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Abstract

Summary: Identification of driver mutations in human diseases is often limited by cohort size and

availability of appropriate statistical models. We propose a method for the systematic discovery of

genetic alterations that are causal determinants of disease, by prioritizing genes upstream of func-

tional disease drivers, within regulatory networks inferred de novo from experimental data. Here

we present the implementation of Driver-gene Inference by Genetical-Genomic Information Theory

as an R-system package.

Availability and implementation: The diggit package is freely available under the GPL-2 license

from Bioconductor (http://www.bioconductor.org).

Contact: ma2581@cumc.columbia.edu or ac2248@cumc.columbia.edu

1 Introduction

Identification of somatic mutations and germline variants associated

to cancer and other complex diseases (driver mutations) is mostly

performed on a statistical basis (Lawrence et al., 2013). Achieving

appropriate statistical power, however, requires large effect sizes or

large cohorts to control for errors arising from the large number of

tested hypothesis (Califano et al., 2012). In addition, since statistical

approaches do not provide mechanistic insight, many disease risk

determinants, such as apolipoprotein E, were discovered long before

they were mechanistically elucidated (Liu et al., 2013).

We have recently developed an approach that boosts the statis-

tical power of GWAS by focusing the analysis to genes mechanistic-

ally linked to a specific phenotype or cell state, termed master

regulators (MR, Aytes et al., 2014, Carro et al., 2010, Lefebvre et

al., 2010). Driver-gene Inference by Genetical-Genomic Information

Theory (DIGGIT) searches for genetic alterations associated with

dysregulation of MR protein activity, reducing the number of

hypothesis to test, while providing regulatory clues to help elucidate

associated biological mechanisms (Chen et al., 2014). We have

recently used DIGGIT to identify causal genetic determinants of the

mesenchymal subtype of human glioblastoma (GBM, Chen et al.,

2014). Here, we present the R-system implementation of DIGGIT,

which is available as a software package from Bioconductor.

2 Approach

DIGGIT evaluates candidate alterations within a set of functional

disease drivers and their upstream regulators (Chen et al., 2014).

This is accomplished by a five-step process, requiring gene expres-

sion, matched genetic-variant profiles, specifically copy number

variation data (CNV), and context-specific transcriptional (Basso et

al., 2005) and post-translational (Wang et al., 2009) regulatory

models.

The first step reduces the number of candidate genetic alter-

ations, by selecting those whose ploidy is informative of gene expres-

sion as candidate functional CNVs (F-CNVs). This is assessed based

on mutual information (MI) between copy number and expression.

During the second step, the MRs for a specific phenotypic transition

are inferred. The third step reduces the list of candidate genetic alter-

ations by considering only the loci coding for MRs and their

upstream post-translational modulators, as inferred by the MINDy

algorithm. During the forth step, the statistical association between

the functional genetic alterations, steps 2 and 3, and the activity of

the MRs is inferred by MI analysis (activity Quantitative Trait Loci,

aQTL). Finally, a conditional association analysis is performed to

determine which, among multiple genes affected by the same ampli-

fied or deleted regions, are the most probable drivers of MR

dysregulation.
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3 Implementation

DIGGIT is implemented as an R-system package and it is available

from Bioconductor. Input data and results are encapsulated in an S4

object of class diggit, requiring an expression dataset, CNV data,

and an appropriate tissue lineage-matched regulatory network (inter-

actome). Two alternative methods were implemented to compute the

F-CNVs: MI and correlation analysis (Fig. 1A). MI is estimated using

1- and 2-dimensional Gaussian kernels with optimal bandwidth selec-

tion though a plug-in (hpi) approach, as implemented in the ks pack-

age (available from CRAN: http://cran.r-project.org). Finally, the

statistical significance for the association is estimated by permutation

analysis.

MR analysis is then performed with the msviper function

implemented in the viper package (Bioconductor). Before aQTL

analysis, the relative activity of the MRs for each individual sample

is computed with the viper algorithm (viper package,

Bioconductor). This step is critical, because MRs are usually dysre-

gulated at the protein level, while rarely differentially expressed

(Aytes et al., 2014; Carro et al., 2010; Lefebvre et al., 2010).

