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Abstract

In conventional resting-state functional MRI (R-fMRI) analysis, functional connectivity is 

assumed to be temporally stationary, overlooking neural activities or interactions that may happen 

within the scan duration. Dynamic changes of neural interactions can be reflected by variations of 

topology and correlation strength in temporally correlated functional connectivity networks. These 

connectivity networks may potentially capture subtle yet short neural connectivity disruptions 

induced by disease pathologies. Accordingly, we are motivated to utilize disrupted temporal 

network properties for improving control-patient classification performance. Specifically, a sliding 

window approach is firstly employed to generate a sequence of overlapping R-fMRI sub-series. 

Based on these sub-series, sliding window correlations, which characterize the neural interactions 

between brain regions, are then computed to construct a series of temporal networks. Individual 
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estimation of these temporal networks using conventional network construction approaches fails to 

take into consideration intrinsic temporal smoothness among successive overlapping R-fMRI 

subseries. To preserve temporal smoothness of R-fMRI sub-series, we suggest to jointly estimate 

the temporal networks by maximizing a penalized log likelihood using a fused sparse learning 

algorithm. This sparse learning algorithm encourages temporally correlated networks to have 

similar network topology and correlation strengths. We design a disease identification framework 

based on the estimated temporal networks, and group level network property differences and 

classification results demonstrate the importance of including temporally dynamic R-fMRI scan 

information to improve diagnosis accuracy of mild cognitive impairment patients.

Keywords

Mild Cognitive Impairment (MCI); Resting-state functional MRI (R-fMRI); sliding window 
correlation; temporal dynamics; temporal smoothness; sparse temporal networks

1 Introduction

There is ample literature that suggests the pathological manifestation of Alzheimer’s disease 

(AD) begins many years or decades before any clinical symptom can be observed (Johnson 

et al, 2006; Thompson and Apostolova, 2007; Whitwell et al, 2007). When AD symptoms 

are observed, significant neurodegeneration has already occurred in the brain, either 

anatomically or functionally (Li et al, 2012; Wee et al, 2013; Zhang et al, 2012). 

Furthermore, if memory loss is the predominant symptom (Dubois and Albert, 2004; 

Economou et al, 2007; Han et al, 2012b; Tabert et al, 2006), patients with Mild Cognitive 

Impairment (MCI), an intermediate stage between the expected cognitive decline of normal 

aging and AD, have an increased risk of developing AD. This risk can be reduced if 

appropriate interventions and treatments are provided during the early stages of MCI. 

However, for MCI patients changes in the brain are very subtle (Johnson et al, 2006; Li et al, 

2011; McEvoy et al, 2009; Smith et al, 2007), therefore the early detection of MCI in 

neuroimaging data (e.g., MRI and fMRI) can be very challenging.

Neuroimaging data has been widely used in AD and MCI analysis to explore brain structure 

atrophies and brain function disruptions to enhance our knowledge of the biological 

underpinnings of AD/MCI. Recently, resting-state functional MRI (R-fMRI) (Smith et al, 

2011; Sporns, 2011; Stam et al, 2007; Supekar et al, 2008; Wang et al, 2010), which 

characterizes hemodynamic response related to neural activity, has been widely used 

because of its ability to detect patients with MCI or AD before the clinical symptoms 

(Sheline and Raichle, 2013). This early detection is achieved by identifying disrupted 

functional connectivity, which is related to neural activity, using a graph theoretic technique. 

Through this technique, disruptions in functional connectivity are primarily reflected in the 

disruptions of network topology and connection strengths, which propels the consideration 

of using R-fMRI as a potential biomarker to effectively detect early MCI (eMCI).

In conventional network-based analysis, it is assumed that correlations between different 

brain regions in a typical R-fMRI scanning session of approximately 5 ~ 10 minutes are not 

changing over time (i.e., temporally stationary) with a repetition time (TR) in the range of 2 
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~ 3 seconds. Because of this assumption, brain region correlations are computed over the 

entire duration of R-fMRI scan to characterize network connection strengths (Achard et al, 

2006; Dosenbach et al, 2007; Fransson and Marrelec, 2008; Greicius et al, 2004; Rombouts 

et al, 2005; Suk et al, 2013, 2014; Wee et al, 2012a,b, 2014). However, recent studies 

suggest that wealth of information is contained within the temporal features of spontaneous 

BOLD functional connectivity (Allen et al, 2014; Chang and Glover, 2010; Chang et al, 

2013; Handwerker et al, 2012; Hutchison et al, 2013a; Jia et al, 2013; Smith et al, 2012; 

Tomasi et al, 2013) and functional connectivity metrics are able to index changes in 

temporal patterns of neural activity either in rest or task conditions (Hutchison et al, 2013a; 

Tomasi et al, 2013). Given the increasing evidence of dynamic functional connectivity 

during rest and its important for characterizing brain’s intrinsic functional organization, 

multiple network estimation technique that can characterize fluctuations of whole-brain 

functional connectivity becomes necessary to better reveal connectivity patterns with 

coherent dynamics. In this paper, we suggest to use our recently proposed sparse leaning-

based method to jointly estimate multiple temporally correlated networks, which 

simultaneously preserves the sparsity and coherent dynamics (temporal smoothness) among 

networks.

