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Abstract

Motivation: Accurate identification of genetic variants such as single-nucleotide polymorphisms

(SNPs) or RNA editing sites from RNA-Seq reads is important, yet challenging, because it necessi-

tates a very low false-positive rate in read mapping. Although many read aligners are available, no

single aligner was specifically developed or tested as an effective tool for SNP and RNA editing

prediction.

Results: We present RASER, an accurate read aligner with novel mapping schemes and index tree

structure that aims to reduce false-positive mappings due to existence of highly similar regions.

We demonstrate that RASER shows the best mapping accuracy compared with other popular

algorithms and highest sensitivity in identifying multiply mapped reads. As a result, RASER dis-

plays superb efficacy in unbiased mapping of the alternative alleles of SNPs and in identification of

RNA editing sites.

Availability and implementation: RASER is written in Cþþ and freely available for download at

https://github.com/jaegyoonahn/RASER.

Contact: gxxiao@ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput RNA-sequencing (RNA-Seq) data are now indis-

pensable in a wide range of biological and medical research areas,

such as gene expression, gene regulation and functional studies of

genetic abnormalities. As a result, accurate read alignment tools are

highly desirable. Although many short read aligners exist, detection

of single-nucleotide variants (SNVs) and small insertions or dele-

tions (indels) harbored in the short RNA-Seq reads remains a very

challenging task. Such applications require very low false-positive

rate in read mapping to avoid calling spurious variants in the reads.

In addition, different from studies of genetic variants using whole-

genome sequencing data, a challenge specific to RNA-Seq is to

accurately quantify the expression levels of alternative alleles of the

variants based on RNA-Seq reads. For example, in studies of allele-

specific expression (ASE) of single-nucleotide polymorphisms

(SNPs), the expression levels of the two alleles of each SNP are

quantified based on the number of mapped reads to determine

whether a significant allelic bias (i.e. ASE) exists. A well-known

issue is the mapping bias that favors reads harboring the reference

allele (identical to the reference genome used for read alignment) of

heterozygous SNPs (Degner et al., 2009; Heap et al., 2010; Pastinen,

2010). This problem is only partially alleviated if the reference

genome is modified to encompass alternative SNP alleles that are

known to exist in the specific dataset, making expensive whole-

genome sequencing a necessity (Degner et al., 2009; Smith et al.,

2013). In general, read alignment accuracy remains a fundamental

limiting factor for quantification of ASEs.

A similar problem exists in studies of RNA editing. Recently, an

increasing number of reports focused on identification of RNA edit-

ing sites using RNA-Seq data (reviewed in Lee et al., 2013). It is
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now well established that read mapping inaccuracy can lead to

many false-positive predictions (Kleinman and Majewski, 2012; Lee

et al., 2013; Lin et al., 2012; Pickrell et al., 2012). To increase

editing prediction efficacy, strategies to combine multiple read align-

ers and apply a series of artifact filtering steps were utilized (Lee

et al., 2013). Although many short read aligners are available

(Engstrom et al., 2013) (http://en.wikipedia.org/wiki/List_of_

sequence_alignment_software), no single aligner was specifically

developed or tested as an effective tool for SNP and RNA editing

prediction.

In our previous studies of ASE and RNA editing (Bahn et al.,

2012; Li et al., 2012; Zhang and Xiao, 2015), we developed a read

mapping pipeline that makes use of multiple read alignment tools

and applies stringent requirements on the allowed mismatches of

mapped reads. Specifically, it combines the alignment results of

Bowtie (Langmead et al., 2009), BLAT (Kent, 2002) and TopHat

(Trapnell et al., 2009) and applies two types of filters to retain reads

that map uniquely with �n1 mismatches and do not mapped to any

other genomic loci with �n2 mismatches (n1<n2). We showed that

this ‘double-filtering’ scheme is effective in reducing potential map-

ping bias or artifacts related to the presence of alternative sequence

variants or homologous regions in the genome (Bahn et al., 2012;

Lee et al., 2013; Li et al., 2012). However, this pipeline demands

long CPU time and large hard drive space due to the usage of mul-

tiple read aligners and stringent mismatch filters.

