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Abstract

The human hippocampus has been broadly studied in the context of memory and normal brain function and its role in different neuropsychiatric
disorders has been heavily studied. While many imaging studies treat the hippocampus as a single unitary neuroanatomical structure, it is,
in fact, composed of several subfields that have a complex three-dimensional geometry. As such, it is known that these subfields perform
specialized functions and are differentially affected through the course of different disease states. Magnetic resonance (MR) imaging can be
used as a powerful tool to interrogate the morphology of the hippocampus and its subfields. Many groups use advanced imaging software and
hardware (>3T) to image the subfields; however this type of technology may not be readily available in most research and clinical imaging
centers. To address this need, this manuscript provides a detailed step-by-step protocol for segmenting the full anterior-posterior length of the
hippocampus and its subfields: cornu ammonis (CA) 1, CA2/CA3, CA4/dentate gyrus (DG), strata radiatum/lacunosum/moleculare (SR/SL/SM),
and subiculum. This protocol has been applied to five subjects (3F, 2M; age 29-57, avg. 37). Protocol reliability is assessed by resegmenting
either the right or left hippocampus of each subject and computing the overlap using the Dice's kappa metric. Mean Dice's kappa (range)
across the five subjects are: whole hippocampus, 0.91 (0.90-0.92); CA1, 0.78 (0.77-0.79); CA2/CA3, 0.64 (0.56-0.73); CA4/dentate gyrus, 0.83
(0.81-0.85); strata radiatum/lacunosum/moleculare, 0.71 (0.68-0.73); and subiculum 0.75 (0.72-0.78). The segmentation protocol presented here
provides other laboratories with a reliable method to study the hippocampus and hippocampal subfields in vivo using commonly available MR
tools.

Video Link

The video component of this article can be found at http://www.jove.com/video/51861/

Introduction

The hippocampus is a widely studied medial temporal lobe structure that is associated with episodic memory, spatial navigation, and other
cognitive functions10,31. Its role in neurodegenerative and neuropsychiatric disorders such as Alzheimer’s disease, schizophrenia, and bipolar
disorder is well-documented4,5,18,24,30. The goal of this manuscript is to provide additional detail to the manual segmentation protocol published
previously34 for human hippocampal subfields on high-resolution magnetic resonance (MR) images acquired at 3T. Additionally, the video
component accompanying this manuscript will provide further assistance to researchers who wish to implement the protocol on their own
datasets.

The hippocampus can be divided into subfields based on cytoarchitectonic differences observed in histologically-prepared post-mortem
specimens12,22. Such post-mortem specimens define the ground truth for the identification and study of hippocampal subfields; however
preparations of this nature require specialized skills and equipment for staining, and are limited by the availability of fixed tissue, especially
in diseased populations. In vivo imaging has the advantage of a much larger pool of subjects, and also presents the opportunity for follow-up
studies and observing changes in populations. Although it has been shown that signal intensities in T2-weighted ex vivo MR images reflect
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cellular density13, it is still difficult to identify undisputed borders between subfields using solely MR signal intensities. As such, a number of
different approaches for identifying histology-level detail on MR images have been developed.

Some groups have made efforts to reconstruct and digitize histological datasets and then use these reconstructions along with image registration
techniques to localize hippocampal subfield neuroanatomy on in vivo MR1,2,8,9,14,15,17,32. Although this is an effective technique for mapping
a version of the histological ground truth directly onto MR images, reconstructions of this nature are difficult to complete. Projects such as
these are limited by the availability of intact medial temporal lobe specimens, histological techniques, data loss during histological processing,
and the fundamental morphological inconsistencies between fixed and in vivo brains. Other groups have used high-field scanners (7T or
9.4T) in an effort to acquire in vivo or ex vivo images with a small enough (0.20-0.35 mm isotropic) voxel size to visualize spatially localized
differences in image contrast that are used to infer boundaries between subfields35,37. Even at 7T-9.4T and with such a small voxel size, the
cytoarchitectonic characteristics of hippocampal subfields are not visible. As such, manual segmentation protocols have been developed that
approximate the known histological boundaries on MR images. These protocols determine subfield boundaries by interpreting local image
contrast differences and defining geometric rules (such as straight lines and angles) relative to visible structures. Although images taken at a
high field strength are able to offer detailed insight into hippocampal subfields, high-field scanners are not yet common in clinical or research
settings, so 7T and 9.4T protocols currently have limited applicability. Similar protocols have been developed for images collected on 3T and 4T
scanners11,20,21,23,24,25,28,33. Many of these protocols are based on images with sub-1mm voxels voxel dimensions in the coronal plane, but have
large slice thicknesses (0.8-3 mm)11,20,21,23,25,28,33 or large inter-slice distances20,28, both of which result in a significant measurement bias in the
estimation of volumes of the individual subfields. Additionally, many of the existing 3T protocols exclude subfields in all or part of the hippocampal
head or tail20,23,25,33 or do not provide detailed segmentations of important substructures (i.e., combine the DG with CA2/CA3 or do not include
the strata radiatum/lacunosum/moleculare of the CA)11,20,21,23,24,25,28,33. There is therefore a need in the field for a detailed description of a
protocol that can reliably identify relevant subfields throughout the head, body, and tail of the hippocampus that is based on a scanner commonly
available in clinical and research settings. Efforts are currently underway by the Hippocampal Subfields Group (www.hippocampalsubfields.com)
to harmonize the hippocampal subfield segmentation process between laboratories, similar to an existing harmonization effort for whole
hippocampal segmentation6, and an initial paper comparing 21 existing protocols was recently published38. The work from this group will further
elucidate optimal segmentation procedures.