Recently, disease-related alterations in the dynamic properties of functional connectivity 

have been reported (Jones et al, 2012; Saköglu et al, 2010), further suggesting a neural 

origin and raising the intriguing possibility that temporal features of functional connectivity 

could serve as a disease biomarker. Inspiring by the advantages of the previous mentioned 

findings, we hypothesize that the dynamic patterns of whole-brain functional connectivity of 

R-fMRI and thus their network properties derived based on graph theory may be disrupted 

by disease pathologies. Motivated by this hypothesis, we design a novel framework that 

utilizes a series of temporal functional connectivity networks derived from an R-fMRI scan 

to possibly improve disease identification performance between eMCI patients and healthy 

controls. The novelty is three-fold: 1) a temporal series of sparse functional connectivity 

networks (sparse temporal networks for short) are constructed to estimate the time varying 

dynamic properties of functional connectivity over the duration of R-fMRI scan, 2) sparse 

temporal networks are estimated simultaneously to preserve temporal smoothness, i.e. 

temporally adjoint sparse networks have similar topology and connection strengths, 3) a 

network measure-based framework is proposed to improve patient-control identification 

performance.

The rest of the paper is organized as follows: Section 2 provides detailed descriptions on the 

proposed temporal network-based disease identification framework and the dataset used in 

this study. Performance of the proposed framework is evaluated extensively in Section 3. 

Findings, methodological issues, and limitations of the proposed framework are discussed in 

Section 4. Section 5 concludes this study.

2 Material and Methods

2.1 Participants and Data Acquisition

Data used in this study were obtained from the ADNI dataset1. The primary goal of ADNI 

was to test whether serial MRI, positron emission tomography (PET), other biological 
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markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of MCI and early AD. Determination of sensitive and specific markers of very 

early AD progression is intended to aid researchers and clinicians to develop new treatments 

and monitor their effectiveness, as well as lessen the time and cost of clinical trials. A more 

detailed description of the ADNI dataset is provided in Appendix A.

Twenty nine eMCI subjects (13F/16M) and 30 normal controls (NCs) (17F/13M) were 

obtained from ADNI 2 dataset. Subjects from both groups are age-matched (p = 0.6174), 

with mean age in terms of year for eMCI and NC groups as 73.6 ± 4.8 and 74.3 ± 5.7, 

respectively. All subjects were scanned at different centers using 3.0 T Philips Achieva 

scanners with the following parameters: TR/TE = 3000/30 mm, flip angle = 80°, imaging 

matrix = 64 × 64, 48 slices, 140 volumes, and voxel thickness = 3.3 mm. Standard R-fMRI 

preprocessing procedure was performed using the SPM8 software package2. The first 10 

acquired R-fMRI volumes of each subject were initially discarded before any further 

processing to ensure magnetization equilibrium. The remaining 130 volumes were then 

corrected for the staggered order of slice acquisition that was used during echo-planar 

scanning. The correction ensures the data on each slice correspond to the same point in time. 

The interpolated time point was chosen as the TR/2 time to minimize relative errors across 

each TR in the study. After acquisition time delay correction, the slice timing corrected R-

fMRI time-series of each subject were realigned using a least squares approach and a rigid 

body spatial transformation. The first volume of each subject was used as the reference to 

which all subsequent volumes were realigned. This step removed the head-motion artifacts 

in the R-fMRI time-series. There were no significant group differences in head-motion for 

all participants used in the study. After realignment, the volumes were resliced such that they 

match the first volume voxel-by-voxel. R-fMRI images were then normalized to the MNI 

space with resolution of 3 × 3 × 3 mm3.

To further reduce the effects of nuisance signals before inferring functional connectivity, 

regression of ventricle and WM signals as well as six head-motion profiles was performed 

(Van Dijk et al, 2010). Given the controversy of removing the global signal in the post-

processing of R-fMRI data (Fox et al, 2009; Murphy et al, 2009), we did not regress the 

global signal out (Achard et al, 2006; Lynall et al, 2010; Supekar et al, 2008). The regressed 

R-fMRI images were parcellated into 116 regions-of-interest (ROIs) according to the 

Automated Anatomical Labeling (AAL) template (Tzourio-Mazoyer et al, 2002). Prior to 

functional connectivity estimation, mean R-fMRI time series of each ROI was band-pass 

filtered (0.01 ≤ f ≤ 0.08Hz).

2.2 Proposed Framework

The proposed sparse temporal network-based disease identification framework is graphically 

shown in Figure 1. Specifically, for each ROI entire mean time series of an R-fMRI scan is 

decomposed into multiple overlapping sub-series using a sliding window (Allen et al, 2014; 

Chang and Glover, 2010; Handwerker et al, 2012; Smith et al, 2012) where its length shorter 

than the duration of the R-fMRI scan. For each R-fMRI sub-series, correlation coefficients 

1http://www.adni-info.org
2http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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between different brain regions are computed to generate one functional connectivity 

network. Sparse temporal networks are estimated simultaneously from these sub-series using 

fused multiple group LASSO (FMGL) to preserve the temporal smoothness between 

adjoining networks. Network measure, i.e., local clustering coefficients, are calculated from 

each sparse temporal network. Local clustering coefficients of all temporal networks are 

then concatenated into a long feature vector to train a Support Vector Machine (SVM) 

classifier.