Here, we present RASER (reads aligner for SNPs and editing

sites of RNA) that is specifically designed for applications of RNA-

Seq in studies involving SNPs, RNA editing or other types of SNVs.

Since RASER is a standalone application, processing time and hard

drive demand are greatly reduced compared with our previous read

mapping strategy. A distinctive feature of RASER is its interrogation

of a large number of mapping positions for each read using a novel

tree structure that reduces ambiguity in mapping repeated sub-

sequences, thus increasing mapping accuracy. The comprehensive

search of many possible mapping positions of each read enables a

comparative analysis of these alignments and elimination of ambigu-

ous results likely due to existence of homologous regions in the gen-

ome. Built upon this strength, RASER further adopts a novel

mismatch filtering scheme named ‘obviously best’ which aims to

maximize mapping rate while maintaining high mapping accuracy.

Using both simulated and actual RNA-Seq datasets, we demon-

strate that RASER shows the best mapping precision compared with

other popular read mapping algorithms. The performance of

RASER remains high for both short and long reads, which is also ro-

bust to mismatches and indels in the reads. Importantly, RASER

shows superb efficacy in unbiased mapping of the alternative alleles

of SNPs and in identification of RNA editing sites.

2 Methods

2.1 Building index
The index is a data structure that stores positions of specific nucleo-

tide sequences within the reference and returns them during the read

alignment search. For most DNA or RNA-Seq read aligners that re-

quire an index of the reference sequence, efficient storing and load-

ing of the index are among the most important factors that facilitate

accurate and fast alignment. One of the key features of the RASER

index is that the length of indexed reference sub-sequence increases

as it occurs more frequently in the reference, which reduces ambigu-

ity in mapping of a read from the repeated regions. This feature en-

ables reduction of processing time while maintaining sensitivity to

resolve repetitive or homologous regions.

RASER index is composed of 4s trees as shown in Figure 1 where

s is the predefined length of sequences corresponding to the root

node (s¼8 in Fig. 1). The trees in the index have several properties.

First, the root node of each tree is assigned with quaternary numbers

to represent its associated sequence, where A¼0, C¼1, G¼2 and

T¼3. We denote this quaternary number as qnum hereafter. A node

with qnum N can have four child nodes whose qnums are

(N x 4þ0)� (N x 4þ3). For example, if qnum of a node is GAC

(¼2014), then its child nodes have qnums GACA (¼20104), GACC

(¼20114), GACG (¼20124) and GACT (¼20134).

Second, the tree structure is intuitively defined in terms of levels.

For example, the level of a root node is defined as 0, and its child

node is defined as level 1 and so on. The maximum level of a tree is

set to be 16. The level of a node can thus be calculated as (number

of digit of qnum – s).

Third, a terminal or leaf node with qnum¼N and level¼ v

stores positions of all reference sequences whose first (vþ s) nucleo-

tides are calculated as N. A node is a terminal or leaf node if it

stores�32 reference positions or its level reaches the maximum

v¼16. Nodes that do not meet the leaf node definition are split into

four child nodes, according to qnums calculated from the first

(vþ sþ1) nucleotides of the sequences. For example, a node with

qnum ‘GAC’ stores positions of ‘GAC . . . ’ within the reference se-

quence if it is a leaf node. If the number of stored positions is >32

and the level is <16, positions of ‘GACA . . . ’, ‘GACC . . . ’,

‘GACG . . . ’ and ‘GACT . . . ’ are stored to the child nodes (if they are

leaf nodes) whose qnums are ‘GACA’, ‘GACC’, ‘GACG’ and

‘GACT’, respectively.

According to the properties described above, the reference se-

quence of length (sþ16) at every k bases are indexed to the trees,

where k is a user parameter whose default value is 4 (see below).

The indexing process starts with trees whose qnum is equal to its

first s bases and the tree branches are extended according to the

rules defined above. The structure of the index and its building pro-

cedure are briefly illustrated in Figure 1.

