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Introduction
Animals use electrical signals to encode and propa-
gate vital information, often over long distances (Hille, 
2001). To this end, a diverse family of membrane pro-
tein complexes known as ion channels contains hydro-
philic pathways across cell membranes that catalyze the 
otherwise energetically unfavorable flow of charged 
ions through the lipid bilayer. Consequently, ion chan-
nels generate and take advantage of a transmembrane 
voltage gradient that constitutes a key element in cellu-
lar communication. In mammals, voltage-gated sodium 
(Nav) channels play an important role in fast electrical 
signaling because they have a Na+-selective transmem-
brane pathway that can open and close rapidly (i.e., gate) 
in response to changes in membrane voltage, thereby 
regulating the Na+ permeability of the cell membrane 
and generating the rapid upstroke of action potentials 
(Hodgkin and Huxley, 1952b; Catterall, 2012; Fig. 1 A). 
As such, Nav channels are widely targeted by clinical 
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therapeutics as well as toxins from numerous venomous 
animals and plants (Kaczorowski et al., 2008; Kalia et al., 
2015). Abnormal Nav channel activity stemming from 
inherited or spontaneous mutations in Nav channel 
genes can also lead to various diseases, termed chan-
nelopathies, which can manifest as both hypo- and hy-
per-excitable phenotypes (Wood et al., 2004; George, 
2005; Cannon, 2006; Dib-Hajj and Waxman, 2010; Jurkat-
Rott et al., 2010; Mantegazza et al., 2010). In the for-
mer, such mutations can result in deficient expression 
and loss of Na+ current, whereas in the latter, defective 
channel inactivation can produce excessive Na+ entry 
that results in prolonged or unstable depolarization. 
For example, >1,000 mutations in neuronal Nav chan-
nels are associated with a spectrum of epilepsy syndromes 
(Claes et al., 2009). Moreover, alterations in the func-
tional properties of Nav channel isoforms that are pref-
erentially expressed in the skeletal muscle or in the 
heart muscle are associated with neuromuscular diseases 
and cardiac pathologies, respectively (George, 2005; 
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2 Sodium channel structure, gating, and pharmacology

Typically, heterologous expression of the Nav chan-
nel  subunit by itself is sufficient for generating Na+ 
currents in most eukaryotic cell expression systems. 
In vivo, however, Nav channels act as a multi-protein 
membrane-embedded signaling complex (Abriel and 
Kass, 2005), chief among these being auxiliary  subunits 
(1–4) that modify the expression and gating proper-
ties of the pore domain as well as contribute to cell mi-
gration and adhesion (O’Malley and Isom, 2015). Their 
importance in proper Nav channel function is reflected 
in mutations that result in neurological and cardiac syn-
dromes (Namadurai et al., 2015). Recently reported 
crystal structures of 3 and 4 have uncovered intricate 
interactions of these elements within the Nav channel 
signaling complex (Gilchrist et al., 2013; Zhang et al., 
2013a; Namadurai et al., 2014). Moreover, these and 
other studies established new roles for  subunits in in-
fluencing Nav channel pharmacology and as potential 
therapeutic targets (Gajewiak et al., 2014). Consistent 

Cannon, 2006). In some cases, Nav channel abnormali-
ties can cause excruciating pain sensations, or in rare 
instances, isoform-specific loss of function phenotypes 
can eliminate the sensation of pain altogether (Dib-Hajj 
et al., 2013; Leipold et al., 2013).

In humans, nine Nav channel pore–forming  sub-
units have been identified (Nav1.1–Nav1.9; Fig. 1 B), with 
amino acid homology predicting a similar domain and 
transmembrane architecture: the pore-forming  subunit 
consists of four connected parts (domains (D)I–IV), each 
having six transmembrane segments (S1–S6; Catterall, 
2000). These homologous domains are similarly con
figured and consist of a voltage-sensing domain (VSD; 
S1–S4), which contains positively charged residues 
along the S4 helix, and a portion of the structure that 
forms the sodium ion–selective pore (S5–S6) that can 
partially open after each of the DI–III voltage sensors 
has moved in response to changes in membrane voltage 
(Fig. 1, C–F).

Figure 1.  Nav channel function, family tree, and 
structural architecture. (A) Evoked action poten-
tial recorded from a mouse DRG neuron at room 
temperature before (black) and after (red) the 
application of 1 µM TTX. X axis is 30 ms, and 
y axis is 20 mV. (B) A phylogenetic tree of Nav 
channels as well as Shaker obtained using Vec-
tor NTI AlignX software. (C) The side view of a 
signal subunit of the NavAb channel homotetra-
mer (Protein Data Bank accession no. 3RVY) in 
ribbon style is colored from N terminus (blue) to 
C terminus (red). This view highlights the VSD 
as a modular four-helix bundle. (D) Side view of 
the NavAb channel with the front VSD and pore 
domain removed for clarity. For illustrative pur-
poses, NavAb is colored according to a pseudotet-
rameric arrangement expected for eukaryotic Nav 
cannels. Representative classes of protein toxins 
(, , and µ), small molecule toxins (TTX), as 
well select small molecule drugs (lidocaine and 
benzocaine) are represented with arrows point-
ing to their presumed canonical binding sites on 
the channel. (E) Top-view schematic of a eukary-
otic Nav channel with the S3b–S4 region of the 
VSDs from different domains is highlighted in 
different colors. The ion-conducting Na+ pore is 
found in the center of this view. (F) A structural 
top view of the NavAb channel colored according 
to a pseudotetrameric arrangement expected for 
a eukaryotic Nav channel (as in D). This subunit 
coloring highlights the “domain-swapped arrange-
ment” of the VSDs around the PM observed for 
all voltage-gated ion channels.

http://www.rcsb.org/pdb/explore/explore.do?structureId=3RVY
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underlie Nav channel function as well as their modula-
tion by ligands in this Review. Prokaryotic Nav channel 
structures and their implications on our understanding 
of the eukaryotic sodium channels will also be discussed. 
We hope that this Review adequately captures the sto-
ried history of Nav channels and will also catalyze new 
studies of these fascinating molecules.

Gating mechanisms
Voltage gating. According to the Hodgkin and Huxley 
(HH) model, changes in membrane permeability dur-
ing an action potential are controlled by redistribution 
of voltage-dependent gating particles between two per-
missive positions (Hodgkin and Huxley, 1952a,c,d). 
The sodium–ion conductance is determined by the acti-
vating “m” and inactivating “h” particles. Nav channels 
open when all three “m” particles move into the up 
state, whereas activation of the slower moving “h” parti-
cle produces the phenomenon of inactivation. It should 
be noted that this physical picture was mainly inferred 
from the mathematical descriptions of ionic conduc-
tance. Indeed, Hodgkin and Huxley cautiously note 
that “the physical basis for the equations should be only 
used for illustrative purposes and is unlikely to be the 
correct picture of the membrane.” Nonetheless, these 
concepts revolutionized our way of thinking about elec-
trical properties of membranes and laid the foundation 
for future mechanistic studies.

Macroscopic current measurements cannot uniquely 
discriminate between gating models with different rate 
constants (e.g., 1:1:1 or 1:2:3), as the predicted Na+ cur-
rents would be virtually indistinguishable from the orig-
inal (Armstrong, 1981). Thus, to constrain models of 
Nav channel gating, it is necessary to monitor time and 
voltage-dependent distributions of nonconducting chan-
nel states. Therefore, the discovery of “gating currents” 
in the early 1970s made it possible to probe gating tran-
sitions even when the channel is closed or inactivated 
(Armstrong and Bezanilla, 1973; Keynes and Rojas, 1973, 
1974; Meves, 1974). “Gating current” refers to the tran-
sient current generated by the movement of voltage-
sensing charges or dipoles within the electric field. The 
activating ON (outward) gating currents of Nav chan-
nels in squid axon show two components, with the fast 
component being clearly related to channel opening, 
and the second, slower ON gating component was ob-
served to be faster than inactivation. This led Armstrong 
and Bezanilla to propose that inactivation is not di-
rectly caused by the movement of a voltage-sensing in-
activation particle as was proposed by the HH model 
(Armstrong et al., 1973; Armstrong and Bezanilla, 1974, 
1977; Bezanilla and Armstrong, 1977).