This manuscript provides detailed written and video instructions for reliably implementing the hippocampal subfield segmentation protocol
described previously by Winterburn and colleagues34 on high-resolution 3T MR images. The protocol has been implemented on five images of
healthy controls for the whole hippocampus and five hippocampal subfields (CA1, CA2/CA3, CA4/dentate gyrus, strata radiatum/lacunosum/
moleculare, and subiculum). These segmented images are available to the public online (cobralab.ca/atlases/Hippocampus). The protocol and
the segmented images will be useful for groups who wish to study detailed hippocampal neuroanatomy in MR images.

Protocol

Study Participants

The protocol in this manuscript was developed for five representative high-resolution images collected from healthy volunteers (3F, 2M; age
29-57, avg. 37) who were free of neurological and neuropsychiatric disorders and cases of severe head trauma. All subjects were recruited
at the Centre for Addiction and Mental Health (CAMH). The study was approved by the CAMH Research Ethics Board and was conducted in
keeping with the Declaration of Helsinki. All subjects provided written, informed consent for data acquisition and sharing. For details about the
acquisition sequence used to collect these images, please refer to Winterburn et al., 2013 and Park et al., 2014.26,34 Images for all five subjects
were checked for quality and retained. The hippocampus spanned an average of 118 coronal slices in these images.

1. Software Set-up

1. Open Display: From the terminal using the following command: Display image_name.mnc -label label_name.mnc. The program will open 3
windows: 3D visualization window, 3-orientation image viewing window, and a navigation window. The terminal will also be used to run the
program. Enlarge the coronal view, as the segmentations will be performed coronally. Zoom in on the hippocampus. Select F (Segmenting) in
the navigation window. Select F (XY Radius:0.1). The terminal window will prompt for the user to “Enter xy brush size: ”. Set to 0.1. This will
set the size of your paintbrush. The user can now begin drawing the hippocampus onto the MR image.

2. Whole Hippocampus Manual Segmentation

1. Set-up: Using a T1-weighted image, scroll to the anterior-most coronal slice of the hippocampus. To advance slices in the anterior direction,
use the '+' key; use the '-' key to move in the posterior direction.

2. Slice A: Anterior-Most Slice: Using the right-click on the mouse, draw the outer-most border of the hippocampal grey matter where it meets
the surrounding temporal lobe white matter and use the high-intensity white matter of the alveus to assist with the superior border, where the
hippocampus meets the amygdala12,22. Use the E (Label Fill) key in the segmentation menu of the navigation window to fill in the label inside
the border. Continue to apply these borders throughout the anterior hippocampal head.

3. Slice B: Hippocampal Head 1 (Figure 1B):
1. Superior, inferior, lateral, medial borders: Continue to draw the borders as described in step 2.2, using the white matter of the temporal

lobe and alveus as a guide.
2. Supero-medial border: For this, using the axial view, draw a horizontal line from the anterior edge of the lateral hippocampus29, and

include anything below this line as hippocampus. NOTE: The supero-medial border becomes more ambiguous in these slices, where
the grey matter of the hippocampus blends with the grey matter of the amygdala.
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4. Slice C: Hippocampal Head 2 with Dentations: Depending on the subject, the dentations of the hippocampus may be visible for 3-4 slices
(typically, they are more visible on T2-weighted versus T1-weighted images). In these slices, continue to use the white matter of the alveus
and temporal lobe to guide border segmentation12,22. For further details, follow steps 2.5.1-2.5.2.

5. Slice D: Hippocampal Head 3:
1. Superior, inferior, lateral, medial borders: Draw the inferior border of the hippocampus at the white matter of the temporal lobe, the

lateral border at the inferior horn of the lateral ventricle, the superior border, following the curve of the dentations, at the white matter of
the alveus/fimbria, and the medial border at the hypointense region of the ambient cistern12,22.

2. Supero-medial and infero-medial borders: Continue to define the supero-medial border as described in step 2.3.2. Draw the inferior
portion of the medial border where the hippocampus thins slightly and extends into the mildly hyperintense grey matter of the entorhinal
cortex12,22.