Fig. 1. Index building. sþ 16 bases at every k steps of genome and/or tran-

scriptome reference sequences are indexed, where s and k are user param-

eters with default values 8 and 4, respectively. Nodes of level (lv) n (n>0)

store positions of sequences of length (sþn) within the reference. For ex-

ample, the positions of ‘AACTGCTTT’ are stored in the lv1 node (which is a

leaf node). The node is a leaf node if the number of stored positions is <32 or

the maximum number of levels (16) is reached. See text for details
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The variable s is a user-defined parameter with a default value 8,

which is recommended for the human genome. For genomes with

smaller size, the value of s can be reduced. In general, a smaller s

leads to smaller index sizes. However, if s is too small, alignment

may become inefficient because smaller s leads to a decrease in the

total number of nodes in the index tree and thus increases ambiguity

in the mapping of reads originated from repetitive regions. The vari-

able k is also a user parameter. Smaller k leads to larger index but

can enable more accurate mapping. We recommend setting k to 4

for the human genome. It should be noted that the maximum level

of the tree and the maximum number of positions stored in the

nodes are fixed as 16 and 32, respectively. These variables are not

user-defined parameters, because their optimal values are not sensi-

tive to application-specific parameters such as the size of the refer-

ence genome or read length.

Using the above indexing scheme, two or more heterogeneous

types of references, such as the genome and transcriptome, can be

indexed together. The size of the index file is about 5.7 GB for hg19

only and 6 GB for hg19 and Encode transcriptome, using default

user parameters. For all applications included in this article, an

index of hg19 was used.

2.2 Read mapping
The first step to map a read is to apply a sliding window on the read

sequence with a window size of (sþ16) and a step size of 1. Next, a

root node is identified whose qnum is the same as the first s bases of

the windowed (sþ16) read sequence. The tree branch of this root

node that matches the ensuing nucleotides of the read sequence is then

identified up to the leaf node. If assuming the level of the leaf node is

n, positions stored in this leaf node correspond to reference sequences

identical to the first (sþn) bases of the windowed read sequence. If a

windowed read sequence contains ‘N’, it is ignored. This process is

illustrated in Figure 2a. Note that if reference positions of all the win-

dows of a read (pair) are obtained from leaf nodes (which may have

far more than 32 reference positions), RASER terminates the mapping

process and reports this read (pair) as unmapped. This ‘early termin-

ation’ procedure aims to reduce mapping time. Since such reads map

to many positions in the reference, they will not be useful for applica-

tions that seek for unique or ‘obviously best’ mappings such as in the

detection of SNPs or RNA editing sites. Thus, this procedure does not

reduce the amount of final usable reads.

Once the positions of a windowed read sequence are obtained, we

extend these initial mappings as illustrated in Figure 2b. Such an ex-

tension is performed in both backward and forward directions. The

pseudo-code for this process is given in Figure 2c. The variable mr

(mismatch ratio) is a user-defined parameter with a default value of

0.08. The maximum total number of mismatches, insertions and dele-

tions allowed in a mapped read is calculated as ‘read length x mr’. A

score is calculated for each read position in the extension regions to

represent the goodness of match of the extended read sequence (Fig.

2c). Mismatches (nmis) increase this score, but the score can still be

small if the mapping size (¼ len) is large enough. In contrast, inser-

tions or deletions are not considered in the extension step to avoid an

inflation of the score due to possible existence of ensuing mismatches

after indels. In the example shown in Figure 2b, read positions 6-14

were initially mapped to chr1:49362–49 370 based on the index tree,

which are marked in blue. Following backward and forward exten-

sion, read positions 1–25 was mapped to chr1:49357–49381.

Hereafter, we denote this mapped sequence as a fragment.

After getting all the fragments of a read, the next step is to merge

the fragments. If there are no insertions, deletions or clustered mis-

matches, many identical fragments are generated from the read.