The HH model also predicts that the OFF gating cur-
rent will be unaffected by the state of inactivation, but it 
was observed that inactivation results in “immobilization” 
of roughly two thirds of the total OFF gating currents 

with their role as central cell-signaling hubs in excitable 
cells, Nav channels interact with a myriad of cellular 
constituents including but not limited to calmodulin 
(Kink et al., 1990), contactin, fibroblast growth factor 
homologous factors, ankyrin, clathrin-interacting protein 
1A, mitogen-activated protein kinase, and neural pre-
cursor cell-expressed developmentally down-regulated 
protein 4 (Dib-Hajj and Waxman, 2010).

Structural insights into eukaryotic Nav channel func-
tion lag compared with the structural revolution that is 
leading the understanding of voltage-gated potassium 
(Kv) channels (Long et al., 2005a). Recently, the discovery 
of biochemically more tractable bacterial Nav (or BacNav) 
channels set the stage for several experimental struc-
ture determinations of six-transmembrane homotet
rameric channels (NavAb, NavRh, and NavCt) and 
two-transmembrane pore module (PM)-only structures 
(NavMs and NavAe; Payandeh et al., 2011, 2012; McCusker 
et al., 2012; Zhang et al., 2012b; Tsai et al., 2013; Shaya 
et al., 2014). These simpler BacNav channels collectively 
highlight the basic design principles of the more com-
plex eukaryotic Nav channels in unprecedented detail 
(Payandeh and Minor, 2015). However, these signifi-
cant advances are only tempered by the still unknown 
structural and functional correlations to eukaryotic Nav 
channels. For one, the homotetrameric BacNav chan-
nels will show inherent mechanistic differences in the 
cooperativity of their gating, as well as their interactions 
with permeant ions and therapeutics when compared 
with pseudo-heterotetrameric eukaryotic Nav channels. 
Moreover, the inherent lack of symmetry in the mamma-
lian Nav channel protein sequence raises basic questions 
about the role of individual domains in their functional 
properties. Even so, the BacNav channels may be suit-
able models for understanding the mechanisms that 
underlie the biology of pseudo-symmetric eukaryotic 
Nav channels. For example, all full-length BacNav chan-
nel structures revealed a central ion PM with a domain-
swapped arrangement in which each individual VSD is 
offset by one step from its pore domain, around the pe-
rimeter of the fourfold structure (Fig. 1 D; Payandeh 
et al., 2011, 2012; Zhang et al., 2012b; Tsai et al., 2013). 
This architecture likely underlies an important aspect 
of the electromechanical coupling mechanism (Long 
et al., 2005b) and was foreshadowed by receptor site–
mapping studies in eukaryotic Nav channels that sug-
gested certain toxins contact the VSD in one homologous 
domain and the PM of another (Cohen et al., 2007; 
Leipold et al., 2007).

In light of the recent advances in structural biology, 
we anticipate that experimental structures of eukaryotic 
Nav channels will become available in the near future. 
This would undoubtedly provide new insights into some 
of the long-standing questions in the ion channel field. 
Inspired by this prospect, we will broadly survey the cur-
rent state of our understanding of the mechanisms that 
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single-channel recordings of Nav channels in inside-out 
patches (Goldschen-Ohm et al., 2013), multiple openings 
were not observed, suggesting that bursting behavior may 
not be a common feature for all Nav channels. Studies 
of macroscopic Na+ currents by Kuo and Bean (1994) 
showed that the channels are able to deactivate at least 
partially before recovering from inactivation. This idea 
is not incompatible with charge immobilization studies, 
where it was shown that approximately one third of the 
total charge remains free to move upon inactivation, 
and thus could account for rapid partial deactivation.

In Nav channels, both activation and inactivation occur 
in an overlapping voltage range, which limits our ability 
to develop well-constrained gating models. Rapid entry 
into absorbing inactivated states masks the intrinsic life-
times of open states, and limits the ability to unambigu-
ously resolve the kinetics of slower or less frequent 
transitions in the activation pathway. One possible ap-
proach is to study activation gating in isolation by gener-
ating channels genetically deficient in inactivation (West 
et al., 1992; Wang et al., 2003). This experimental para-
digm was implemented successfully to characterize the 
gating properties of the Shaker Kv channel and resulted in 
some of the most well-constrained gating models of 
voltage-gated ion channels to date (Zagotta et al., 1994).

Photoaffinity labeling using specific Nav channel tox-
ins (also see Pharmacology section below) identified  
a large molecular weight component (Beneski and 
Catterall, 1980), which led to the elucidation of the pri-
mary structure of Nav channels (Noda et al., 1984). This 
major accomplishment set the groundwork for molecu-
lar and mutagenic studies that revolutionized the un-
derstanding of Nav channels by assigning for the first 
time distinct functional gating roles to regions or resi-
dues. Ensuing cysteine accessibility studies on the skel-
etal muscle Nav channel isoform Nav1.4 showed that Cys 
residues in DIVS4 are rapidly modified by MTS reagents 
in a state-dependent manner, providing the first direct 
evidence that voltage-sensing charges translocate dur-
ing the gating process (Yang and Horn, 1995; Yang  
et al., 1996).

Extensive mutagenic analysis of voltage-sensing charges 
of the Nav channel failed to reveal a clear picture of 
the role of specific domains (Chahine et al., 1994; Yang 
et al., 1996; Kontis et al., 1997; Lerche et al., 1997; Kühn 
and Greeff, 1999). Mutations of charged residues in all 
the domains were found to affect activation, whereas 
those in S4 segments of primarily DI and IV had most 
effect on fast inactivation. Peptide toxins such as Antho-
pleurin-B were observed to dramatically reduce fast  
inactivation and suggested that an extracellular site  
may be linked to fast inactivation (Hanck and Sheets, 
1995; Sheets and Hanck, 1995). Subsequent structure–
function studies localized such toxin-binding sites to 
extracellular loops of DIV of the Nav channel (Rogers 
et al., 1996; Benzinger et al., 1998).

(Armstrong and Bezanilla, 1973). These findings sup-
port a foot-in-the-door–type mechanism for inactivation, 
a key tenet of the coupled inactivation model (Fig. 2). 
Accordingly, reclosure of the activation gate is hindered 
by an inactivation particle, which binds near the chan-
nel entrance thereby preventing the return of coupled 
voltage-sensing charges.

Single-channel recording techniques allowed ion 
channel biophysicists to extract information about the 
various microscopic rates during gating transitions. Al-
drich, Corey, and Stevens found that single Nav channels 
from neuroblastoma cells primarily open once during a 
depolarizing voltage step with a mean open time that is 
not voltage dependent (Aldrich and Stevens, 1983, 
1987; Aldrich et al., 1983). This indicates that entry into 
absorbing inactivated states is both rapid and voltage 
independent, as predicted by Armstrong and Bezanilla. 
However, by measuring the first latency to channel 
opening, they also discovered that a large fraction of 
Nav channels open after the macroscopic current reaches 
its peak. These studies highlighted the fact that the 
macroscopic activation and inactivation kinetics are not 
solely a measure of microscopic channel opening and 
inactivation rates.

Other studies, including those by Vandenberg and 
Bezanilla (1991a,b), suggested that the final transition 
that leads to channel opening is slower than predicted 
by earlier models, but the microscopic rate constants 
for inactivation were still slower than activation rate 
constants. In a landmark single-channel study of Nav 
channels, Vandenberg and Horn (1984) introduced 
the idea of using statistical methods such as maximum 
likelihood analysis to rigorously discriminate between 
different kinetic models by direct fitting single-channel 
records. Their analysis showed that a simple model of 
Nav channel gating requires both open- and closed-state 
inactivation (see also Aldrich and Stevens, 1983). Fur-
thermore, they found that wild-type channels have a 
long dwell time (2–5 ms) and open on multiple occa-
sions. This is in contrast to the findings of Aldrich  
and Stevens (1987), who observed a short dwell time 
(0.2–1 ms) and only one channel opening before enter-
ing into the absorbing inactivated state. The seem-
ingly opposing conclusions about inactivation being 
slow (Vandenberg and Horn, 1984) or fast (Aldrich 
and Stevens, 1983, 1987) may have a simple but intrigu-
ing explanation. Vandenberg and Horn (1984) per-
formed their experiments using inside-out patches in 
which Nav channel open times were severalfold longer 
when compared with cell-attached patches as used by  
Aldrich and Stevens (1983, 1987). Therefore, it seems 
that these groups may have been working on different 
states of the Nav channel in which patch excision al-
tered inactivation rates, a phenomenon that has yet to 
be fully explored. Although longer dwell times (1–2 ms) 
were also observed in a more recent study involving 
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Thus, according to the asynchronous gating model,  
the activation of VSDI–III causes initial channel open-
ing, whereas the subsequent activation of VSDIV uncov-
ers a site for binding inactivation particle in the pore 
(Fig. 2). Inactivation follows rapidly once this site be-
comes available; therefore, the second opening is ob-
scured in wild-type channels. Disabling DIV–S4 voltage 
sensing by introduced glutamine residues at the first 
three charge-carrying residues slows entry into, and re-
covery from, fast inactivated states (Capes et al., 2013). 
Collectively, these studies demonstrate that activation 
of VSDIV is both rate limiting and sufficient for Nav 
channel inactivation.