6. Slice E: Hippocampal Head 4 with Uncus: Continue to draw the inferior, lateral, and superior borders described in steps 2.5.1-2.5.2.
Include the uncus (which is located medal to the main body of the hippocampus and is surrounded by low-intensity CSF) in the hippocampal
segmentation12,22.

7. Slice F: Hippocampal Body: Continue to draw the inferior, lateral, medial, and superior borders described in steps 2.5.1-2.5.2. Draw the
infero-medial border at the point where the hippocampus thins as it transitions to entorhinal cortex/para-hippocampal gyrus12,22. Do not
include the low-intensity CSF of the vestigial hippocampal sulcus in the segmentation.

8. Slice G: Hippocampal Tail 1: Begin segmenting hippocampal tail-type slices when the crus of the fornix is first visible. Exclude the fascicular
gyrus (a grey matter structure which blends with the hippocampus in parts of the hippocampal tail) from the segmentation by extrapolating
the shape of the fascicular gyrus into the hippocampal tail from more anterior slices12,22. This extrapolation is only possible for 2-3 slices, after
which the two structures cannot be accurately distinguished; at this point, treat all visible grey matter in this area as hippocampus .

9. Slice H: Hippocampal Tail 2: Segment the low-intensity grey matter of the posterior hippocampal tail from the surrounding high-intensity
white matter.

10. Slice I: Posterior-Most Slice: Segment the small remaining area of hippocampal grey matter from the surrounding white matter of the
temporal lobe.

3. Hippocampal Subfield Manual Segmentation

1. Set-up: Using a T2-weighted image, scroll to the anterior-most coronal slice of the hippocampus (as in step 2.1). To change the color of the
paintbrush, select D (Set Paint Lbl:) on the segmenting menu in the navigation window. The command terminal will prompt: “Enter current
paint label:”. Enter a number between 1 and 255. Each number corresponds to a different label color.

2. Slice A: Anterior-Most Slice: Since subfield divisions are not yet visible in the anterior-most slice, draw a line dividing the visible
hippocampal grey matter along its longest visible axis (which is not necessarily parallel to any of the cardinal axes) into two equal sections
to approximate the true anatomy12,22. Label the superior of these two sections as CA1 and the inferior section as subiculum by choosing a
different colored label for each subfield23,35.

3. Slice B: Hippocampal Head 1: Label the low-intensity area in the middle of the hippocampal formation as SR/SL/SM13,37. When the bend
along the inferior edge of the hippocampus becomes clear, use this landmark as the lateral border separating the subiculum from the
CA112,22. Continue to follow the longest axis of the hippocampus to draw the CA1-subiculum border on the supero-medial tip37.

4. Slice C: Hippocampal Head 2 with Dentations:
1. SR/SL/SM, CA4/DG, and subiculum: Label the SR/SL/SM, CA4/DG, and subiculum as described for slice D (step 3.5.1).
2. CA2/CA3 and CA1: Define the border between CA1 and CA2/CA3 as a 45º angle line extending in the supero-lateral direction from

the most supero-lateral edge of the SR/SL/SM12,22. Extend the CA2/CA3 medially along the superior edge to the trough between the
dentations12,22. Label the rest of the superior edge as CA112,22.

5. Slice D: Hippocampal Head 3
1. SR/SL/SM, CA4/DG, and subiculum: Label the dark SR/SL/SM band first, which will follow the curve of the CA137. Label any high-

intensity grey matter inside of the SR/SL/SM as CA4/DG12,22,23,35,37. This may not be a continuous region, as in Figure 2C. Continue to
define the subiculum-CA1 border using the bend in the inferior hippocampus12,22.

2. CA2/CA3 and CA1: Continue to define the CA1 and CA2/CA3 border as in step 3.4.2. Extend the CA2/CA3 medially halfway along the
superior edge of the hippocampus12,22 and label the other half of the superior edge as CA112,22.

3. Supero-medial hippocampal head: In this slice, divide the supero-medial hippocampal head vertically in half. Label the medial half as
SR/SL/SM12. Divide the lateral half in half again, this time horizontally. Label the superior portion as CA4/DG and the inferior portion as
CA2/CA312.

6. Slice E: Hippocampal Head 4 with Uncus
1. Lateral hippocampal head (subiculum): In the lateral portion of these slices, define the subiculum-CA1 border as a vertical line

extending in the inferior direction from the most medial edge of the CA4/DG12,22.
2. Lateral hippocampal head (CA1, CA2/CA3, CA4/DG, SR/SL/SM.): Define the CA1-CA2/CA3 border in the same way as in step 3.4.2.

Continue to label the SR/SL/SM as the low intensity region following the curve of the CA regions. Label the CA4/DG as the center
cavity inside the SR/SL/SM, as in step 3.5.1.