These duplicated fragments are discarded. For the remaining frag-

ments, multiple scenarios may exist that call for different merging

methods. Given two fragments ‘chr:A-B, a-b’ and ‘chr:C-D, c-d’

where A<D, the distance between them is C - B. If this distance is

less than or equal to ‘read length x mr’, we assume that there are

short deletions in the read relative to the reference and merge these

fragments into a contiguous mapped region as in Figure 2d.

Otherwise, we assume that the read spans an intron or large inser-

tions in the reference and merge the fragments as illustrated in

Figure 2e. For the latter case, RASER determines the best alignment

using the known GT-AG or GC-AG splicing site sequences. If splice

site signals are not found, the best alignment that results in the least

number of mismatches and indels is chosen using the Smith–

Waterman algorithm (Smith and Waterman, 1981). The maximum

intron length is assumed to be 200 000 nt.

Fetching positions from the index is indeed an exact mapping pro-

cess between windowed sequence of a read and positions within the

Fig. 2. Read alignment. (a) Sliding windows are applied to a read with a window size sþ16 and step size 1. Genomic positions stored in the index are retrieved

using the windowed sequence as illustrated. (b) An example to illustrate the extension process for a specific window with sequence ‘AACTGCTTT’ (blue) that

was aligned to position 49362. The extension was carried out in both backward and forward directions. Mismatches and indels are labeled in red. (c) Pseudo code

for the extension process in (b). (d) Merging of two fragments whose distance is less than the allowed number of insertions or deletions. Individual fragments are

labeled in red. (e) Merging of two fragments whose distance is greater than the allowed number of insertions or deletions, which are examined as candidate

spliced junction reads. Splice sites are determined using the GT-AG or GC-AG rules
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reference, since this step does not allow mismatches or indels.

However, given the sliding read window and the merging process of

fragments, RASER is flexible enough to allow mismatches and indels.

The score of an alignment is defined as ‘the number of mis-

matches and indels/read length’. Only alignments with scores � mr

are reported (after read pairing if the sequencing data are paired

end). Note that we apply the above mapping procedure to a read se-

quence and its reverse complement sequence separately.

2.3 Additional mapping schemes
The ‘double-filtering’ scheme (Bahn et al., 2012) is internally imple-

mented in RASER and is an option that can be turn on or off by the

user. As mentioned in Section 1, it is a mapping scheme where a

read (pair) should be uniquely mapped with score less than or equal

to mr and not mapped to anywhere in the reference with score more

than df which is another user-defined parameter. Because a read

(pair) with multiple aligned positions with less than ‘read length x

mr’ mismatches is filtered out (failing the uniqueness requirement),

it is not necessary to search for all the candidate mapping positions

once two such alignments are reached, which leads to an accelerated

alignment process.

RASER also implements an alternative new mapping scheme,

namely ‘obviously best’, as an optional scheme to the user. By defin-

ition, this scheme finds the ‘obviously’ best mapping of a read (pair),

whose mismatch score is less than or equal to mr and also less than

scores of all other mappings by ob which is a user-defined param-

eter. Different from double filtering, this scheme necessitates a

search of all possible candidate mappings with the larger mismatch

ratio (mrþob). This additional step somewhat slows down the

alignment process but maximizes the mapping rate and minimizes

false-positive mappings, as detailed in Section 3.

3 Results

3.1 Description of the experimental settings
We evaluated RASER using both simulated and actual RNA-Seq

datasets. For simulated reads, we used BEER (Grant et al., 2011) to

generate 1 million (M) paired-end reads of length 50, 100, 150 and

200 bases, respectively, each with three settings (thus, a total of 12

sets of simulated reads). The three settings (named SIM1, SIM2 and

SIM3) represent three levels of sequencing errors: with a substitution

rate of 0.001, 0.005 and 0.01 and an indel rate of 0.0005, 0.0025

and 0.005, respectively. Thus, SIM3 corresponds to the largest level

of sequencing errors. The simulation used transcript annotations

combining 10 annotation tracks including UCSC, RefSeq, RefSeq-

Other, Ensembl, Vega, AceView, GenScan, GeneID, NSCAN and

SGP (http://cbil.upenn.edu/BEERS/).