2.3 Functional Connectivity Estimation

Generation of multiple R-fMRI sub-series using the sliding window approach is graphically 

illustrated in Figure 2. In particular, given an R-fMRI time series with M temporal image 

volumes, K = ⌊ (M − N)/s⌋ + 1 is the number of sub-series that can be generated, where N 
denotes the length of sliding window and s denotes the translation step size. The k-th sub-

series is represented in the form of a matrix , k=1,…, 

K, where P = 116 is the total number of regions-of-interest (ROIs), and x(k) = [x(k)(1),x(k)(2),

…, x(k)(N)]T is the k-th sub-series of N image volumes for a particular ROI. A symmetric 

connectivity matrix  can be constructed using X(k), where each 

element in the connectivity matrix defines the correlation strength between two different 

ROIs. Specifically, the correlation strength is defined as

(1)

where i and j are two different brain regions, and corr(·) computes the correlation between 

region i and region j. For instance, if i = 1 and j = 2 Eq. (1) would compute the correlation 

strength between regions 1 and 2 for sub-series k. It is noteworthy that the conventional 

stationary-based functional connectivity matrix can be estimated by replacing corr(·) in Eq. 

(1) with Pearson or partial correlations and K = 1.

2.4 Graphical Model

Assuming that the image volumes within each R-fMRI sub-series are identically distributed 

with P-variate Gaussian distribution with zero mean and positive definite covariance matrix 

Σ(k). Due to sparse nature of brain network, there should be many conditionally independent 

connection pairs. These null connections are denoted as zero elements in the precision 

matrix, i.e., network matrix Θ(k) = (Σ(k))−1. If the covariance matrix of each X(k) is S(k) = 

(1/N)(X(k))TX(k), then the negative log likelihood of Θ(k) is given as

(2)

where Θ = {Θ(1),…, Θ(K)}. Minimizing Eq. (2) leads to the maximum likelihood estimate 

(MLE) of Θ̂(k) = (S(k))−1, which is unlikely to be sparse. Eq. (2) can then be solved by 

minimizing the penalized negative log likelihood as
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(3)

with Q(Θ) to be defined in following subsections.

2.5 Sparse Inverse Covariance Estimation

To model brain connectivity matrix, which has been proven to be sparse (Kötter and 

Stephen, 2003; Sporns et al, 2004), a “sparsity” constraint can be imposed on the MLE of an 

precision matrix using sparse inverse covariance matrix (SICE) (Huang et al, 2010), which 

also known as Gaussian graphical models or graphical LASSO. In SICE, the second term in 

Eq. (3), Q(Θ), is defined as (Huang et al, 2010)

(4)

where λ is a nonnegative regularization parameter. ℓ1-norm in Eq. (4) is imposed to the 

elements of K networks, producing matrices with different non-zero locations.

2.6 Group Graphical Lasso

Estimating multiple networks individually fails to capture the temporal smoothness among 

adjoining networks. This problem can be partially solved by using joint estimation methods 

such as Group Graphical Lasso (GGL) (Danaher et al, 2012), which estimates multiple 

networks simultaneously. In GGL, the last term of Eq. (3) is defined as (Danaher et al, 2012)

(5)

where λ1 and λ2 are non-negative regularization parameters. The second term of Eq. (5), a 

ℓ2, 1-norm constraint, is applied to the (i, j) elements across all networks. This penalization 

forces an identical pattern of sparsity across all networks, i.e., same non-zero locations in K 
estimated networks, overlooking temporal smoothness between adjoining temporal 

networks.

2.7 Fused Multiple Graphical LASSO

Drawbacks of SICE and GGL methods can be solved by employing our recently proposed 

sparse learning algorithm, i.e., Fused Multiple Graphical LASSO (FMGL) algorithm (Yang 

et al, 2012). FMGL simultaneously estimates a series of temporal networks by replacing the 

last term in Eq. (3) with following term (Yang et al, 2012)
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In particular, an ℓ1-norm penalization is imposed to induce network sparsity (Achard and 

Bullmore, 2007; Chen et al, 2012; Friedman et al, 2008) and a fused regularization is 

imposed to preserve the temporal smoothness by encouraging Θ(k) to have similar topology 

and correlations strengths to its adjoining networks (Tibshirani et al, 2005). FMGL was 

implemented using an in-house software.

