetic complications by inducing stress at the cellular 

level, glycating proteins that lead to the formation of advanced glycation endproducts, 

increasing production of reactive oxygen species, and enhancing expression of cytokines 

such as tumor necrosis factor [1, 6, 7]. In diabetic humans and animals there is increased 

production of inflammatory mediators by macrophages in adipose tissue leading to increased 

systemic inflammation, which among other factors contributes to insulin resistance [8]. 

Diabetic conditions such as high glucose levels, increased formation of advanced glycation 

endproducts and increased generation of ROS lead to greater expression of inflammatory 

cytokines at the local level when tissues are perturbated by events such as wounding.

Diabetes, Inflammation and Bone

Pro-inflammatory mediators including TNF-α, IL-1β, IL-6 and IL-18 are increased locally in 

diabetes mellitus and are thought to contribute to diabetic complications [7, 9]. Diabetics 

have difficulty in down regulating inflammation once induced [10, 11]. Increased levels of 
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TNF may limit the capacity of diabetics to down regulate other inflammatory genes and 

increase apoptosis, which has been shown to reduce bone coupling in diabetic animals [12].

During perturbation diabetes increases and prolongs inflammation, which may lead to 

enhanced osteoclastogenesis. Diabetes increases osteoclast formation in a number of 

conditions including periodontal disease, fracture healing and osteoporosis [6, 12, 13]. 

Diabetes-increased osteoclasts may pertain to situations where bone is challenged by injury 

or inflammation rather than basal levels. Diabetic animals with periodontitis have higher 

levels of IL-1β, TNF-α, and prostaglandin E2, which induce and prolong osteoclast mediated 

resorption [14]. Diabetic rats with periodontitis and T1DM have a 2 to 4-fold increase in the 

number of osteoclasts and individuals with T1DM have increased levels of IL-17 and IL-23, 

which promote osteoclast formation through RANKL (Figure 1) [15, 16]. T2DM rats have a 

2 to 4-fold increase in osteoclasts induced by periodontal infection compared to infected 

normoglycemic controls [11, 17, 18]. Similarly, humans with T2DM and periodontitis have 

significantly increased levels of TNF-α, IL-1β and IL-6 associated with prolonged 

inflammation and increased lipid peroxidation and dyslipidemia [16, 19, 20]. Diabetes leads 

to increased RANKL/OPG ratios and TNF levels that contribute to greater bone resorption 

[11, 21]. In humans, the ratio of RANKL/OPG and TNF levels are increased in poorly 

controlled diabetics [19, 22]. Fatty acid levels in diabetics may also contribute to increased 

osteoclastogenesis [23]. The capacity to resolve inflammation is an important aspect of 

limiting bone resorption as shown by diminished bone loss in animals treated with resolvins 

[24] or by use of TNF inhibitors [10, 11].

Diabetes decreases osteoblast formation and function and reduces the number of osteoblasts. 

Bone formation is reduced in diabetics as reflected by reduced levels of osteocalcin in type 2 

diabetic patients compared to non-diabetic controls, reflecting a decrease in osteoblast 

activity, which is inversely related to IL-6 and C reactive protein (CRP) [25]. Rats with type 

2 diabetes have decreased expression of BMPs and FGF, reduced osteocalcin expression and 

reduced bone coupling [12]. These deficits are linked to diabetes-increased inflammation 

since they are reversed by inhibition of TNF [12]. A mechanism through which this may 

occur is greater or prolonged expression of TNF in bone of diabetics when stimulated by 

injury or inflammation that leads to increased nuclear factor-kappa-B activity and reduced 

expression of fra-1 and runx2 in osteoblasts and reduced expression of mediators that 

stimulate osteoblast growth and differentiation (Figure 2) [26, 27]. Diabetes-enhanced 

inflammation may reduce osteoblast numbers through increased apoptosis. Type 1 diabetes 

increases osteoblast caspase 3 activity and Bax/Bcl-2 ratio mediated by increased levels of 

TNF-α [28]. Type 2 diabetes also increases the expression of pro-apoptotic genes that affect 

bone [10].

Diabetes, AGEs and Bone

Elevated levels of glucose enhance protein glycation (nonenzymatic glycosylation), with the 

formation of advanced glycation end-products (AGEs). AGEs are non-enzymatic chemical 

modifications of proteins by aldose sugars, formed by the oxidation of products generated 

during the Maillard reaction. The accumulation of AGEs has been associated with diabetic 

complications as well as degenerative diseases that occur with aging. AGEs bind to a 
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number of receptors including the receptor for AGEs (RAGE) and stimulate inflammatory 

cytokines [29]. Diabetes increases formation of AGEs and increases RAGE expression [6]. 