For real RNA-Seq data, we used three datasets referred to as

GM12878, K562 and YH. The first two datasets were obtained by

the ENCODE project that includes a total of 223 M and 213 M

paired-end reads (2�76 nt) of the human lymphoblastoid and K562

cell line (polyAþ cytoplasmic RNA), respectively (ENCODE Project

Consortium, 2012). The third dataset YH was derived from lympho-

blastoid cells of a Chinese individual (Peng et al., 2012) encompass-

ing a total of 131 M paired-end (2�75 nt) and 30 M paired-end

(2�100 nt) reads (polyAþRNA).

For both simulated and real datasets, we compared the perform-

ance of RASER with three state-of-the-art reads aligners, STAR

2.3.0 (Dobin et al., 2013), Tophat 2.0.9 (Kim et al., 2013) and

GSNAP 2014-01-21 (Wu and Nacu, 2010). We also included

NOVOALIGN (http://www.novocraft.com/products/novoalign/) in

some analyses of simulated datasets. For all aligners, we used default

parameters except that the maximum number of allowed mis-

matches was set to be 4 per 50 bases of read (e.g. mr¼0.05 for

RASER). Specific to RASER, we used –d 0.09 for ‘double-filtering’

and –b 0.03 for the ‘obviously best’ mapping scheme. Unless other-

wise noted, we used RASER with the ‘obviously best’ mapping

scheme. For other aligners, unique mapping results were reported

for all datasets. All read alignments were carried out against the

human reference genome (hg19). Mapping results for all datasets

are included in Supplementary Table S1.

3.2 Comparison of mapping performance
First, we compared mapping accuracy of different aligners using the

12 sets of simulated reads as described above (Fig. 3a). Mapping ac-

curacy (i.e. precision) is defined as the percentage of correctly

mapped among all mapped reads. A read is considered correctly

mapped if more than 80% (Fig. 3a) or 50% (Supplementary Fig.

S1a) of its nucleotides are mapped to their true positions. RASER, in

its default mode (‘obviously best’ scheme, aka, OB), shows highest

precision for all simulated datasets. The precision of RASER im-

proves for longer reads, which is not observed for GSNAP or STAR.

In addition, the precision of RASER is robust to sequencing errors,

whereas that of GSNAP or STAR deteriorates as sequencing error

increases. It should be noted that the precision of STAR is relatively

low (Fig. 3a) in this analysis due to excessive soft clipping.

However, its precision improves significantly if a lower % of

mapped nucleotides per read is required to call a correct mapping

(comparing Fig. 3a and Supplementary Fig. S1a). In general,

Tophat2 is quite accurate and robust to sequencing errors, possibly

at the cost of recall (see below).

RASER out-performs the second best aligner in precision by

0.1�0.5% which may appear to be small. However, incorrectly

mapped reads are enriched with those that lead to false positive or in-

accurate quantification of nucleotide variants (e.g. SNPs or RNA editing

sites). The advantage of RASER in these aspects is demonstrated below.

In an alternative mode that only retains uniquely mapped reads

(instead of OB), RASER again out-performs the others for most

simulated datasets, especially those with larger sequencing errors or

longer read length (Supplementary Fig. S1b and c). Since we imple-

ment three alternative mismatch filtering schemes [OB, unique (U),

and double filtering (DF)], we compared the performance of RASER

with these three schemes. The OB scheme shows superior mapping

precision than the other two schemes (Supplementary Fig. S1d) but

smaller recall (Supplementary Fig. S1e).

Another measure to evaluate the performance of aligners is re-

call, defined as the percentage of mapped reads (unique and non-

unique) among all reads. In this comparison, GSNAP shows the

highest recall values (Fig. 3b). Recall of RASER is lower compared

with GSNAP or STAR but much higher than that of Tophat2. The

lower recall of RASER is (at least partly) due to the early termin-

ation procedure described in Section 2 where reads expected to be

mapped to many genomic positions are not reported.