Structure–function studies involving swaps of various 
Nav channel VSD regions into a Kv channel background 
showed that DIV VSDs are intrinsically slower (Bosmans 
et al., 2008). By comparing the sequences of Kv and Nav 
channels, Lacroix et al. (2013) were able to identify 

Measurements of voltage-sensor kinetics by tagging 
them with fluorescent reporters showed that VSDIV 
moves fivefold slower than those in the first three do-
mains (Chanda and Bezanilla, 2002). The time course 
of the activation of this voltage sensor is correlated with 
onset of inactivation and with the slow ON gating charge 
movement. However, single-channel studies in an inacti-
vation-deficient mutant showed that DIV is not the inac-
tivation particle itself, but its movement causes a secondary 
conformational change in the pore (Goldschen-Ohm  
et al., 2013). This slower opening presumably gives rise 
to the slow activation observed by Aldrich, Corey, and 
Stevens in their single-channel studies (Aldrich et al., 
1983). Single-channel studies (Goldschen-Ohm et al., 
2013) also showed that upon opening, Nav channels 
have an 75% chance of entering the subconductance 
state, suggesting that the channels preferentially un-
dergo transition from open to a subconductance state. 

Figure 2.  Schematic repre-
sentation of gating models of  
eukaryotic sodium channels. 
(A) Transmembrane topology of 
a eukaryotic Nav channel. The S4 
voltage-sensing segment is shaded  
in gray, and the P-loop consti-
tutes the selectivity filter region. 
The inactivation motif (cerulean- 
colored box) is the loop con-
necting domains III and IV.  
(B) Representative membrane 
currents through a voltage- 
activated sodium channel in re-
sponse to a depolarizing pulse 
from a holding potential of 
90 mV. The start of the depo-
larization pulse is represented as 
a break, and the gating current 
component has been subtracted. 
(C) Schematic rendering of the 
original HH model of sodium 
channel gating. Rapid activa-
tion of three “m” particles is suf-
ficient for the channel to open, 
and slower activation of the “h”  
particle causes the channel to in-
activate. (D) In the coupled in-
activation model, activation of all 
four voltage sensors contributes 
to the channel opening. Inactiva-
tion results from binding of the  
inactivation lid to its receptor in 
the pore, which becomes accessi-
ble in the open state. (E) Accord-
ing to the asynchronous gating 
model, the activation of the first 
three VSDs of the sodium chan-
nel is sufficient to open the 
channel. Slow activation of the 
domain IV voltage sensor results 
in a secondary open state and 
makes the receptor for inactiva-
tion lid accessible.
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functionally unique residues within eukaryotic Nav 
channel VSDs (Palovcak et al., 2014; Pless et al., 2014). 
Intriguingly, the NavAb and rat Kv1.2 channel VSDs 
share highly similar core structures (Payandeh et al., 
2011), whereas the VSDs of NavRh display a remark-
able “down shifting” of the S1–S3 regions around the  
S4 helix (Zhang and Yan, 2013; Payandeh and Minor, 
2015). This observation suggests that the S1–S3 helices 
might not be totally constrained during activation. More-
over, a swinging motion of the VSDs within the plane  
of the membrane is also observed when the PMs of 
NavAb and NavRh (or Kv1.2) structures are superim-
posed (Fig. 3 C), highlighting potential transitions in-
volved in channel activation or inactivation processes.

Pore gating. Pore gating in the voltage-gated ion chan-
nel family can occur either at the distal S6 hydrophobic 
bundle (del Camino et al., 2000; del Camino and Yellen, 
2001) or in the selectivity filter region in CNG (Contreras 
et al., 2008) and BK channels (Chen and Aldrich, 2011; 
Zhou et al., 2011). Early studies with Nav channels sug-
gested that the quaternary strychnine can bind to its 
pore-blocking site from the cytoplasmic side only when 
channels are open, analogous to TEA block of Kv chan-
nels (Cahalan, 1978; Cahalan and Almers, 1979b). This 
was supported by discovery of the open pore blocker–
like activity of the 4 subunit, which may also be a cyto-
plasmic blocker (Raman and Bean, 2001).

As anticipated from physiological studies on eukary-
otic Nav channels (Hille, 2001), the BacNav channel PM 
contains a funnel-shaped extracellular vestibule, a nar-
rowed selectivity filter, a large central cavity, and an in-
tracellular activation gate (Fig. 3 A; Payandeh et al., 
2011). Consistent with the view that an intracellular ac-
tivation gate can regulate drug or blocker access (Hille, 
2001), the structures of BacNav channels are occluded 
to varying extents in this region (Fig. 3 D; Payandeh et al., 
2011, 2012; McCusker et al., 2012; Zhang et al., 2012b; 
Shaya et al., 2014). Direct evidence for location of the 
pore gate in eukaryotic Nav channels came from studies 
probing state-dependent accessibility of substituted 
cysteines in the S6 of DIV in an inactivation-deficient 
background (Oelstrom et al., 2014). Removing inactiva-
tion is essential to definitively establish that the observed 
accessibility changes are not caused by the inactivation 
particle blocking access to the substituted cysteines.  
It was shown that an evolutionary conserved patch of 
hydrophobic residues gate access to the sodium chan-
nel ion conduction pathway (Oelstrom et al., 2014). 
Strikingly, comparison of the structures of “closed” and 
“open” BacNav channel PMs shows that a hydrophobic 
residue at an equivalent position is part of a narrow  
constriction (3.8 Å) in the access pathway and should 
form a steric barrier for hydrated ions. In addition  
to the conserved hydrophobic gate, the structures of 
other BacNav channels suggest additional sites for putative 

speed control residues in S2 and S4 segments as the pri-
mary determinants for asynchronous activation of the 
voltage sensors of the Nav channel. Despite significant 
progress in the past decade, many features of the asyn-
chronous gating model remain unclear. For instance, 
we do not fully comprehend the structural dynamics in-
volved in coupling activation of VSDIV to inactivation. 
Future studies combined with new structural informa-
tion will undoubtedly shed more light on this asynchro-
nous gating mode, which is likely to be a common 
feature in all pseudo-symmetric channels in the voltage-
gated ion channel superfamily (Palovcak et al., 2014).

The BacNav structures did confirm the VSDs to be 
hourglass-shaped four-helical bundles that contain in-
tracellular and extracellular aqueous clefts lined by 
conserved acidic and polar residues (Fig. 3, A and B). 
The S4 helices are studded with conserved arginine-
gating charges found in a characteristic RxxR motif 
(Payandeh et al., 2011; Zhang et al., 2012b), and a con-
served hydrophobic constriction site forms a gasket 
around the gating charges as they transit through the 
“gating pore” (Fig. 3 B). The BacNav VSD structures are 
consistent with classical models of Nav channel func-
tion, where S4 arginine gating charges exchange ion-
pair partners along the VSD during activation and 
deactivation, but some BacNav channel gating charges 
also make compensating interactions to the protein 
backbone along the VSD (Fig. 3 B), suggesting that 
noncanonical gating charge interactions may also be 
functionally relevant.