RAGE signaling activates the transcription factor NF-κB to increase expression of the 

receptor activator for nuclear factor κ-B ligand (RANKL) [30]. AGEs and hyperglycemia 

are linked to increased osteoclast formation (Figure 1) [31, 32] and RAGE is expressed in 

osteoclasts and stimulates osteoclastogenesis [33]. Mice that lack RAGE have decreased 

bone resorption and increased bone mass [33]. Blockade of RAGE signaling by treatment of 

mice with soluble RAGE reduces bacteria-induced periodontal bone loss [34]. RAGE also 

down regulates expression of osteoprotegerin (OPG) to enhance osteoclastogenesis and bone 

resorption [35]. In addition, AGEs inhibit differentiation of osteoblasts as reflected by 

reduced expression of alkaline phosphate and collagen 1α1 and inhibited formation of a 

mineralized matrix [36]. Moreover, there is evidence that AGEs induce osteoblast apoptosis 

to reduce osteoblast numbers and impair bone formation [37].

Diabetes, ROS and Bone

Under diabetic conditions, various tissues produce reactive oxygen species (ROS) [38, 39]. 

Oxidative stress is increased in diabetes and contributes to diabetic complications. 

Superoxide production is increased in the mitochondria as a result of increased glucose 

levels, which lead to greater inflammation [40, 41]. A primary mechanism is the 

overproduction of the superoxide anion (O−2) by the mitochondrial electron transport chain. 

In addition, diabetes causes a reduction in antioxidant levels to increase susceptibility to 

oxidative stress [42]. There are several sources of ROS in cells including stimulation by 

AGEs [43], high glucose induced overload of the electron transport chain in mitochondria 

[40] and the activity of membrane-bound NADPH oxidase [44, 45]. High levels of ROS 

negatively affect bone [46, 47]. Intracellular H2O2 increases the differentiation and survival 

of osteoclasts. The formation of reactive oxygen species (ROS) induces RANKL expression 

and enhances greater osteoclast formation [48]. Hyperglycemia-induced ROS production 

also increases expression of RAGE, which may contribute to osteoclast formation [49].

The long-term effect of oxidative stress is to reduce bone mass. The importance of 

protection against oxidative stress was shown by deletion of the transcription factor, 

forkhead box-O (FOXO). Deletion of FOXO1, FOXO3 and FOXO4 results in reduced 

expression of antioxidant enzymes and failure to protect against oxidative stress [50]. 

Interestingly, FOXO1 is induced by RANKL stimulation and has a direct effect in 

stimulating osteoclast formation [51]. The long-term effects of oxidative stress may be 

particularly important for long-lived cells such as osteocytes and mesenchymal stem cells. 

Mesenchymal stem cells play an essential role in bone formation and osteocytes are critical 

for regulating bone remodeling, particularly in response to mechanical stimulation. The long 

term impact of oxidative stress on bone maybe mediates through its detrimental effect on 

these two types of long-lived cells [52]. Since diabetes increases formation of superoxide 

radicals and inhibits antioxidant defenses its impact on mesenchymal stem cells and 

osteocytes may be one of the mechanisms through which diabetes impacts the long term 

health of bone.
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Diabetes, Hyperglycemia and Bone

Studies on osteoclasts derived from db/db T2DM mice and T2DM patients found that 

osteoclasts differentiation was enhanced by hyperglycemia, suggesting an increased capacity 

for bone resorption. This may contribute to increased alveolar bone loss in T2DM patients 

with periodontitis [31]. High levels of glucose stimulate the generation of reactive oxygen 

species which in turn can increase osteoclast formation and activity [53, 54]. Since the effect 

of high glucose often takes several days it is possible that it works indirectly by stimulating 

increased generation of ROS, increased cytokine expression and formation of AGEs. 

Increased glucose levels interfere with osteoblast differentiation and osteoblast function 

reflected by decreased expression of the osteoblast marker genes (Figure 2) [55]. High 

glucose stimulates production of reactive oxygen species and activation of NF-kB to affect 

osteoblasts [56]. Hyperglycemia may affect bone through enhanced expression of 

proinflammatory cytokines such as TNFα, which reduces osteoblast differentiation, 

osteoblast activity and increases osteoblast apoptosis [57, 58]. High glucose levels reduce 

expression of the transcription factor RUNX2 and inhibit bone formation [54, 59-61]. 

Furthermore, it interferes with production of a mineralized matrix [55]. Osteoblast viability 

is decreased by high glucose. Another mechanism is through increased PPARγ activation 

that promotes adipogenesis from mesenchymal stem cells at the expense of bone formation 

to reduce bone mass [62].