3. Uncal hippocampal head (SR/SL/SM): Label the uncus of the hippocampus for approximately 10 slices as the hippocampal head
transitions into the hippocampal body. In the uncus, label the low intensity region in the center as SR/SL/SM (when this is difficult to
see, approximate the anatomy by segmenting a line 2-3 voxels wide up the center of the uncus)12.

4. Uncal hippocampal head (CA2/CA3, CA4/DG): Draw a line at the superior edge of the SR/SL/SM section along infero-lateral/supero-
medial axis of the uncus. Label all grey matter above this line as CA2/CA312. Label any unlabeled grey matter below this line (on either
side of the SR/SL/SM) as CA4/DG12.

7. Slice F: Hippocampal Body: Continue to apply the borders described in step 3.6.1-3.6.2.
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8. Slice G: Hippocampal Tail 1: Continue to apply the rules described in step 3.6.1-3.6.2. The subiculum-CA1 border becomes a 45º angle line
extending in the infero-medial direction from the medial edge of the CA4/DG12,22.

9. Slice H: Hippocampal Tail 2: Once the fascicular gyrus can no longer be distinguished from the hippocampal formation, label the entire
outer layer as CA1, the low-intensity area inside of this as SR/SL/SM (as in previous slices), and any remaining grey matter in the middle as
CA4/DG12,22.

10. Slice I: Posterior-Most Slice: Once the dark SR/SL/SM is no longer visible in the center of the hippocampal formation, label the entire
structure as CA112,22.

4. Protocol Reliability

1. Resegment either the right or left hippocampus of each subject after waiting approximately one month from performing the original
segmentation. Segment all of the subfields along the entire anterior-posterior length of the hippocampus, trying to follow the protocol rules as
consistently as is possible.

2. Calculate the Dice’s kappa between the original and resegmented volumes:
 

 

where k=Dice’s kappa and A and B are label volumes.

Representative Results

Results from the protocol reliability test are summarized in Table 2. For the whole bilateral hippocampus, mean spatial overlap as measured by
Dice’s kappa is 0.91 and ranges from 0.90 - 0.92. Subfield kappa values range from 0.64 (CA2/CA3) to 0.83 (CA4/dentate gyrus). Mean volumes
for all subfields and the whole hippocampus are reported in Table 3. Volumes for the whole hippocampus range from 2456.72-3325.02 mm3. The
CA2/CA3 is the smallest subfield at 208.33 mm3, while the CA1 is the largest at 857.46 mm3.
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Figure 1. Segmentation of the whole hippocampus for 9 coronal slices (A-I) using T1-weighted images. The vertical red lines on the
hippocampal surface illustrate the location of each coronal slice. The hippocampus was present in an average of 118 coronal slices in each
of the five subjects included in this study. Images progress from anterior (slice 1) at the top to posterior (slice 118) at the bottom. Images are
shown in the left column without segmentation and with segmentation in the right column. The scale bar shows 3 mm for reference. Roman
numerals point to specific features identified in the protocol manuscript. i. The alveus distinguishes the hippocampal grey matter from the grey
matter of the amygdala in the anterior-most slice. ii. The white matter of the temporal lobe defines the inferior border of the hippocampus in the
hippocampal head. iii. The lateral border of the hippocampus in the hippocampal head is the inferior horn of the lateral ventricle. iv. The superior
border is defined by the white matter of the alveus/fimbria. v. The medial border of the hippocampal head is the ambient cistern. vi. The infero-
medial hippocampus extends into the entorhinal cortex, which shows up as a mildly hyper-intense band in T1-weighted images. vii. The uncus
of the hippocampus is present in the hippocampal head and can be easily distinguished from the surrounding CSF. viii. In the infero-medial
direction, the border between the subiculum and the para-hippocampal gyrus is defined by a slight thinning of the hippocampal grey matter. ix.
The CSF of the vestigial hippocampal sulcus is not included in the segmentation. x. The fascicular gyrus is not included in the segmentation of
the hippocampal tail when it is possible to differentiate it. xi. When it is no longer possible to distinguish between the fascicular gyrus and the
hippocampal tail, the fascicular gyrus is included in the segmentation. Please click here to view a larger version of this figure.
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Figure 2. Segmentation of the hippocampal subfields for 9 coronal slices (A-I) using T2-weighted images. The vertical red lines on the
hippocampal surface illustrate the location of each coronal slice. The hippocampus was present in an average of 118 coronal slices in each of
the five subjects included in this study. Images progress from anterior (slice 1) at the top to posterior (slice 118) at the bottom. Images are shown
in the left column without segmentation and with segmentation in the right column. The scale bar shows 3 mm for reference. Roman numerals
point to specific features identified in the protocol manuscript. i. The low intensity region in the center of the hippocampal head is the SR/SL/
SM. ii. The uncal-shaped bend on the infero-lateral edge of the hippocampus marks the border between the CA1 and the subiculum. iii. The
subiculum-CA1 border continues to be defined at the ‘bend’ in the inferior hippocampus in the hippocampal head. iv. The border between CA1
and CA2/CA3 is defined as a 45° angle extending in the supero-lateral direction from the most supero-lateral edge of the SR/SL/SM. v. The
CA2/CA3 extends halfway along the superior edge of the hippocampus, to the trough of the dentations, medial to which it is labeled as CA1. vi.
The grey matter in the center of the hippocampal head is labeled as CA4/DG. vii. Continue to define the CA1-CA2/CA3 border as a 45° angle
extending in the supero-lateral direction from the most supero-lateral edge of the SR/SL/SM. viii. The CA2/CA3 continues to extend halfway
along the superior edge of the hippocampus, medial to which it is labeled as CA1. ix. In slice D, the supero-medial hippocampal head is divided
into subfields (see step 3.5.3). x. The subiculum-CA1 border is defined as a vertical line extending from the most medial border of the CA4/DG.
xi. The SR/SL/SM continues to be the low-intensity region following the curve of the CA regions. xii. In the uncal portion of the hippocampal
head, the SR/SL/SM is the low-intensity region in the center of the uncus. If this cannot be seen, draw a line 2-3 pixels wide up the center of the
uncus. Please click here to view a larger version of this figure.