2.8 Network Analysis

One of the important properties of human brain network is small-worldness. Since multiple 

sparse networks are generated to extract the temporally dynamic characteristics of brain 

functional connectivity, it is of great important to ensure that the generated networks are 

small-world networks instead of random or lattice-like networks. Accordingly, we use two 

network measures, i.e., small-world coefficient (Humphries and Gurney, 2008; Humphries et 

al, 2006) and small-world measurements (Telesford et al, 2011), to evaluate the small-

worldness of the sparse temporal networks. For evaluation based on the small-world 

coefficient, we compared the clustering coefficient and characteristic path length of each 

sparse temporal network to the same metrics from equivalent random networks. The small-

world coefficient (σ) is defined as (Humphries and Gurney, 2008; Humphries et al, 2006)

(6)

where C and L denote the clustering coefficient and characteristic path length of a sparse 

temporal network, and Crand and Lrand denote the clustering coefficient and characteristic 

path length of equivalent random networks, and γ and λ denote the normalized clustering 

coefficient and normalized characteristic path length, respectively. The absolute clustering 

coefficient for a network G is defined as

(7)

where  is the ratio of the number of existing connections to the number of all 

possible connections, Ei is the number of edges, and di is the number of nodes that are 

directly connected to i-th node with an edge in a subnetwork Gi.

The characteristic path length, which measures the overall routing efficiency, of a network G 
is defined as the average of the shortest absolute path lengths between the nodes
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(8)

where min{Li, j} denotes the shortest minimum path length between the i-th node and the j-
th node. The absolute path length is the number of edges included in the path connecting two 

nodes. A network is considered as small-world if C ≫ Crand and L ≈ Lrand, resulting in σ > 

1.

For evaluation based on the small-world measurement (ω), we compared the clustering 

coefficient of each sparse temporal network to that of equivalent lattice networks, and 

compared characteristic path length of each sparse temporal network to that of equivalent 

random networks (Telesford et al, 2011)

(9)

where Clatt denotes the clustering coefficient of a lattice network. The value of ωis restricted 

to the interval [−1 1], and a network is considered small-world if ω ≈ 0. Positive value 

indicates a network with more random characteristics (i.e., L ≈ Lrand, and C ≪ Clatt), while 

negative value indicates a network with more lattice-like characteristics (i.e., L≫ Lrand, and 

C ≈ Clatt). It is worth noting that this metric is independent of network size and is more 

accurate in quantifying small-worldness of a network compared to the small-world 

coefficient (Telesford et al, 2011).

2.9 Evaluation Via Leave-One-Out Cross-Validation

In this study, we employed SVM with a simple linear kernel based on the LIBSVM library 

(Chang and Lin, 2011) to evaluate the discriminative power of the features derived from 

sparse temporal networks. The optimal SVM models as well as an unbiased estimation of 

the generalization classification performance were achieved via a nested leave-one-out 

cross-validation scheme due to limited number of sample size. Specifically, for N total 

number of subjects involved in the study, one was first left out for testing, and the remaining 

N − 1 were used for constructing the optimal SVM model. From these N − 1 samples, N − 1 

different training subsets were formed by each time leaving one more sample out, i.e., N − 2 

subjects in each training subset. For each training subset, functional connectivity 

construction, feature extraction and feature selection were performed. The performance of 

each combination of SVM parameters along with the selected features was evaluated using 

the second left out subject. The combination that gives the best performance was used to 

construct the optimal SVM model for future classification. This procedure was repeated N 
− 1 times, once for each training subset. When the completely unseen test sample was to be 

classified, all N − 1 classifiers were used, and the final classification decision was 

determined via majority voting. This process was repeated N times, each time leaving out a 

different subject, finally leading to an overall cross-validation classification accuracy. In this 

study, the optimal λ values for all lasso-based methods were determined via grid search.
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3 Experimental Results

3.1 Temporal Network Analysis

Figures 3 and 4 show the small-world coefficient and small-world measurement, 

respectively, of temporal networks with N = 90 and s = 2 for the eMCI and the NC groups 

with respect to random and lattice networks of equivalent distribution. The values σ > 1 and 

ω ≈ 0.3 (Telesford et al, 2011), indicate the small-worldness of the temporal networks. The 

small-world coefficients in the eMCI group are smaller than the NC group and show 

different dynamic patterns across temporal networks (Figure 3). On the other hand, the 

eMCI group shows larger small-world measurement across temporal networks than the NC 

group (0.31 vs. 0.30). However, different from small-world coefficient, both the eMCI and 

NC groups do not demonstrate any dynamic pattern across temporal networks in terms of 

small-world measurement (Figure 4).

To further analyze network properties, we computed the clustering coefficients and 

characteristic path lengths, and their normalized counterparts, for every temporal network in 

both groups. The results are shown in Figures 5, 6, 7, 8, respectively, for the temporal 

networks with N = 90 and s = 2.We observed distinct dynamic patterns for the eMCI and NC 

groups in terms of clustering coefficient and its normalized counterpart when BOLD signals 

were studied at a smaller time scale. Specifically, clustering coefficients for the eMCI group 

are smaller than NC groups for the first eleven temporal networks, and are larger for the 

subsequent networks, except for the thirteenth network. On the other hand, the normalized 

clustering coefficient also showed dynamic pattern but with consistently smaller values in 

the eMCI group than in the NC group. However, we cannot observe any dynamic pattern for 

characteristic path length and its normalized counterpart. Characteristic path length is 

consistently larger in the eMCI group compared with the NC group whereas its normalized 

counterpart showed an opposite trend with smaller values in the eMCI group. Accordingly to 

these observations, we have decided to only extract the local clustering coefficient from the 

temporal networks as our features for constructing SVM classifiers in this study.