Although the details of S4 motion in each VSD of eu-
karyotic Nav channels remain unclear, it is expected 
that these movements are analogous to those in other 
voltage-sensing channels. The original models of volt-
age sensing (Armstrong, 1981) proposed that positive 
charge movement across the bilayer must be facilitated 
by negative charges in other parts of the protein or even 
negative lipid head groups (for a detailed discussion see 
Chowdhury, 2015). These concepts were further refined 
to suggest that the S4 helix undergoes a helical screw 
motion so that the charge pairing and  helicity are 
maintained during activation (Catterall, 1986; Guy and 
Seetharamulu, 1986; Yarov-Yarovoy et al., 2012). Al-
though the recent structures of the voltage-sensing phos-
phatase suggest that this may be the case (Li et al., 2014), 
structures of other members of the voltage-gated ion 
channel superfamily suggest that the S4 helix may un-
dergo a transition to a 310 helix, in which case there is no 
necessity of a screw helical motion (Clayton et al., 2008). 
It is worth mentioning that despite a growing body of 
available data, there is no general consensus regarding 
the specific mechanism of charge movement, and it is 
unclear to what extent the details of this process are con-
served throughout the voltage-gated ion channel family.

The BacNav channel structures have also helped to 
define the molecular footprint of VSDs and pinpoint 
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Electromechanical coupling. Our understanding of the 
molecular machinery involved in coupling VSD move-
ments to the pore opening comes mostly from studies on 
homotetrameric Kv channels (see Blunck and Batulan, 
2012; Chowdhury and Chanda, 2012). Mutations at 
multiple positions in the S4–S5 linker region and adja-
cent S6 helix have been shown to disrupt electrome-
chanical coupling. In the Nav channel, two different 
approaches were used to probe coupling between  
VSDIII and pore gates. By simultaneously monitoring 
the movements of the DIII voltage sensor and pore 
opening, Muroi et al. (2010) were able to identify mul-
tiple residues in this region as likely sites mediating 
electromechanical coupling. Further, by analyzing the 
derivatives of response curves, they were able to high-
light several key residues as those that are involved in 
interactions in both resting and activated states.

Previously, it had been shown that lidocaine binding 
to the pore causes large hyperpolarizing shifts in VSDIII, 
making it harder to return to the resting state (Arcisio-
Miranda et al., 2010), akin to charge immobilization 
observed upon TEA binding to the pore in Kv channels 
(Armstrong, 1969). This suggests that lidocaine, much 
like TEA, prevents closure of the pore gates. Arcisio-
Miranda et al. (2010) exploited this phenomenon to 

intracellular gates (Shaya et al., 2014). Accessibility 
studies in these bacterial channels will clarify whether 
these other gates are physiologically relevant. Further-
more, toxin-binding studies in eukaryotic Nav channels 
suggest that there are likely to be additional conforma-
tional changes in the outer pore (Capes et al., 2012). 
However, it remains unclear to what extent these con-
formational changes in the outer pore contribute to the 
gating process. Interestingly, the first reported NavAb 
channel structure (Ile217Cys) revealed an essentially 
fourfold symmetric arrangement (Payandeh et al., 2011), 
whereas a subsequently determined NavAb channel 
structure (wild type) displayed an asymmetric collapse 
of the activation gate, central cavity, and selectivity  
filter, as well as a repositioning of the VSDs around  
the channel (Payandeh et al., 2012). These structural 
changes appear propagated through highly conserved 
residues forming a “communication wire” within the 
PM, and many analogous residue positions have been 
implicated in the slow inactivation process in eukary-
otic Nav channels (Payandeh et al., 2012). In this light, 
the BacNav channels may provide a template to under-
stand how the selectivity filter, central cavity, activa-
tion gate, and VSDs may be coupled in eukaryotic  
Nav channels.

Figure 3.  Overview of BacNav 
crystal structures. (A) Side view 
of the NavAb channel (Protein 
Data Bank accession no. 3RVY) 
with the VSDs colored green, 
the S4–S5 linkers colored red, 
and the PM colored blue. The 
selectivity filter motif in all 
four subunits is colored yellow. 
Main regions within the pore 
structure are indicated, and the 
front VSD and pore domain are 
removed for clarity. (B) Volt-
age-sensor domain from NavAb 
highlights conserved structural 
and functional features within 
the VSD including the hydro-
phobic constriction site (HCS) 
and the intracellular and extra-
cellular negative charge clusters 
(INC and ENC). The gating 
charges (arginine residues, R1–
R4) are shown in blue sticks. 
(Inset) The R2 arginine gating 
charge hydrogen bonding with 
a backbone carbonyl from the  
S3 helix is highlighted. (C) Su-
perposition of the NavAb and 

NavRh (Protein Data Bank accession no. 4DXW) channel pores (colored blue and pink, respectively) indicates the possibility of a signifi-
cant movement of the VSDs within the plane of the membrane. (D) Side-view section of the NavAb channel shows locations of bound 
phospholipids (yellow spheres) within the PM and their penetration through the pore fenestrations. The side chain of Phe203 is shown 
in pink stick representation for reference, and the closed intracellular activation gate formed by the S6 helices is indicated. (E) Side view 
sectioned through the PM of NavAb shows three coordination sites identified within BacNav selectivity filters. From the extracellular to 
intracellular side, these sites are: SiteHFS, SiteCEN, and SiteIN. The approximate positions of the Thr (T), Leu (L), and Glu (E) backbone 
or side-chain atoms from the conserved TLESW selectivity motif are also indicated.

http://www.rcsb.org/pdb/explore/explore.do?structureId=3RVY
http://www.rcsb.org/pdb/explore/explore.do?structureId=4DXW
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might serves as “hinges” in DIII–IV to facilitate such 
movement are inconclusive (Kellenberger et al., 1997). 
The identity of the putative receptor for the IFM motif 
has proven to be elusive, but mutations in the pore-lin-
ing S6 segments of DI (Wang et al., 2003) and DIV 
(McPhee et al., 1994) can profoundly affect fast inacti-
vation. However, such results need to be treated with 
caution, as mutations throughout the channel can also 
impact activation gating (Chahine et al., 1994; O’Leary 
et al., 1995; Chen et al., 1996; Smith and Goldin, 1997; 
Wagner et al., 1997; Jurkat-Rott et al., 2000, 2010; Keller 
et al., 2003; Motoike et al., 2004), which could indirectly 
alter inactivation because these processes are coupled.

Selectivity and permeation
Nav channels drive excitability in the cardiovascular and 
nervous systems by rapidly gating the selective influx of 
Na+. These moderately selective pores sit midway in 
their efficiency for namesake ion selectivity, allowing 
the mistaken passage of a wayward K+ in 1 in 15 attempts 
as opposed to Kv channels, which mistake these two ions 
in roughly 1 per 100 attempts (Hille, 2001). This lower 
selectivity is possibly caused by the need only to depolar-
ize the membrane, and therefore Nav channels need 
not be as selective in the process. Unlike the clear multi-
ion picture now available for Kv channels in which back-
bone carbonyls craft the selectivity filter (Doyle et al., 
1998; Yellen, 2002; Long et al., 2005a), a comparable 
structure of the eukaryotic Na+ selectivity filter and the 
chemical basis for this process remain unresolved. Yet, 
early experiments did reveal certain features that are 
consistent with a single Na+ being bound to the channel 
most of the time (Hille, 1975a; Busath and Begenisich, 
1982; Moczydlowski et al., 1984; Ravindran et al., 1992; 
French et al., 1994).

Substitutions within the putative selectivity filter have 
identified four key residues that are responsible for Na+ 
selectivity, namely an aspartate (DI S5–S6 loop), gluta-
mate (DII S5–S6 loop), lysine (DIII S5–S6 loop), and 
alanine (DIV S5–S6 loop; Favre et al., 1996; Sun et al., 
1997; Huang et al., 2000). Within this DEKA motif, the 
presence of the positively charged Lys and the carboxyl-
ate from Glu seem to be vital components for maintain-
ing an ionic permeability ratio of 0.03:0.075 for K+ over 
Na+. Based on an early molecular model of the Nav 
channel pore, Lipkind and Fozzard (2008) ran molecu-
lar dynamics simulations and concluded that Na+ selec-
tivity hinges on both composition and conformation of 
the four non-identical selectivity filter residues. The un-
derlying energetic mechanism may involve the inter
action of Na+ with glutamate (DII), thereby disrupting 
the interaction of its carboxylate with the amino group 
of the lysine in DIII and displacing it toward the alanine 
residue in DIV. To achieve this, Na+ would only have to 
eliminate one or two waters from its hydration shell. Se-
lectivity over K+ would arise from the inability of this ion 

examine if mutants in the S4–S5 linker and S6 region 
can allow VSDIII to return normally even when the 
pore is blocked by lidocaine, a possibility that could 
identify sites critical for maintaining coupling between 
the voltage sensor and pore. Strikingly, many of the 
identified high impact residues that disrupt the cou-
pling between VSDIII and the lidocaine-binding site 
had been identified by Muroi et al. (2010).