Table 1. Superior, inferior, medial, and lateral borders for hippocampal subfields for nine representative slices along anterior-posterior
extent of the hippocampus. Borders are described for T2-weighted images. WM = White Matter; GM = Grey Matter; MTL = Medial Temporal
Lobe.
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Structure Slice Superior Border Inferior Border Medial Border Lateral Border

Anterior-Most Slice WM of the alveus Mid-line of
hippocampal grey
matter, along longest
axis (borders
subiculum)

WM of the alveus WM of the alveus

Hippocampal Head 1 WM of the alveus SR/SL/SM;
inferolateral border
with subiculum at
the 'bend' of the
hippocampus

WM of the alveus WM of the alveus

Hippocampal Head 2
(with Dentations)

Lateral Follows the curve
of the SR/SL/SM;
supero-lateral border
with CA2/CA3

WM of the MTL SR/SL/SM;
inferomedial with
subiculum at the 'bend'
of the hippocampus

WM of the alveus

Medial WM of the alveus;
supero-medial border
with CA2/CA3

Low-intensity SR/SL/
SM

Low-intensity SR/SL/
SM

CA2/CA3

Hippocampal Head 3

Lateral Follows the curve
of the SR/SL/SM;
supero-lateral border
with CA2/CA3

WM of the MTL SR/SL/SM;
inferomedial with
subiculum at the 'bend'
of the hippocampus

WM of the alveus

Medial WM of the alveus;
supero-medial border
with CA2/CA3

Low-intensity SR/SL/
SM

Low-intensity SR/SL/
SM

CA2/CA3

Hippocampal Head 4
(with Uncus)

Follows the curve
of the SR/SL/SM;
supero-lateral border
with CA2/CA3

WM of the MTL SR/SL/SM;
inferomedial border
with subiculum vertical
line along medial edge
of CA4/DG

WM of the alveus

Hippocampal Body Follows the curve
of the SR/SL/SM;
supero-lateral border
with CA2/CA3

WM of the MTL SR/SL/SM;
inferomedial border
with subiculum vertical
line along medial edge
of CA4/DG

WM of the alveus

Hippocampal Tail 1 SR/SL/SM;
superolateral border
with CA2/CA3

WM of the MTL Follows the curve
of the SR/SL/SM;
supero-medial border
with the subiculum
along line parallel to
edge of CA4/DG

WM of the alveus

Hippocampal Tail 2 Supero-lateral border
with the WM of the
alveus/fimbria

WM of the MTL WM of the MTL WM of the MTL

CA1

Posterior-Most Slice Supero-lateral border
with the WM of the
alveus/fimbria

Rest of structure is
bordered by the WM of
the temporal lobe

WM of the MTL WM of the alveus/
fimbria

Anterior-Most Slice Mid-line of
hippocampal grey
matter, along longest
axis (borders CA1)

WM of the MTL WM of the alveus WM of the alveus

Hippocampal Head 1 SR/SL/SM; CA1 on
supero-medial edge

WM of the MTL WM of the alveus CA1, at 'bend' in
hippocampus

Subiculum

Hippocampal Head 2
(with Dentations)

SR/SL/SM WM of the MTL Entorhinal cortex
(low intensity area
medial to inferior
hippocampus)

CA1, at 'bend' in
hippocampus

http://www.jove.com
http://www.jove.com
http://www.jove.com


Journal of Visualized Experiments www.jove.com

Copyright © 2015  Journal of Visualized Experiments November 2015 |  105  | e51861 | Page 8 of 12

Hippocampal Head 3 SR/SL/SM WM of the MTL Entorhinal cortex
(low intensity area
medial to inferior
hippocampus)