Activity quantitative trail loci are then inferred by computing the

statistical association between F-CNV and VIPER-inferred MR

protein activity by MI or correlation analysis.

Finally, the conditional association analysis is performed by

estimating the statistical association between samples harboring

F-CNVs in a gene ‘a’ and the phenotype groups, after conditioning

for the presence of CNVs in other genes ‘g’, one at a time, by

Fisher’s exact test. Results for this analysis can be displayed as heat-

maps (Fig. 1B). Selection of candidate genes for experimental valid-

ation and biochemical characterization can be performed based on

the aQTL analysis p-values, either before or after correction by

conditional association analysis.

4 Example application

We analyze 230 expression and CNV profiles for human GBM

(The Cancer Genome Atlas, TCGA), distributed in the diggitdata

package (Bioconductor), which also includes GBM-specific

transcriptional and post-translational regulatory networks (Chen et

al., 2014).

> library(diggit)

> data(gbm.expression, gbm.cnv, gbm.aracne,

gbm.mindy,

þ package¼00diggitdata00)

For the sake of speed, we restrict the analysis here to the

first 1000 genes in the CNV profile, and infer the F-CNVs as

follows:

> genes <- intersect(rownames(gbmExprs),

þ rownames(gbmCNV))[1:1000]

> gbmCNV <- gbmCNV[match(genes, rownames(gbmCNV)),]

> dobj <- diggitClass(expset¼gbmExprs, cnv¼gbmCNV,
þ regulon¼gbmTFregulon, mindy¼gbmMindy)
> set.seed(1)

> dobj <- fCNV(dobj, method¼00mi00)

A scatterplot showing the association between CNV and expres-

sion for KLHL9 is shown in Figure 1A. Master regulators between

the mesenchymal and proneural GBM subtypes can be inferred, and

the top 20 most activated MRs displayed, with:

> set.seed(1)

> dobj<- marina(dobj, pheno¼00subtype00, group1¼00MES00,
þ group2¼00PN00)
> sort(diggitMR(dobj), decreasing¼TRUE)[1:20]

Then, aQTL analysis for two previously validated MRs (Carro

et al., 2010), following by conditional association analysis for

STAT3, can be performed as follows:

> set.seed(1)

> dobj<- aqtl(dobj, mr¼c(00CEBPD00, 00STAT300), method¼00mi00)
> dobj<-conditional(dobj,pheno¼00subtype00,group1¼00MES00,
þ group2¼00PN00, mr¼00STAT300, cnv¼.15)

Conditional analysis results can be displayed as heatmap

(Fig. 1B):

> plot(dobj, cluster¼00200)

Finally, results can be limited to MINDy-inferred post-translational

modulators of the considered MRs, and summarized by:

> set.seed(1)

> dobj<- aqtl(dobj, mr¼c(00CEBPD00, 00STAT300), method¼00mi00,
þ mindy¼TRUE)
> dobj<-conditional(dobj,pheno¼00subtype00,group1¼00MES00,
þ group2¼00PN00, mr¼00STAT300, cnv¼.15)
> summary(dobj)

5 Discussion

Elucidating the causal genetic determinants of most complex dis-

eases has proven more challenging than expected. Due to the large

number of candidate loci, it is difficult to achieve enough statistical

power to detect all but the most highly penetrant and frequent

events. Furthermore, classic GWAS approaches are based on pure

statistical associations, providing no mechanistic insights. DIGGIT

aims to address both challenges by relying on context-specific mod-

els of cell regulation. It boosts the statistical power by focusing on

the regulators mechanistically linked to the phenotype and on their

upstream post-translational modulators (Chen et al., 2014). The

algorithm relies on large (n>100 samples) expression and genetic

profiles and requires cell context-specific models of transcriptional

and post-transcriptional regulation. Its R implementation, available

as an R-system package from Bioconductor, has low computational

Fig. 1. (A) Scatterplot for KLHL9 CNV vs. mRNA expression. Spearman correl-

ation and MI p-values are indicated on top of the figure. (B) Heatmap showing

the association (-log10(p)) between genes affected by genetic alterations

(rows) and STAT3 inferred protein activity, while conditioning on each of the

genetically altered genes (columns). The rightmost column indicates the

weakest association for each gene
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requirements, running in most desktop workstations for an average

(n�300 samples) dataset.
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