Although these experimental paradigms have led to 
the identification of a subset of residues involved in 
electromechanical coupling, a deeper understanding 
of the fundamental mechanisms that determine cou-
pling in these ion channels have remained elusive. The 
VSD and pore in Nav and Kv channels are believed to be 
obligatorily coupled, which implies that standard allo-
steric analysis that would allow us to extract coupling 
energies is not applicable (Chowdhury and Chanda, 
2012). This inability to estimate coupling free energies 
is a shortcoming that has to be overcome to obtain a 
quantitative understanding of how various structural 
features determine efficient voltage transduction from 
the VSD to the pore in these channels.

Fast inactivation gating. Perfusion of proteolytic enzymes 
in the squid axon preferentially removes inactivation 
while leaving activation intact, suggesting that the for-
mer likely involves proteinaceous components located 
on the cytoplasmic face of the channel (Armstrong  
et al., 1973). Furthermore, complementary Nav channel 
fragments with a “clipped” linker between DIII and IV 
have impaired inactivation, implicating this loop in fast 
inactivation (Stühmer et al., 1989). This idea has been 
advanced by antibodies directed against residues 1491–
1508 in the DIII–IV linker of neuronal Nav channels, 
which antagonize inactivation of single channels (Vassilev 
et al., 1989). The implication of the DIII–IV linker has 
given rise to a working hypothesis that sodium channel 
inactivation proceeds through a “hinged-lid” mecha-
nism, whereby linker residues serve as a molecular latch 
that interacts transiently with a receptor elsewhere in 
the channel (Fig. 2; Joseph et al., 1990). Consistent with 
this idea, mutation of the strictly conserved putative 
latch residues IFM to QQQ (also known as the Q3 muta-
tion) abolishes fast inactivation (West et al., 1992), 
whereas mutation of charged side chains or internal de-
letions are tolerated by inactivation (Moorman et al., 
1990; Patton et al., 1992). In isolation, the 53–amino 
acid linker itself is largely disordered aside from a short 
-helical structure found midway between the trans-
membrane tethers (Rohl et al., 1999; Sarhan et al., 
2012), suggesting that it could be highly mobile. Al-
though MTS-induced changes in gating or modifica-
tion rates of introduced cysteine residues are consistent 
with local movement within the inactivation complex 
(Kellenberger et al., 1996; Lerche et al., 1997), investi-
gations of conserved proline and glycine residues that 
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of hydrated Ca2+ ions bound at two discrete high affin-
ity sites by neighboring acidic side chains (TLDDWSD; 
Tang et al., 2014). This ionic arrangement would ef-
fectively screen away monovalent cations. Through a 
proposed knock-off mechanism, bound Ca2+ ions are 
released into the central cavity of CavAb through a third 
low affinity carbonyl site (TLDDWSD) analogous to 
SiteIN in NavAb (Fig. 3 E; Tang et al., 2014).

Unlike Kv channels, structural studies on BacNav 
channels support the notion that both Nav and Cav 
channels select and conduct hydrated cations. Interest-
ingly, two highly conserved residues found in all Nav 
and Cav channels (TLESW in NavAb) form an intersub-
unit hydrogen-bonding network in BacNav channels 
that appears to hold the selectivity filter wide enough to 
accommodate hydrated cations (Payandeh et al., 2011). 
It has been suggested that these side-chain interactions 
(and therefore the structure of the selectivity filter) 
might be modulated by permeant ions, toxins, drugs, 
pathological mutations, and different gating states of 
the channel (Payandeh et al., 2012).

Pharmacology
Mechanisms of Nav channel pharmacology will be dis-
cussed as well as the possible roles of membrane-facing 
fenestrations, long predicted, and now recently visual-
ized in Nav channel structures. We also propose a simpli-
fied nomenclature for Nav channel toxin-binding sites 
and catalog the activities of key compounds.

Mechanisms of therapeutic inhibition by local anesthetics. 
Antiepileptic, antiarrhythmic, and local anesthetic com-
pounds reduce Nav channel activity with low and high 
affinity through “resting” and “use-dependent” inhibi-
tion mechanisms. In the clinical setting, this behavior is 
pharmacologically advantageous, as it allows for the sys-
tematic administration of Nav channel inhibitors that 
primarily affect hyperexcitable tissues. Repeated stimu-
lations produce conformational changes in the drug re-
ceptor that are concomitant with opening and channel 
inactivation that serve to further enhance drug inter
actions. Nav channel drugs have been proposed to reduce 
conductance through a variety of overlapping mecha-
nisms including pore block (Ramos and O’Leary, 2004), 
electrostatic interactions between the cationic charge 
on the drug and Na+ at the selectivity filter (Barber 
et al., 1992; McNulty et al., 2007), and stabilization  
of fast or slow nonconducting states of the channel 
(Zilberter et al., 1991; Chen et al., 2000). In addition, 
local anesthetics cause gating charge immobilization 
(Hanck et al., 2000; Sheets and Hanck, 2003, 2005), pri-
marily caused by long-range stabilization of VSDIII in 
the activated state (Muroi and Chanda, 2009).

In the simplest sense, use-dependence arises from  
enhanced interactions between the drug and open or 
inactivated channels, which in turn result in extended 

to compete successfully with the lysine amino group 
(DIII), which would make an interaction with the gluta-
mate in DII impossible.

Unlike eukaryotic Nav channels, BacNav channels lack 
the signature DEKA locus and hallmark binding of te-
trodotoxin (TTX) but still retain Na+ selectivity. How-
ever, it should be noted that key differences exist 
between selectivity mechanisms between eukaryotic and 
bacterial channels (Finol-Urdaneta et al., 2014). Never-
theless, in BacNav channels, the S5 and S6 helices line 
the perimeter and central cavity of the PM, respectively, 
and are connected by a distinctive pore loop that forms 
a P1 helix–turn–P2 helix structure (Figs. 1 C and 3 A). 
This “turn” contains the BacNav channel selectivity filter 
motif, which houses an extracellular acidic coordina-
tion site (TLESWS in NavAb; SiteHFS) and two inner 
carbonyl coordination sites that line the central ion 
conduction pathway (TLESWS in NavAb; SiteCEN and 
SiteIN; Fig. 3 E). As predicted by permeation studies in 
eukaryotic Nav channels (Hille, 1972), the selectivity fil-
ters in BacNav channels is wide enough to accommo-
date Na+ ions with their first hydration shell almost fully 
intact (Payandeh et al., 2011; McCusker et al., 2012; 
Tsai et al., 2013; Bagnéris et al., 2014; Shaya et al., 2014). 
Molecular dynamics simulations suggest that highly de-
generate but favorable binding environments are able 
to concentrate two to three Na+ ions within the selectiv-
ity filter and conduct them through a knock-on mecha-
nism that favors hydrated Na+ ions over hydrated K+ or 
Ca2+ ions (Chakrabarti et al., 2013; Ulmschneider et al., 
2013; Boiteux et al., 2014). Conformational isomeriza-
tion of the acidic side chain within the selectivity motif 
(TLESWS) has been further implicated in fostering an 
energetic landscape that promotes rapid diffusion of 
hydrated Na+ (Chakrabarti et al., 2013; Boiteux et al., 
2014; Ke et al., 2014), and analogous suggestions have 
been made about side chains within the DEKA selectiv-
ity locus of eukaryotic Nav channels (Favre et al., 1996; 
Lipkind and Fozzard, 2000; Xia et al., 2013). It is worth 
noting that NavRh and NavAe channels have both cap-
tured an apparent hydrated Ca2+ within or above their 
respective selectivity filters, as these bound ions may 
represent physiologically relevant blocking sites (Zhang 
et al., 2012b; Shaya et al., 2014).