CA1, at 'bend' in
hippocampus

Hippocampal Head 4
(with Uncus)

CSF of the ambient
cistern

WM of the MTL;
infero-medial border
at entorhinal cortex
where cortical band
thins slightly and
signal intensity drops

CSF of the ambient
cistern

CA1 along line parallel
to edge of CA4/DG

Hippocampal Body CSF of the ambient
cistern

WM of the MTL;
infero-medial border
at entorhinal cortex
where cortical band
thins slightly and
signal intensity drops

CSF of the ambient
cistern

CA1 along line parallel
to edge of CA4/DG

Hippocampal Tail 1 GM of the fascicular
gyrus (where can
be separated from
hippocampal GM)

WM of the MTL Difficult to determine;
extrapolate from more
anterior/posterior
slices

CA1 along line parallel
to edge of CA4/DG

Hippocampal Tail 2 NA

Posterior-Most Slice NA

Anterior-Most Slice NA

Hippocampal Head 1 NA

Hippocampal Head 2
(with Dentations)

Lateral WM of the alveus Low-intensity SR/SL/
SM

CA1 halfway along
superior edge of
hippocampus; if
dentations visible, try
to estimate halfway

Infero-lateral border
with CA1 along 45°
angle from most
supero-lateral edge of
SR/SL/SM

Medial CA4/DG halfway
along superiorinferior
extension of
hippocampus

CA1 at base of
superior-inferior
extension of
hippocampus

SR/SL/SM halfway
along width of
superior-inferior
extension of
hippocampus

WM of alveus

Hippocampal Head 3

Lateral WM of the alveus Low-intensity SR/SL/
SM

CA1 halfway along
superior edge of
hippocampus

Infero-lateral border
with CA1 along 45°
angle from most
supero-lateral edge of
SR/SL/SM

Medial CA4/DG halfway
along superiorinferior
extension of
hippocampus

CA1 at base of
superior-inferior
extension of
hippocampus

SR/SL/SM halfway
along width of
superior-inferior
extension of
hippocampus

WM of alveus

Hippocampal Head 4
(with Uncus)

Lateral WM of the alveus CA4/DG CSF of the ambient
cistern

Infero-lateral border
with CA1 along 45°
angle from most
supero-lateral edge of
SR/SL/SM

Medial CSF of the ambient
cistern

Line parallel to
superior edge of SR/
SL/SM

CSF of the ambient
cistern

CSF of the ambient
cistern

CA2/CA3

Hippocampal Body WM of the alveus CA4/DG CSF of the ambient
cistern

Infero-lateral border
with CA1 along 45°
angle from most
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supero-lateral edge of
SR/SL/SM

Hippocampal Tail 1 WM of the alveus Inferior border
horizontal line
extending from most
lateral point of SR/SL/
SM, following pattern
of more anterior slices;
inferomedial border
with CA4/DG

WM of the fimbria WM of the fimbria

Hippocampal Tail 2 NA

Posterior-Most Slice NA

Anterior-Most Slice NA

Hippocampal Head 1 NA

Hippocampal Head 2
(with Dentations)

Follows curve of low-
intensity SR/SL/SM

Low-intensity SR/SL/
SM

CSF of the ambient
cistern

Low-intensity SR/SL/
SM

Lateral Low-intensity SR/SL/
SM

Low-intensity SR/SL/
SM

CSF of the ambient
cistern

Low-intensity SR/SL/
SM

Medial Use the axial view
to draw a horizontal
line medially from the
anterior edge of the
lateral hippocampus

CA2/CA3 halfway
along superiorinferior
extension of
hippocampus

SR/SL/SM halfway
along width of
superior-inferior
extension of
hippocampus

WM of alveus

Hippocampal Head 3

Lateral Low-intensity SR/SL/
SM

Low-intensity SR/SL/
SM

CSF of the ambient
cistern

Low-intensity SR/SL/
SM

Medial CSF of the ambient
cistern

CA2/CA3 halfway
along superiorinferior
extension of
hippocampus

SR/SL/SM halfway
along width of
superior-inferior
extension of
hippocampus

WM of alveus

Hippocampal Head 4
(with Uncus)

Lateral Low-intensity SR/SL/
SM

Low-intensity SR/SL/
SM

CSF of the ambient
cistern

Low-intensity SR/SL/
SM

Medial Line parallel to
superior edge of SR/
SL/SM

CSF of ambient cistern CSF of ambient
cistern; lowintensity
SR/SL/SM

CSF of ambient
cistern; low intensity
SR/SL/SM

Hippocampal Body CA2/CA3 Low-intensity SR/SL/
SM

CSF of ambient cistern Low-intensity SR/SL/
SM

Hippocampal Tail 1 CA2/CA3 and fimbria Low-intensity SR/SL/
SM

CSF of lateral ventricle Low-intensity SR/SL/
SM

Hippocampal Tail 2 NA

CA4/DG

Posterior-Most Slice NA

Anterior-most slice NA

Hippocampal Head 1 Low-intensity SR/SL/SM in center of CA1 and subiculum

Hippocampal Head 2
(with Dentations)