3.2 Classification Performance

We compared the eMCI identification performance of the proposed framework with the 

conventional temporally stationary-based (i.e., Partial correlation (PAC) and Pearson 

correlation-based (PEC)) methods, sparse inverse covariance matrix (SICE), and the graph 

graphical LASSO (GGL). For PAC and PEC, entire R-fMRI time series is used to compute 

one connectivity network. For the SICE and GGL approaches, a series of temporal networks 

are constructed using ℓ1 and ℓ1 + ℓ2, 1 penalizations, respectively. Performances of the 

comparison methods are summarized in Table 1.

The proposed framework performed the best by yielding an accuracy of 79.7%, which is at 

least 6.5% improvement compared to the second best GGL-based frame-work. The 

conventional PAC-and PEC-based frameworks performed the worst with classification 

accuracies of 62.7% and 66.1%, respectively. The proposed, GGL-, and SICE-based 

frameworks showed a significantly higher sensitivity value when compared to PAC-and 

PEC-based frameworks. A cross-validation estimation of the generalization performance 
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shows an area of 0.792 under the receiver operating characteristic curve (AUC), indicating 

good diagnostic power of the proposed framework.

3.3 Robustness of the Proposed Framework

In the proposed framework, there are two factors that may influence the network topology 

and correlation strengths of the estimated sparse temporal networks, i.e., sliding window 

length (N) and translation step size (s), finally the classification performance. To evaluate the 

robustness of the proposed framework with respect to these two parameters, we repeated 

eMCI identification using different window lengths (N = 50, 70, 90, 110) and step sizes (s = 

1, 2, 4, 8, 10), and their results are summarized in Figure 9. The proposed framework 

preformed relatively consistent with respect to the window length and step size. When large 

N and s are used, the proposed framework performed similarly to the conventional PAC-and 

PEC-based frame-works.

3.4 Most Discriminative Regions

Brain regions that were selected with the highest frequency during the feature selection step 

based on the training subjects are considered as the most discriminative regions for eMCI 

identification. These regions (for N = 90 and s = 2) are mostly the components of the Default 

Mode Network (DMN), i.e., middle frontal gyrus, bilateral superior orbitofrontal cortex, 

posterior cingulate gyrus, precuneus, and hippocampus. Other selected regions include the 

frontal lobe (superior frontal gyrus (dorsal) and inferior orbitofrontal cortex), the temporal 

lobe (superior temporal pole and inferior temporal), the occipital lobe (inferior occipital 

gyrus, cuneus and bilateral fusiform gyrus), parietal lobe (postcentral gyrus), subcortical 

regions (caudate and amygdala), and the cerebellum regions (lobule IV, V of cerebellar 

hemisphere, Lobule VI of cerebellar hemisphere, and lobule X of cerebellar hemisphere 

(flocculus)). These selected regions are shown in Figure 10. Note that many regions across 

the brain have been selected for good classification accuracy, particularly the cerebellum 

regions which are seldom detected in previous studies. For the case of the fully-connected, 

stationary-based Pearson correlation method, the selected regions include parahippocampus, 

fusiform gyrus, olfactory, superior frontal gyrus (dorsal), inferior temporal, middle frontal 

gyrus, and temporal pole (middle). All these regions were selected by our method, although 

some of them, namely parahippocampus, olfactory, and temporal pole (middle), were chosen 

with relatively low selection frequency.

4 Discussion

We propose a novel framework that utilizes the temporally dynamic information embraced 

within an R-fMRI scan to improve disease identification performance. Sparse temporal 

networks are constructed from the R-fMRI time series, and graph theoretical analysis has 

been performed to explore their network properties. Clustering coefficient, which shows 

different dynamic patterns between two clinical groups across sparse temporal networks, 

was then used to train a linear SVM classifier. Performance of the proposed framework was 

evaluated on 59 subjects obtained from the ADNI 2 dataset, demonstrating the great 

importance of including temporally dynamic information for better characterization of brain 
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activity patterns when compared to the conventional approaches that are based on the 

temporal stationary assumption.

4.1 Temporal Networks Analysis

The human brain is a complex and highly connected dynamic system with various important 

topological properties for its optimal functioning (Bullmore and Sporns, 2009; He and 

Evans, 2010; Rubinov and Sporns, 2010; Stam, 2010). In the brain, clustered regions favor 

modular information processing; however, several regions in different clusters may have 

long-range connections that support efficient functional routing (Watts and Strogatz, 1998). 

Optimal brain networks, which show small-worldness property, are normally characterized 

by high clustering coefficients like regular lattices, yet low characteristic path lengths like 

randomly generated networks (Watts and Strogatz, 1998).