Three point mutations in the selectivity filter of NavAb 
that increase the amount of negatively charged residues 
produce a highly selective Ca2+ channel similar to those 
found in eukaryotic Cav channels (Tang et al., 2014). 
This observation is in concordance with results ob-
tained from eukaryotic Cav channel mutagenesis, where 
it was shown that substitutions in the EEEE locus of  
the pore loop reduces ion selectivity by weakening 
ion-binding affinity. Unlike the degenerate binding 
mode of hydrated Na+ ions proposed within the NavAb 
selectivity filter (TLESWSM), crystal structures of the 
“CavAb channel” variant revealed a linear arrangement 
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inner limit of the selectivity filter. Consistent with this 
possibility, data show that local anesthetic block is re-
duced by increasing extracellular Na+ or Ca2+ that could 
electrostatically reduce affinity by positioning within 
the selectivity filter (Hille, 1977b; Cahalan and Almers, 
1979a; Wang, 1988). In addition to protein fenestra-
tions within transmembrane segments within the bi-
layer, alternative pathways in the vicinity of the selectivity 
filter and upper S6 segment that provide extracellu-
lar access to the inner vestibule have been proposed  
(Qu et al., 1995; Sunami et al., 1997, 2000, 2001;  
Lee et al., 2001; Tsang et al., 2005). Collectively, these 
observations suggest that mutations can create, or  
at least modulate, intrinsic auxiliary fenestrations.

Site-directed mutagenesis has defined key residues 
along the pore-lining S6 segments in DIS6 (Yarov-Yarovoy 
et al., 2002), DIIIS6 (Yarov-Yarovoy et al., 2001), and 
DIVS6 (Ragsdale et al., 1994). Of note, channel inhibi-
tion by local anesthetics can be abrogated by the mutation 
of two conserved aromatic residues in the pore-lining 
DIVS6 segment. The application of nonsense suppres-
sion for the site-directed incorporation of noncanon
ical amino acids in cardiac and skeletal muscle Nav 
channels has demonstrated that cation–pi interactions 
exist between lidocaine and QX-314 at aromatic residue 
1579Phe (1760Phe in Nav1.5), but not 1586Tyr (1767Tyr in 
Nav1.5; Ahern et al., 2008; Pless et al., 2011). These en-
ergetically significant electrostatic interactions occur 
between a diffuse cation (most local anesthetics have a 
protonated subpopulation at physiological pH) and the 
negative electrostatic potential of the quadrupole mo-
ment of an aromatic side chain. Given that such inter
actions are geometrically restricted to occur between 
the face of the aromatic, not the edge, the data suggest 
that the inner vestibule S6 segments undergo a confor-
mational change upon repeated depolarization and/or 
inactivation that reorients this aromatic side chain toward 
the permeation pathway.

Toxins that target Nav channels. Given their contribution 
to action potential initiation, Nav channels are principal 
targets of molecules present in animal venoms and 
plants (Kalia et al., 2015). As such, the use of toxins has 
led to the discovery of a variety of historical receptor 
sites in different Nav channel regions (Catterall, 1980; 
Martin-Eauclaire and Couraud, 1992; Terlau and Olivera, 
2004; Honma and Shiomi, 2006; Hanck and Sheets, 
2007). Overall, toxins that alter Nav channel function 
can do so through two separate mechanisms (Swartz, 
2007; Bosmans and Swartz, 2010). First, pore-blocking 
toxins bind to the outer vestibule of the ion conduction 
pore to inhibit Na+ flux (Hille, 2001). Second, gating-
modifier toxins interact with a region of the channel that 
changes conformation during gating to influence opening 
or inactivation (Koppenhöfer and Schmidt, 1968a,b; 
Cahalan, 1975). Although certain gating-modifier toxins 

residence times in inactivated and/or blocked states. As 
a result, molecules such as local anesthetics that are 
generally considered as blocking molecules can also act 
as gating modifiers. Although the basis for the resting 
or tonic blockade of the Nav channel pore by drugs 
has been studied exhaustively, structures of the BacNav 
channels may challenge some aspects of otherwise es-
tablished mechanisms. Specifically, lateral openings 
within the PM of BacNav channels create four large con-
tinuous access pathways, or fenestrations, that run per-
pendicular to the plane of the membrane and lead into 
the inner vestibule, the putative binding site for local 
anesthetics (Fig. 3 D; Payandeh et al., 2011, 2012). Mo-
lecular determinants analogous to the local anesthetic 
receptor site can be mapped onto solvent-exposed side 
chains within this large central cavity (Ragsdale et al., 
1996; Pless et al., 2011), and bound drug-like molecules 
can also be localized nearby (Bagnéris et al., 2014). Re-
markably, the lateral pore fenestrations are compatible 
with the passage of small neutral or hydrophobic drugs, 
and membrane lipid tails penetrate through these pore 
fenestrations in NavAb (Fig. 3 E; Payandeh et al., 2011). 
Although these pore fenestrations may change in size 
and shape during channel gating (Payandeh et al., 2012), 
how the BacNav PM might compete with membrane lip-
ids to gate and conduct Na+ remains unanswered.

Nevertheless, the existence of such access pathways in 
Nav channels was proposed in early work (Frazier et al., 
1970; Strichartz, 1973), and this concept was conceptu-
ally streamlined by Hille (1977a,b), who proposed that 
local anesthetic drugs access a common central-binding 
site via distinct hydrophobic and hydrophilic pathways. 
One possibility is that once they traverse the membrane 
in the neutral form, the drugs act as a charged open 
channel pore blocker via a cytoplasmic pathway pro-
tected by the activation gate (Hille, 1977b). Alterna-
tively, the neutral variant could also wedge its way into 
closed channels via hydrophobic access routes, which 
results in channel block after rapid protonation (Zamponi 
et al., 1993). However, neutral (e.g., benzocaine) or 
amphoteric blockers (e.g., lidocaine) rapidly inhibit 
channels when added to the extracellular solution, ap-
parently, even while channels are closed (Hille, 1977b). 
To begin to differentiate between ultra-rapid intracellu-
lar blockade versus direct access via fenestrations, native 
single Nav channels treated with pronase or batracho-
toxin (BTX) to remove fast inactivation were studied 
and revealed very rapid blockade and a second discrete 
blocking event with much slower kinetics (Gingrich et al., 
1993; Zamponi et al., 1993; Kimbrough and Gingrich, 
2000). One intriguing possibility is that these distinct 
blocking events represent resting and use-dependent 
block, respectively. Notably, both rapid and discrete block-
ing events display strongly voltage-dependent rates 
and affinities, suggesting that the blocker hovers at a 
common site 70% across the field, placing it at the 
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BTX and veratridine (VTD). The steroidal alkaloid BTX is 
found in the excretions of poison dart frogs and certain 
bird species (Tokuyama et al., 1969; Dumbacher et al., 
2000, 2004). BTX irreversibly inhibits fast and slow inac-
tivation and shifts the voltage dependence of activation 
to more negative potentials, resulting in persistent Nav 
channel activation. In addition, toxin-modified chan-
nels have a reduced single-channel conductance and an 
altered ion selectivity pattern, perhaps caused by a wid-
ened selectivity filter. The receptor site for BTX involves 
residues in multiple S6 pore segments and partially 
overlaps with that of local anesthetics (Linford et al., 
1998; Wang and Wang, 1998; Wang et al., 2000; Du  
et al., 2011). Unlike lidocaine, which inhibits Na+ cur-
rents, BTX is thought to partially occlude the ion per-
meation pathway, thereby leaving enough room for a 
fraction of Na+ to get through (Catterall, 1975; Huang 
et al., 1982; Quandt and Narahashi, 1982; Wasserstrom 
et al., 1993; Linford et al., 1998; Wang and Wang, 1998; 
Bosmans et al., 2004). Because of its high affinity, radio-
active BTX has been used extensively for Nav channel 
identification in tissues and vesicles, and in screening 
potential therapeutics (Cooper et al., 1987; Gill et al., 
2003).

The alkaloid toxin VTD is found in Liliaceae plants 
and causes persistent opening of Nav channels while 
reducing single-channel conductance (Ulbricht, 1998). 
Evidence that the VTD and local anesthetics receptor 
overlap comes from mutagenesis studies within the pore-
forming S6 segments, which also demonstrate that local 
anesthetics-occupied Nav channels do not bind VTD 
(Ulbricht, 1998). Because of its ability to open Nav 
channels, VTD is used in drug-screening essays in 
which controlling the membrane voltage is impractical 
(Felix et al., 2004).