Use the axial view
to draw a horizontal
line medially from the
anterior edge of the
lateral hippocampus

Low-intensity SR/SL/
SM surrounding CA4/
DG

CSF of ambient cistern CA2/CA3 and CA4/
DG halfway along
width of superior-
inferior extension of
hippocampus

SR/SL/SM

Hippocampal Head 3 Use the axial view
to draw a horizontal
line medially from the
anterior edge of the
lateral hippocampus

Low-intensity SR/SL/
SM surrounding CA4/
DG

CSF of ambient cistern CA2/CA3 and CA4/
DG halfway along
width of superior-
inferior extension of
hippocampus
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Hippocampal Head 4
(with Uncus)

Lateral Low-intensity SR/SL/SM surrounding CA4/DG

Medial Low-intensity SR/
SL/Smin middle
(when difficult to see,
approximate with a line
203 voxels wide)

CSF of ambient cistern CA4/DG CA4/DG

Hippocampal Body Low-intensity SR/SL/SM surrounding CA4/DG

Hippocampal Tail 1 Low-intensity SR/SL/SM surrounding CA4/DG

Hippocampal Tail 2 Low-intensity SR/SL/SM surrounding CA4/DG

Posterior-Most Slice NA

Table 2. Protocol reliability results for all five subfields and the whole hippocampus from the five manually segmented
subjects. Resegmentations were performed on either the right or left hippocampus of each subject. Mean Dice’s kappa reflects the mean across
the five subjects.

Structure Mean Dice’s kappa (range)

CA1 0.78 (0.77-0.79)

CA2/CA3 0.64 (0.56-0.73)

CA4/dentate gyrus 0.83 (0.81-0.85)

SR/SL/SM 0.71 (0.68-0.73)

Subiculum 0.75 (0.72-0.78)

Whole hippocampus 0.91 (0.90-0.92)

Table 3. Mean subfield and whole hippocampal volumes.

Structure Mean volume (range) (mm3)

CA1 857.46 (720.17-981.68)

CA2/CA3 208.33 (155.10-281.57)

CA4/dentate gyrus 615.50 (500.16-763.01)

SR/SL/SM 687.22 (576.61-895.59)

Subiculum 390.79 (277.21-445.95)

Whole hippocampus 2759.31 (2456.72-3325.02)

Discussion

Hippocampal subfield segmentation in MR images is well-represented in the literature. However, existing protocols exclude portions of the
hippocampus20,23,33,35, apply only to fixed images37, or require ultra-high field scanners for image acquisition35,37. This manuscript offers a
segmentation protocol that includes five major subdivisions (CA1, CA2/CA3, CA4/dentate gyrus, SR/SL/SM, and subiculum) of the hippocampus
and spans the entire anterior-posterior length of the structure. The complete segmented atlases are available to the public online (cobralab.ca/
atlases/Hippocampus). This work is applicable to many groups within the neuroimaging field, and will help to limit some of the existing
discrepancies in hippocampal subfield segmentation.

Reliability testing of the protocol shows a high degree of spatial overlap between original and resegmented labels, which reflects a high intra-
rater reliability (Table 2). A kappa value of 0.91 for the whole hippocampus compares favorably with other values reported in the literature35,37.
The intra-rater reliabilities of many of the subfields also compare well with other similar segmentation protocols; however, some structures have
lower reliabilities25,33,35,37.This may be a result of including the SR/SL/SM subfield in the present protocol where other groups do not, which
results in adjacent subfields (the subiculum, CA1, and CA2/CA3) being thinner, and therefore more heavily penalized by the Dice’s kappa
metric33,35. Additionally, the retest process used in this protocol is perhaps more rigorous and therefore more reflective of true protocol reliability
than those used by other groups. The entire anterior-posterior length of one hemisphere of each subject was resegmented, whereas other
groups with higher reliabilities segment only a few coronal slices23,33,37.The subfield with the lowest kappa (0.64) is the CA2/CA3, which is a
small, thin structure. It has previously been shown that the intra-rater error for all subfields in this protocol is higher than a simulated 0.3 mm
translational error in every cardinal direction, or a simulated 1% expansion/shrinkage of labels34. In other words, the manual resegmentation
error is smaller than introducing a small systematic error, which supports the high manual reproducibility of the protocol.