Unlike conventional stationary correlation analysis, which generates only one connectivity 

network per R-fMRI scan, sliding window correlations at different time scales exhibits 

temporal variations during the R-fMRI scanning session (Allen et al, 2014; Chang and 

Glover, 2010; Handwerker et al, 2012; Hutchison et al, 2013a; Smith et al, 2012), implying 

constant activations of the brain even at rest. However, it remains unanswered whether 1) the 

generated temporal networks are biophysiologically meaningful and exhibit small-world 

properties as actual human brain networks, 2) there is any between-group difference in terms 

of temporal network properties, and 3) the differences, if any, can be employed to 

distinguish eMCI patients from NCs. Therefore, we evaluated the small-world property of 

the sparse temporal networks by computing the small-world coefficient and the small-world 

measurement. Consistently large small-world coefficients and close to 0.3 small-world 

measurements, for both eMCI and NC groups, demonstrate the reliability of the proposed 

method in generating networks with properties similar to actual brain networks (Telesford et 

al, 2011). It is worth noting that smaller small-world coefficients and larger small-world 

measurements indicate that functional connectivity networks in the MCI group are more 

random compared with the NC group, a common characteristic of most neurodegenerative 

disorders.

In addition, we observed different dynamic patterns for eMCI and healthy brains in the 

clustering coefficient and its normalized counterpart. The variations are more obvious in the 

original clustering coefficient compared to its normalized counterpart. Smooth yet different 

dynamic patterns in the eMCI and NC groups indicates that 1) changing of brain activity is 

relatively smooth when the sliding window approach is used due to the overlapping of the R-

fMRI time frames, and 2) different dynamic patterns for the eMCI and NC groups can 

potentially be used as effective biomarkers to identify eMCI patients at individual level. 

Consistently smaller normalized clustering coefficients are observed in the eMCI group 

compared with NC group, in line with previous R-fMRI studies (Binnewijzend et al, 2012; 

Han et al, 2012a; Supekar et al, 2008), although the findings in these studies were obtained 

based on the conventional stationary assumption.

Temporal networks of the eMCI group showed larger characteristic path length when 

compared with the NC group, although an opposite trend was observed for its normalized 

counterpart. Theoretically, a short path length ensures the effective integrity and rapid 
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information propagation between and across distinct regions of the brain that are believed to 

constitute the basis of cognitive processing (Sporns and Zwi, 2004). Since 

neurodegenerative diseases such as AD and MCI are considered to be disconnection 

syndromes (Delbeuck et al, 2003), larger characteristic path length reflects disrupted 

neuronal integration between distant regions, in line with previous R-fMRI reports, which 

show relatively spare long-distant and relatively dense shortdistant functional connections in 

MCI and AD groups (Buldú et al, 2011; Liu et al, 2012; Seo et al, 2013; Sorg et al, 2007; 

Wang et al, 2007). Progression of clinical stages, from mild to severe, may cause more 

impairment or disconnection of longdistant connections, and thus possibly encourage the 

establishment of short-distant connections within cluster as alternative paths to preserve 

information transmission between two distant regions. However, establishment of short-

distant connections may introduce abnormal clusters that increases the risk of generating an 

uncontrolled or random flow of information through the entire network (Kaiser, 2007; 

Kaiser and Hilgetag, 2006; Sanz-Arigita et al, 2010). The decrease in normalized clustering 

coefficient and characteristic path length, is also reflected by the larger small-world 

measurement in the eMCI group, suggesting a more random-like network topology.

4.2 Interpretation of Classification Results

Compared with the research (Greicius et al, 2004; Rombouts et al, 2005; Wang et al, 2007) 

that focuses on group-wise differences, to the best of our knowledge, the current work is the 

first study that uses temporal dynamics of an R-fMRI scan for disease identification. 

Although group-wise analysis may identify network changes associated with disease, it is of 

limited utility at an individual level. In contrast, our goal is to develop an individual-based 

framework that utilizes the temporal dynamics extracted using one well-known network 

measure, i.e., clustering coefficients, for disease identification. Promising results using 

leave-one-out cross-validation indicate the superiority of the proposed temporal network-

based framework in eMCI identification when compared with the PAC-, PEC-, SICE, and 

GGL-based frameworks. Also, the proposed and GGL-based frameworks, both of which 

include temporally dynamic information, performed better than all other methods, indicating 

the importance of using temporally dynamic patterns for disease classification, at least in the 

context of a typical R-fMRI scanning session lasting 5 to 10 minutes.