Brevetoxins and ciguatoxins. Although the molecular 
architecture of cyclic polyether compounds from  
dinoflagellates such as brevetoxins and ciguatoxins is 
remarkable, these compounds have been implicated in 
numerous seafood-related poisonings and massive fish 
and marine mammal fatalities (Lin et al., 1981; Murata 
et al., 1989; Lewis et al., 1991). Both toxin families po-
tentiate Nav channel opening while altering Na+ perme-
ability, possibly through an interaction with the S6 
segment in domain I and the S5 segment in domain IV 
(Bidard et al., 1984; Benoit et al., 1986; Lombet et al., 
1987; Trainer et al., 1994). From a chemical point of 
view, these ladder-like polyether toxins may partition in 
the membrane to complement a structural motif within 
the Nav channel (e.g.  helix) by means of a hydrogen 
bond network, which may lead to their biological activ-
ity (Ujihara et al., 2008).

Cone snail toxins. Cone snail venoms potentially com-
prise 100,000+ compounds that target an array of ion 

can interact with both the pore region and one or more 
VSDs (Quandt and Narahashi, 1982; Tejedor and Cat-
terall, 1988), their subsequent effect on Nav channel 
function can typically be correlated with their ability to 
stabilize a VSD in a particular state. Notably, auxiliary  
subunits help shape toxin sensitivity of Nav channels, an 
emerging concept that may explain tissue-dependent 
variations in Nav channel pharmacology and find use in 
the detection of functional -subunit expression in nor-
mal and pathological conditions (Gilchrist et al., 2013; 
Zhang et al., 2013a). As opposed to using the often be-
wildering multitude of classic receptor sites (sites 1–9; 
Catterall et al., 2005), we will refer to the Nav channel 
interaction site of animal toxins as either the pore re-
gion or the VSD, and we will further refine Nav channel 
pharmacology based on the primary functional effects 
of toxins on channel function (Fig. 4).

Toxins influencing Nav channel function by interacting 
with the pore region
TTX and saxitoxin (STX). TTX and STX are naturally oc-
curring guanidinium toxins that potently interact with 
the Nav channel pore region and cork the Na+ perme-
ation pathway (Furukawa et al., 1959; Narahashi et al., 
1964; Moore et al., 1967; Narahashi, 1974; Hille, 1975b, 
2001). TTX played an important role in the biochemi-
cal purification of the Nav channel protein (Agnew 
et al., 1978; Miller et al., 1983) and in characterizing its 
selectivity filter (Terlau et al., 1991; Lipkind and Fozzard, 
2008). Moreover, structural information about TTX 
and STX was used to predict the diameter of the Nav 
channel pore, thereby providing powerful insights into 
the molecular organization of this ion channel family 
that still hold up today (Woodward, 1964; Hille, 1975b; 
Schantz et al., 1975; Payandeh et al., 2011, 2012;  
McCusker et al., 2012; Zhang et al., 2012b). Recently, 
STX returned to the spotlight when fluorescent deriva-
tives were synthesized (Ondrus et al., 2012). These re-
agents enable real-time imaging of Nav channels in live 
cells at the single-molecule level. Currently, TTX is used 
to divide the Nav channel family into two groups based 
on their sensitivity toward the toxin; TTX-sensitive 
channel isoforms (Nav1.1–Nav1.4, Nav1.6–Nav1.7) are 
inhibited by nanomolar concentrations, whereas Nav1.8 
and Nav1.9 require millimolar amounts to be blocked 
completely (Catterall et al., 2005). Although Nav1.5 in-
hibition requires intermediate micromolar concentra-
tions, TTX sensitivity can be substantially increased by 
replacing a cysteine in the domain I S5–S6 loop with a 
hydrophobic or aromatic residue (Lipkind and Fozzard, 
1994; Leffler et al., 2005). Although this region of the 
selectivity filter plays a role in STX binding as well, other 
important extracellular residues have been implicated 
in forming the STX receptor site, most likely because of 
supplementary interactions with the second guanidin-
ium group within the toxin (Fozzard and Lipkind, 2010).
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narrow part of the pore. Finally, µ-conotoxins helped 
lay the foundation for studying voltage-dependent chan-
nel gating mechanisms, thereby defining early con-
straints on the relationship between the pore and the 
VSDs and suggesting that the S4 segments move out-
ward during channel activation (French et al., 1996).

Certain µ-conotoxins (e.g., KIIIA, GIIIA) do not oc-
clude the pore completely, thereby leaving a residual 
current that can be blocked by TTX (Bulaj et al., 2005; 
Zhang et al., 2007, 2009, 2010; McArthur et al., 2011; 
Van Der Haegen et al., 2011). Detailed investigations 
on KIIIA revealed that this peptide can trap TTX in its 
binding site such that the guanidinium toxin cannot 
dissociate from the channel until the peptide does. Col-
lectively, the possible interaction of guanidinium toxins 
and µ-conotoxins raises interesting pharmacological  
applications. For example, µ-conotoxin analogues may 
prevent TTX or STX binding while still allowing for  
a substantial residual current. As a result, these com-
pounds could serve as an antidote in life-threatening situ-
ations involving guanidinium toxin poisoning (Zhang 
et al., 2009). Also, a sufficient diversity of conotoxins 
has been identified to assemble a pharmacological kit 
for distinguishing various Nav channel isoforms in mam-
malian cells (Zhang et al., 2013b; Gilchrist et al., 2014). 
It is worth mentioning that auxiliary  subunits can 

channels and receptors (Terlau and Olivera, 2004; 
Franco et al., 2006; Lewis et al., 2012). In addition to 
their use as pharmacological tools, conotoxins are cur-
rently being tested in clinical trials as therapeutics for 
a range of disorders (Bende et al., 2014; Kalia et al., 
2015). A subset of cone snail toxins, the µ-conotoxins, 
has been shown to compete with TTX to inhibit ion 
flow through Nav channels by interacting with the pore 
region (Bulaj et al., 2005; Zhang et al., 2006; Leipold  
et al., 2011; Wilson et al., 2011). µ-Conotoxins have 
been used extensively as structure–function probes, yield-
ing results that can now be reinterpreted as structural 
information, and models are being refined. For exam-
ple, experiments with GIIIA and Nav1.4 provided evi-
dence of a clockwise domain arrangement around the 
pore, a fundamental feature of the tertiary channel 
structure (Dudley et al., 2000; Li et al., 2001). In addi-
tion, the net positive charge on these peptides indeed 
allows them to participate in long-range electrostatic in-
teractions over realistic distances, which can contribute 
to binding and to the blocking of ion conduction (Hui 
et al., 2002, 2003; Korkosh et al., 2014). Notably, 
µ-conotoxin–induced Nav channel block is by a strategi-
cally placed electrostatic barrier mechanism and differs 
from other channel inhibitors such as the charybdo-
toxin and guanidinium toxin family, which occlude the 