The expert manual rater studied each of the five high-resolution images in detail to determine which of the subfields present in Duvernoy’s
histology could be seen12. It was determined that it was not possible to reliably differentiate the CA2 from the CA3, so to increase protocol
reliability, they were combined into one structure. This rule follows the precedent of previous groups33,37. It was also not possible to distinguish
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the CA4 from the stratum moleculare, stratum granulosum, and polymorphic layer of the dentate gyrus in the images, or to distinguish among
the dentate gyrus layers themselves. The CA4 and all dentate gyrus layers were therefore combined into one label (CA4/DG). There is, in fact,
a debate in the hippocampal subfield segmentation community as to whether the CA4 region should be considered a part of the cornu ammonis,
as with Duvernoy12, or as a part of the dentate gyrus, as with Amaral3. The method presented in this manuscript accommodates both of these
views, and follows the work of previous MR segmentation groups23,28,33,35,37. The strata radiatum, lacunosum, and moleculare of the cornu
ammonis also could not be distinguished separately, so were combined into one label, as with previous groups37.

The most accurate analysis of neuroanatomy is through histological sectioning and staining, but this type of analysis suffers from a number of
issues: limited access to fixed specimens (which results in very small sample sizes); the expertise required to prepare samples; distortions of the
brain after fixation; and difficulties in applying a fixed atlas to digital, in vivo data1,2,8. In ex vivo imaging, long acquisition times of a fixed brain in
an MR scanner also provides a detailed picture of neuroanatomy, but as with histology, sample number is limited and there are morphometric
differences between the fixed and in vivo brain37. In vivo MR imaging has a limited resolution, but presents the possibility for much larger sample
sizes, as well as the potential for imaging a single subject at multiple time points. By lengthening the acquisition time on standard field strength
scanners (within the confines of subject comfort), the level of detail available in in vivo images becomes sufficient to resolve sub-structure-
level neuroanatomy. The acquisition used for the images segmented in this protocol therefore offers a reasonable trade-off between sample
availability and image resolution.

This protocol was developed for high-resolution MR images such as those used to illustrate the protocol steps in this manuscript26,34. High-
resolution images were acquired on a 3T scanner by taking advantage of long scan times and image averaging. The total scan time for both
of the FSPGR-BRAVO and FSE-CUBE acquisitions together was just under 2 hours. It is recognized that this is a prohibitive scan length for
clinical applications: this sequence was performed here for illustrative purposes for the segmentation protocol. The authors believe that the
segmentation protocol described in this manuscript could be adapted to images with a shorter scan time, for example a single 3T acquisition
(as opposed to 3 acquisitions for each contrast type, as used by Winterburn et al., 201334 and Park et al., 201426) or a 7T image. Even with
a slightly lower resolution, many of the rules in the protocol would still apply, such as those using a geometrical approach (ex. 45° angle line
between CA1 and CA2/CA3; vertical line from medial edge of CA4/DG to separate subiculum and CA1 in hippocampal body). Other rules would
perhaps have to be adapted (ex. it may not be possible to differentiate the SR/SL/SM, in which case it could be included as a part of the CA
subfields). Additionally, it has previously been show that high-resolution atlases can be applied to lower-resolution images using an automated
segmentation pipeline7,27.

The protocol was designed for and implemented on images of healthy subjects, but could also be applied (either manually or using an automated
segmentation pipeline7,16,27) to images of diseased populations such as Alzheimer’s disease patients, for whom severe atrophy makes the
hippocampus a structure of particular interest.5,30 In spite of this atrophy, landmarks surrounding the hippocampus and intensity contrast in the
images would mean the segmentation protocol would still be largely viable. However, such clinical images would likely be acquired on a scanner
with a much lower field strength, such as 1.5T, where the resolution would be too low to be able to see substructures.

The type of software used to perform the segmentations is relevant, as it is important to be able to look at the structure from multiple viewpoints
(i.e., coronal, sagittal, axial). In addition, the use of a 3D visualization of the surface of structure can be used to smooth out the overall topology
of the hippocampus. Often errant voxels or illogical shapes will not be obvious in the 2-dimensionsal cardinal planes, but will be very clear on a
3D surface. On high-resolution images, the protocol applies to approximately 118 coronal slices and requires upwards of 40 hours of work per
subject by a previously-trained expert manual rater. This amount of manual labor limits the applicability of the full protocol to a large subject set.
It would be possible to implement a modified version of the protocol as a time-saving measure: for example, every other coronal slice could be
segmented to provide an estimation of subfield volumes, or subfields could be combined, for example all cornu ammonis subfields (CA1, CA2/
CA3, and SR/SL/SM).

In conclusion, this manuscript presents a detailed manual segmentation protocol for the whole hippocampus and five hippocampal subfields
(CA1, CA2/CA3, CA4/dentate gyrus, strata radiatum/lacunosum/moleculare, and subiculum). This protocol has been applied to five subjects,
and the atlases have been made available publically (cobralab.ca/atlases/Hippocampus). These atlases allow other laboratories interested in
hippocampal segmentation to perform reliable, repeatable segmentations of hippocampal subfields on new image datasets.
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