It has been suggested that correlation values within and between connectivity networks 

stabilize within 4 ~ 5 minutes of fMRI data (Van Dijk et al, 2010), implying that most 

studies are adequately sampling the network activity despite relatively few data points, even 

under variety of behavioral states (e.g., eyes closed, open, or open and fixating) during R-

fMRI acquisition. Several studies (Greicius, 2008; Menon, 2011) demonstrated subtle yet 

significant functional connectivity differences between normal and diseased individuals 

within similar scanning duration. These findings support, to some extent, our findings where 

the proposed framework always performs better when sliding window length range is around 

3.5 minutes (N = 70) and 4.5 minutes (N = 90), and with relatively smaller step size (s). The 

proposed framework performs slightly inferior when the window length (N) and step size (s) 

are relatively large. With large N and s, it is possible that neural activity changes that occur 

at time scales shorter than the window length and/or step size are overlooked, causing the 

performance of the proposed framework approaching to the conventional stationary-based 
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approaches. This situation is particularly obvious when the window length is similar to the 

length of entire R-fMRI scan (M = 130 in this study). These findings may imply that 

individuals who are affected by the disease may experience temporal changes, which might 

be overlooked by the conventional stationary-based approaches.

4.3 Most Discriminative Regions

All the regions that were selected by the conventional fully-connected, stationary-based PC 

method were also selected by our method as discriminative regions, although with varying 

selection frequency. More precisely, we observed three different conditions for region 

selection: a) Selection by the PC method and with relatively high frequency by our method, 

which indicates a region has informative stationary features; b) Selection by the PC method 

but with relatively low frequency by our method, which indicates a region’s stationary and 

dynamic features are less informative; and c) Selection with high frequency by our method, 

without selection by the PC method. In the last case, the dynamic features derived from 

selected regions greatly contribute to achieving high eMCI identification accuracy. These 

observations suggest that dynamic patterns of brain regions, which are distributed across 

sparse temporal networks, provide novel features for detecting possible functional 

connectivity abnormalities in eMCI patients within an R-fMRI scan. The phenomena of 

identifying new network nodes (brain regions) that were unobserved at full time series has 

been reported in anesthetized macaques and awake humans study at shorter window lengths 

(Hutchison et al, 2013b).

DMN components, which are selected as the most discriminative regions in eMCI 

identification, exhibit high correlation with the regions in the higher-level cognitive 

functional networks (e.g., temporo-parietal cortex, inferior frontal cortex, anterior cingulate, 

and orbital fronto-insular cortices) (Corbetta and Shulman, 2002; Damoiseaux et al, 2006; 

Seeley et al, 2007). Posterior cingulate cortex, an important component of DMN, 

demonstrates reduced functional connectivity with the or-bitofrontal cortices and middle 

frontal gyrus, while increased connectivity with the inferior frontal, fusiform, and precentral 

regions (Han et al, 2012a) in MCI patients. In addition, MCI patients experience reduced 

activation compared to NCs in several regions of the occipito-temporal cortex, a small 

portion of the left inferior frontal gyrus, while increased activation in bilateral anterior 

cingulate and precueus, with the largest activation differences centered on the fusiform gyri 

(Gold et al, 2010). Similar fMRI connectivity disruptions have been observed in the 

posterior hippocampal, and parahippocampal (Hämäläinen et al, 2007). Also, correlation 

between precuneus and DMN regions has been previously used to distinguish MCI patients 

from NCs, achieving relatively good accuracy (Rombouts et al, 2005). In our previous R-

fMRI study, orbitofrontal cortex, temporal pole, posterior cingulate gyrus, precuneus, and 

amygdala have been selected as important regions for accurate MCI identification (Wee et 

al, 2012a). All these findings, either obtained at task-based or task-free fMRI analysis, 

demonstrate widespread of functional connectivity disruptions across MCI brains even at its 

prodromal phase (Fennema-Notestine et al, 2009).

Parts of the cerebellum regions of MCI patients underwent structural degenerative 

(Baloyannis et al, 2000; Fukutani et al, 1997; Li et al, 1994; Sjöbeck and Englund, 2001; 
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Wang et al, 2002), including reduction of Purkinje cell density, atrophy of the molecular and 

granular cell layer, and concentration of amyloid plaques in the cerebellar cortex (Wegiel et 

al, 1999). In a study that manually partitioned human cerebellum into four substructures, i.e., 

anterior, superior posterior, inferior posterior lobes, and corpus medullare on each 

hemisphere, the posterior cerebellar lobe experience significant volume reduction in AD 

patients (Thomann et al, 2008), leading to poorer cognitive performance. In terms of 

functional study, the left cerebellum is activated in memory encoding task (Kircher et al, 

2007), implying its association with recognition memory. Another event-related study 

suggested that the cerebellar regions contribute to human recognition (Weis et al, 2004). 

Compared to the structural and task-based functional studies, the cerebellum regions were 

always been ignored in the R-fMRI-based AD/MCI analysis. Our findings of detecting 

cerebellum regions as the important features for accurate eMCI identification may suggest 

the disruption of cerebellum functions in AD/MCI brains, thus merit for more attention in 

the future R-fMRI-based AD/MCI study.

4.4 Methodological Issues/Limitations

The current study has three main limitations. First, the proposed framework is based on the 

temporal dynamics in the R-fMRI scan, however, neurobiological underpinnings and 

mechanisms of these temporal dynamics are still largely unknown (Smith et al, 2011). It is 

possible that sliding window correlation variations in the sparse temporal networks are 

associated with changes in brain state or arousal. However, we cannot rule out the possibility 

that these changes are driven simply by the noise (e.g. motion, physiological, and scanner 

noises) (Handwerker et al, 2012). Hence, careful interpretations of the results are required, 

and more works shall be performed to improve our understanding on these issues.