Figure 4.  Interactions between animal toxins 
and Nav channels. (A; left) Side view of a Nav 
channel cartoon indicating the paddle motif 
(indicated in red) as the binding site for hana-
toxin from the Grammostola rosea tarantula, Magi5 
from the Hexathelidae spider Macrothele gigas, 
and BmK M1 from the Buthus martensii Karsch 
scorpion. (Middle) Structures of the three tox-
ins colored according to residue class (green, 
hydrophobic; blue, positively charged; red, nega-
tively charged; orange, polar). Toxin backbone  
is also shown. (Right) Effect of 100 nM hana-
toxin (channel opening is inhibited), 1 µM Magi5 
(channel opens at voltages where it is normally 
closed), and 100 nM BmK M1 (channel fast in-
activation is inhibited) on rNav1.2a channels ex-
pressed in Xenopus laevis oocytes and recorded 
with the two-electrode voltage-clamp technique. 
Despite binding to a similar region on the Nav 
channel, each toxin has a different effect on 
channel opening or closing. Black trace repre-
sents control conditions, and red trace repre-
sents toxin. (B) Effect of 30 nM cone snail toxin 
GIIIA on rNav1.4-mediated currents recorded 
from Xenopus laevis oocytes. GIIIA blocks Na+ 
flow by binding to the outer region of the pore 
mouth. (C) Effect of 1 µM BTX, isolated from 
the poison dart frog, on rNav1.8 channels ex-
pressed in Xenopus laevis oocytes. BTX binds to 
the inner region of the pore to drastically modify 
Nav channel gating. Shown is the ability of BTX 
to open Nav channels at voltages where they are 
normally closed and to inhibit fast inactivation. 
Black trace represents control conditions, and 
red trace represents toxin.
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activation to more negative voltages. Recently, the opti-
cal surface plasmon resonance technique was used to 
show that the DII and DIV S3b–S4 motifs can be iso-
lated from rat Nav1.2 and immobilized on sensor chips 
while remaining susceptible to particular scorpion toxins 
(Martin-Eauclaire et al., 2015). Although this label-free 
surface plasmon resonance method may be a powerful 
tool to detect interactions between ligands and Nav 
channel paddles without the need to heterologously ex-
press the full-length channel, one expected limitation 
that emerged is an inability to detect ligand interactions 
that require regions outside of the paddle region (Cestèle 
et al., 1998, 2006; Leipold et al., 2006; Karbat et al., 
2010; Zhang et al., 2012a).

Spider toxins. The list of Nav channel spider toxins with 
comparable functionally important surfaces is growing 
rapidly, mostly because of the application of novel and 
sensitive screening techniques (Terstappen et al., 2010; 
Vetter et al., 2011; Gui et al., 2014; Klint et al., 2015). 
Interestingly, structure–function studies on SGTx1 from 
the Scodra griseipes tarantula with Kv channels and Magi5 
from the hexathelid spider Macrothele gigas with Nav 
channels reveal the functional importance of a cluster 
of hydrophobic residues surrounded by charged resi-
dues (Lee et al., 2004; Corzo et al., 2007). As a result of 
this amphipathic character, spider toxins are thought to 
partition in the membrane to interact with their recep-
tor site within Nav channel and Kv channel voltage sen-
sors (Milescu et al., 2007, 2009; Swartz, 2008; Mihailescu 
et al., 2014). Although more experiments are required 
to clarify the influence of membrane lipids on toxin 
sensitivity of Nav channels, it is not unreasonable to 
assume that spider toxins with comparable structures 
do not necessarily have similar membrane-interacting 
properties that may help determine their potency or 
target specificity (Gupta et al., 2015).

Depending on which VSDs they target and how those 
sensors couple to the overall Nav channel gating pro-
cess, spider toxins can have three distinct effects on Nav 
channel function (Bosmans and Swartz, 2010). The first 
is for the toxin to inhibit channel opening in response 
to membrane depolarization (Middleton et al., 2002; 
Smith et al., 2007; Bosmans et al., 2008; Edgerton et al., 
2008; Sokolov et al., 2008). A second outcome is for the 
toxin to hinder fast inactivation (Wang et al., 2008).  
Finally, the toxin can facilitate opening of the channel 
by shifting Nav channel activation to hyperpolarized 
voltages (Corzo et al., 2007). After transferring S3b–S4 
motifs within each of the four Nav channel voltage sen-
sors into Kv channels to individually examine their in-
teractions with toxins (Bosmans et al., 2008), it became 
clear that the paddle motif in each of the four Nav chan-
nel voltage sensors can interact with spider toxins, and 
that multiple paddle motifs are often targeted by a sin-
gle toxin.

influence the kinetics of toxin block, thereby raising 
the possibility of using µ-conotoxins (or µO§-conotoxins 
such as GVIIJ) to detect the presence of  subunits in 
native tissues (Zhang et al., 2013a; Gajewiak et al., 2014; 
Wilson et al., 2015).

Toxins influencing Nav channel gating by interacting with 
the VSDs. In general, gating-modifier toxins interact 
with the S3b–S4 helix-turn-helix motif or paddle motif 
within each of the four Nav channel VSDs (Gilchrist 
et al., 2014). The pharmacological importance of this 
distinct region was first established in Kv channels where 
mutations in the S3b–S4 loop altered channel sensitivity 
to hanatoxin, a founding member of the Kv channel gat-
ing modifier toxin family (Li-Smerin and Swartz, 2000). 
Later, this S3b–S4 motif was also identified in each of 
the four Nav channel VSDs, and transplanting these re-
gions from insect or mammalian Nav to Kv channels re-
sulted in functional Kv channels that are sensitive to Nav 
channel toxins (Bosmans et al., 2008, 2011; Bende et al., 
2014; Klint et al., 2015) (Fig. 4).

Scorpion toxins. Classic studies on scorpion venom estab-
lished the presence of toxins capable of modulating Nav 
channel voltage sensitivity (Koppenhöfer and Schmidt, 
1968a,b; Cahalan, 1975; Martin-Eauclaire and Couraud, 
1992). Based on the resulting functional effects, Nav 
channel scorpion toxins were divided into two classes 
(Couraud et al., 1982). First, the -scorpion toxins in-
teract with VSDIV in a resting state, thereby limiting its 
movement upon membrane depolarization, resulting 
in the inhibition of fast inactivation (Jover et al., 1978; 
Rogers et al., 1996; Benzinger et al., 1998; Bosmans et al., 
2008; Gur et al., 2011). Although their functional  
effects indeed imply a primary interaction with the 
DIV voltage sensor S3b–S4 paddle, antibody and photo- 
affinity–labeling studies as well as mutagenesis experi-
ments on rNav1.2a suggest that -scorpion toxins can 
also interact with residues in the DI S5–S6 loop and the 
DIV S1–S2 loop (Tejedor and Catterall, 1988; Thomsen 
and Catterall, 1989; Wang et al., 2011). However, a 
study by Campos et al. (2004) using Ts3 from Tityus ser­
rulatus in concert with individually fluorescently labeled 
voltage sensors demonstrated an inhibitory effect on 
VSDIV movement as well as an effect on the voltage- 
dependent gating of DI, suggesting the notion of an al-
losteric coupling between adjacent DI and DIV.

-Scorpion toxins promote channel opening by shift-
ing the voltage dependence of activation to more hyper-
polarized potentials. -Scorpion toxins interact primarily 
with the DII S3b–S4 region and retain it in an activated 
state (Marcotte et al., 1997; Cestèle et al., 1998, 2006; 
Campos et al., 2007; Bosmans et al., 2008; Leipold et al., 
2012). As a result of toxin exposure, the response of the 
channel to a subsequent depolarization may be enhanced, 
thereby resulting in a shift of the voltage dependence of 



14 Sodium channel structure, gating, and pharmacology

of neuronal Nav channels but not Nav1.4 and Nav1.5 
(Konno et al., 1998; Sahara et al., 2000). Site-directed 
mutagenesis of Nav1.2 has revealed an important role 
for a glutamate residue in the DIV paddle motif in form-
ing the toxin receptor site (Kinoshita et al., 2001). In 
concert, cationic residues within the pompilidotoxins 
were found to be critical for toxin activity (Konno et al., 
2000). Because their chemical synthesis is relatively 
straightforward, these toxins are valuable tools to study 
Nav channel gating.

Conclusion and future prospects
Nav channels have played the role of biophysical muse 
for generations of membrane biophysicists. This has in 
turn driven fundamental advances on both experimen-
tal and theoretical fronts, and the future remains bright 
as new chemical and theoretical approaches are applied 
to every aspect of Nav channel biology and pharmacol-
ogy. The diversity of natural toxins that affect Nav chan-
nel function will help elucidate the basics of channel 
gating while their therapeutic promise continues to de-
velop. Moreover, the discovery of small-molecule com-
pounds that bind to voltage sensors also represents an 
important development for isoform-specific therapeu-
tics (McCormack et al., 2013; Ahuja et al., 2015). The 
development of chemical probes that report on activa-
tion and inactivation gating will produce new insights 
into function and will allow for a comparison of bacte-
rial and eukaryotic Nav channels. Furthermore, as these 
membrane proteins enter the new cryo–electron mi-
croscopy structural era, there is now the real possibility 
that Nav channel aficionados will have high resolution 
structural data on eukaryotic Nav channels to spark new 
predictions and validate old ones, as well as to inspire a 
new generation of excitable investigators.
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