Diabetes, Insulin and Bone

Insulin binds to receptors on osteoblasts and stimulates anabolic effects [63]. It is possible 

that the reduced insulin levels or reduced insulin signaling in osteoblasts negatively affects 

bone and contributes to reduced bone formation caused by diabetes [64, 65]. Activation of 

insulin-like substrate1 (IRS-1) affects bone turnover, while activation of IRS-2 shifts the 

balance of bone formation and resorption towards formation. Insulin stimulates osteoblast 

proliferation, inactivates p27, and promotes collagen synthesis [66]. In T1DM, the 

deficiency of insulin and IGF-1 leads to impaired bone formation, abnormal mineralization, 

abnormal bone microarchitecture, increased fragility of the bone, and reduced peak bone 

mass [67]. It has been proposed that hyperinsulinia in the early stages of T2DM increases 

bone mass through effects on bone formation via IRS-1 and IRS-2 surface receptors [68]. 

Physiological levels of insulin reduce the ability of PTH to activate protein kinase C in 

osteoblasts [69, 70], suggesting that insulin may be a physiological antagonist of bone 

resorption. T1DM diabetes and later stages of T2DM reduced insulin signaling may remove 

a brake on osteoblast-induced osteoclast formation.

Diabetes and Impaired Fracture Healing

Diabetic fracture is a significant co-morbidity of both type I and type II diabetes and is 

characterized by microarchitectural changes that decrease bone quality [64, 66]. Meta-

analysis shows a consistent pattern of increased risk of fracture in men and women and in 

studies conducted in the United States and Europe. The Nurses’ Health Study with 109,983 

women aged 34–59 years and follow up 22 years later indicated that both T1DM and T2DM 

are both associated with an increased risk of hip fracture [71]. The relative risk of hip 

fracture is increased 6-7 fold for individuals with T1DM, which is considerably higher than 
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the increased risk (1.4-1.7 fold) in T2DM [72]. The fracture risk of T1DM increases because 

of a decrease of BMD, which is linked to impaired bone formation that may be linked to a 

deficiency of insulin and insulin-like growth factor-1 (IGF-1) [73]. T2DM is often 

characterized by normal or high bone mineral density (BMD). Diabetes may be associated 

with a reduction of bone strength that is not reflected in the measurement of BMD [74] 

results in high risk of fracture.

Fracture repair involves formation of a hematoma after injury that generates the production 

of cytokines and growth factors. This leads to an inflammatory response that is necessary for 

the recruitment of mesenchymal stem cells [75, 76]. These cells proliferate and differentiate 

to chondrocytes that form cartilage during the endochondral phase of bone formation. Cells 

along the periosteum differentiate into osteoblasts to produce new bone. The cartilage 

mineralizes and mechanically stabilizes the fracture site. Mineralized cartilage is then 

removed by the action of osteoclasts. Factors important in this process are TNF-α, 

macrophage colony stimulating factor (MCSF) and RANKL [77]. The transition from 

cartilage to bone is linked to increased angiogenesis [75]. The last phase is bone remodeling, 

which involves the action of osteoclasts and osteoblasts to reshape the bone to its final form. 

Diabetic animals exhibit both decreased and delayed bone formation [78]. Diabetic fracture 

healing may be caused in part, by reduced growth factor levels as shown by improved 

healing with application of FGF-2 to the fracture site [79].

Healing of fractures in diabetic patients is prolonged by 87% [80] and has a 3.4 fold higher 

risk of complications including delayed union, non-union, redislocation or pseudoarthrosis 

[81, 82]. Clinical studies in humans indicate that diabetes delays fracture healing [82]. A 

study of spontaneously diabetic animals revealed that diabetic fracture healing was 

characterized by decreased bone apposition and mineralization [78]. The reparative phase of 

bone fracture healing is initiated by proliferation and chondroblastic differentiation of 

periosteal precursor cells resulting in a hyaline cartilage callus around the wounded bone 

[83]. Imbalances in chondrocyte apoptosis, premature removal of cartilage, reduced 

osteoblast differentiation and function and alterations in vascularization have been shown to 

affect the transition from cartilage to bone [84, 85]. Supernormal osteoclast activity disturbs 

remodeling of the osseous callus [84]. It has been proposed that insulin insufficiency, 

hyperglycemia and oxidative stress are mechanisms that affect fracture healing in T1DM 

and T2DM. They may reduce osteoblast differentiation, increase osteoclast activity, and 

alter apoptosis of chondrocytes and osteoblasts to interfere with fracture healing in diabetic 

patients [84, 86-88].