Second, the choice of window size is important for the sliding window approach. The 

window length should be long enough to permit robust estimation of functional connectivity 

and short enough to allow the detection of interesting short-term fluctuations (Saköglu et al, 

2010). As the window shrinks, the signal-to-noise ratio decreases since there are fewer time 

points available for connectivity estimation. The estimation variability may increase due to 

signals of higher frequencies, physiological noise, and head motion (Hutchison et al, 2013a). 

On the other hand, as the window expands, brief neural activities tend to be smoothed out. 

Since brain activation patterns vary with diseases, it is therefore important to vary the 

window size to capture brain activities of different time scales.

Third, the diagnosis criteria of eMCI are still unclear and standard where they may be 

similar to the early diagnosis of other neurodegenerative dementia such Parkinson disease 

and frontotemporal dementia. This may rise reliability issue of the eMCI diagnosis. Third, 

subjects used in this study are at the very beginning stage of AD and there are very few 

studies focused in this type of cohort. Due to this, the selected most discriminative regions 

can only be compared with the AD/MCI findings using the conventional stationary 

approach. However, these selected brain regions spread over the whole brain, thus future 

analysis is required to verify these findings.
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5 Conclusions

In this paper, we propose to utilize the temporally dynamic information of an R-fMRI scan 

for disease identification. This work is motivated by the variabilities of sliding window 

correlation strengths induced by the neural interactions that happen within time scales that 

are shorter than a typical R-fMRI scanning session. Unlike the conventional approach that 

assumes functional connectivity is temporally stationary, we estimate temporal networks 

from a set of R-fMRI sub-series using a sliding window approach to extract the between-

region neural interactions across time. We utilize a fused LASSO regularization-based 

sparse learning algorithm to jointly estimate temporal networks, encouraging similar 

network topology and correlation strengths between temporally adjoining networks. 

Clustering coefficients are calculated from each network to extract temporally dynamic 

patterns. Promising results on eMCI identification suggest that the temporal dynamic 

information encapsulated in an R-fMRI scan is crucial for accurate diagnosis of neurological 

disorders. In the future, we will extend the proposed disease identification framework for 

diagnosis of neurodevelopmental disorders such as autism and attention deficit hyperactivity 

disorder (ADHD), which can benefit greatly from early detection.
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Appendix A. The Alzheimer’s Disease Neuroimaging Initiative (ADNI)

The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National 

Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug 

Administration (FDA), private pharmaceutical companies and non-profit organizations, as a 

$60 million as a landmark study that gathered and analyzed thousands of brain scans, 

genetic profiles and biomarkers in blood and cerebrospinal fluid (CSF). Although the 

original goal was to define biomarkers for use in clinical trials to determine the best way to 

measure treatment effects of AD, the goal has been expanded to find more sensitive and 

accurate methods to detect AD at a pre-dementia stage and mark its progress through 

biomarkers. ADNI 1 involves scientists at 59 research centers, 54 in USA and 5 in Canada. 

The Principal Investigator of this initiative is Dr. Michael W. Weiner, MD, VA Medical 

Center and University of California, San Francisco. Originally 800 participants were 
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enrolled, which comprised of 200 with AD patients, 400 with MCI and 200 with normal 

cognition. In 2010, the ADNI study moved into the ADNI GO3 phase to focus on 

participants who exhibit the earliest signs of memory loss in MCI. While the ADNI GO 

project work continues, the overall ADNI effort is rapidly moving into a third phase, i.e., 

ADNI 24. ADNI 2 will build upon the successes of earlier ADNI phases to identify the 

earliest signs of AD. Researchers are eager to determine when damage to the brain begins. 

The ADNI 2 phase of the study includes a large number of new volunteers in the earliest 

stages of cognitive impairment.
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Fig. 1. 
The proposed sparse temporal network-based disease identification frame-work.
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Fig. 2. 
Generation of R-fMRI sub-series using sliding window approach.
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Fig. 3. 
Small-world coefficient (σ) of dynamic sparse temporal networks for eMCI and NC groups 

with respect to random networks.
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Fig. 4. 
Small-world measurement (ω) of dynamic sparse temporal networks for eMCI and NC 

groups with respect to random and lattice networks.
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Fig. 5. 
Clustering coefficients of temporal networks for eMCI and NC groups with s = 2 and N = 

90.
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Fig. 6. 
Normalized clustering coefficients of temporal networks for eMCI and NC groups with s = 2 

and N = 90.
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Fig. 7. 
Characteristic path lengths of temporal networks for eMCI and NC groups with s = 2 and N 
= 90.
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Fig. 8. 
Normalized characteristic path lengths of temporal networks for eMCI and NC groups with s 
= 2 and N = 90.
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Fig. 9. 
eMCI identification performance with respect to different window lengths and step sizes.
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Fig. 10. 
Most discriminative regions that were selected for eMCI classification. The colors indicate 

different ROIs.
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