Type I collagen is the major protein component in bone. Enzymatic cross-linking between 

collagen molecules is essential and tightly regulated. Accumulation of AGEs in cortical and 

trabecular bone increases the stiffness of the collagen network and reduce ductility [89, 90]. 

These alterations can lead to increased fragility [91]. Non enzymatic glycation causes a 

significant reduction in propagation fracture toughness and bone [92]. In addition to its 

structural effects, AGEs can affect the function of bone cells to induce apoptosis, interfere 

with differentiation and function of osteoblasts and reduce bone mineralization [36, 93].
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Insulin acts directly on osteoblasts to increased proliferation, reduce apoptosis, stimulate 

glucose uptake, increase collagen synthesis and enhance sensitivity to PTH [94, 95]. Insulin 

also increases chondrocyte proliferation, differentiation, formation of extra cellular matrix 

[96, 97]. In contrast osteoclast activity in vitro is reduced by insulin [98]. Treatment with 

systemic insulin reverses impaired fracture healing suggests that insulin signaling plays a 

necessary role in repair. However the interpretation is limited by the fact that insulin also 

treats hyperglycemia making it unclear whether the effects are due to the direct effects of 

insulin on bone cells or the indirect effects due to reversal of hyperglycemia or both 

[99-101]. Experiments have been performed to study the effect of local insulin application to 

fracture healing. These studies suggest that insulin has direct effects on the repair process 

[65]. Local application of insulin restored the deficit in cell proliferation in diabetic animals 

and improved fracture healing. Histologic and radiographic outcomes of osseous healing in a 

femoral defect model in diabetic animals were also improved by local insulin delivery with 

enhanced formation of mineralized tissue at the defect site [102]. In a non-diabetic rat model 

local insulin accelerated fracture healing but did not alter the final outcome. At early time 

points application of local insulin increased VEGF expression, enhanced vascularity and 

increased formation of mineralized tissue and increased mechanical strength at early time 

points [103].

The complications of diabetes mellitus affect the vasculature in the form of macro- and 

microangiopathy and wound healing. Both T1DM and T2DM contribute to diabetic 

macroangiopathy, which leads to greater atherosclerosis and microangiopathy, which 

contributes to diabetic retinopathy and impaired wound healing [104]. AGEs, defective 

signal transduction, and an imbalance of matrix metalloproteinases (MMPs) can all lead to 

the progression of atherosclerosis in major arteries. Increased levels of prothrombotic 

factors, restricted formation of collateral vessels and increased loss of endothelial cells and 

pericytes are important aspects of microangiopathy [105]. Moreover, in diabetic wound 

healing high glucose levels alter the downstream targets of the transcription factor FOXO1 

to induce inflammatory mediators instead of TGFβ1, providing an epigenetic explanation for 

reduced growth factor and increased expression of inflammatory mediators in diabetic 

wounds [106].

Summary

T1DM and T2DM both increase fracture risk and have several common mechanisms 

including increased AGE formation, increased ROS generation, and increased inflammation. 

These factors affect osteoblasts and osteoclasts as summarized in Figures 1 and 2. However 

there are significant differences whereby T1DM has a greater effect on bone mass and 

T2DM affects bone quality. Both humans and animal models of T1DM and T2DM display 

impaired fracture healing but T1DM patients have a greater risk of developing fractures. 

Moreover, animals with T1DM and T2DM exhibit impaired bone formation under 

conditions of perturbation such as bacteria induced periodontal bone loss and bone fracture 

healing.
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Figure1. Mechanisms of diabetes-increased osteoclastogenesis
Diabetes leads to hyperglycemia, enhanced and prolonged inflammation, formation of AGEs 

and generation of ROS. This dysregulation as well as reduced insulin signaling may lead to 

increased osteoclast formation, particularly when bone is challenged by wounding, bacteria 

induced inflammation or other events that disrupt homeostasis. This dysregulation may lead 

to an increased RANKL/OPG ratio or affect osteoblasts through other mechanisms to 

increase bone resorption.
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Figure2. 
Mechanisms of diabetes-reduced bone formation. Diabetes leads to hyperglycemia, 

enhanced and prolonged inflammation, formation of AGEs and generation of ROS. This 

dysregulation as well as reduced insulin signaling may adversely affect osteoblasts and 

reduce bone formation particularly when bone is challenged by wounding, bacteria induced 

inflammation or other events that disrupt homeostasis. The effect of dysregulation may lead 

to a reduction in BMPs, Runx2 or Fra1, an increase in PPARγ or other mechanisms to 

reduce bone formation or bone quality.
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