NOVOALIGN is another often-used aligner. Since it does not

directly map spliced junction reads, we excluded such reads in the

simulated datasets to enable a fair comparison. NOVOALIGN

shows relatively good recall but generally worse precision than other

algorithms (Supplementary Fig. S1f–h). Given its suboptimal preci-

sion and the limitation in handling spliced junction reads, we did

not include NOVOALIGN in further analyses.

A distinctive feature of RASER is manifested as the highest rate

of multiple mappings (defined as the percentage of multiply mapped
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reads among all reads), which is often twice as high as those of other

aligners (Supplementary Fig. S1i). In a related analysis, we compared

the rate of multiply mapped reads among those reads that are origi-

nated from repeats in the reference genome (Fig. 3c). RASER again

shows better performance than other aligners in capturing such non-

unique reads. By design, RASER aims to identify as many mapping

positions as possible for each read. This feature is important for

reducing false-positive mappings when combined with the ‘double-

filtering’ or ‘obviously best’ schemes, as it allows comparison of all

or almost all possible mapped positions of a read. Since mapping of

reads harboring SNPs or RNA editing sites is often complicated by

the presence of highly similar regions across the genome, this feature

of RASER enables improved performance in handling nucleotide

variants in the reads, as demonstrated below.

To evaluate the performance of different aligners against real

RNA-Seq data without ground truth, we examined the number of

reads mapped to the Y chromosome (chrY) in RNA-Seq data

derived from female cells: GM12878 and K562. Because of the ab-

sence of a Y chromosome in these cells, reads mapped to chrY

should be considered as false-positive mappings. In this case,

RASER (OB mode) out-performs the other aligners (unique map-

ping) considerably and yields the lowest number of false-positive

mappings and lowest rate of false positives (defined as the ratio

between the number of reads mapped to chrY and total number of

mapped reads) (Fig. 3d). The high false-positive rates of the other

aligners suggests that the Y chromosome harbors regions that have

sequence similarity to other chromosomes in the genome, which is

exacerbated by possible structural variations in the cancer cells

(K562). The superior performance of RASER roots from its effect-

iveness in identifying and handling non-uniquely mapped reads

when combined with the OB mismatch filtering scheme and its high

precision in general.

Lastly, we evaluated the performance of RASER in identifying

spliced junction reads resulted from RNA splicing. Two evaluation

metrics were calculated: recall (defined as the number of correctly

mapped junction reads/total number of reads with junctions im-

planted in each simulated dataset) and false discovery rate (FDR,

defined as the number of false-positive junction reads/total number

of mapped junction reads identified by an aligner). As shown in

Figure 3e, RASER has the lowest FDR for simulated reads of all

lengths, with comparable or lower recall than other aligners.

Applied to real RNA-Seq datasets, RASER demonstrates the highest

recall rates [defined as the number of perfectly or partially matched

junctions/total number of junctions in Gencode (v19) annotation]

for two of the three datasets (Supplementary Fig. S2). In addition,

RASER also identifies the largest number of annotated spliced

Fig. 3. Evaluation of mapping performance. (a) Comparison of precision (percentage of correctly mapped reads among all mapped reads) using simulated data-

sets of varying levels of sequencing errors (SIM1<SIM2<SIM3) and read length (in parenthesis of the x axis label). The mapping was deemed correct if more

than 80% of the nucleotides in a read were correctly mapped to their original genomic loci. The ‘obviously best’ scheme was used for RASER and unique map-

ping was required for the other aligners. Same below. (b) Comparison of recall [percentage of mapped reads (unique or non-unique) among all reads] using the

same simulated datasets as in (a). (c) Percentages of multiply mapped reads among all reads generated from repeats in the reference. (d) Percentage of reads

mapped to chrY among all mapped reads of GM12878 and K562 datasets (derived from female cells). The numbers above each bar correspond to the number of

mapped reads to chrY. (e) Identification of spliced junction reads. Simulated datasets as in (a) were analyzed. FDR is defined as (number of false-positive junction

reads/total number of mapped junction reads). Recall is defined as (number of correctly mapped junction reads/total number of reads with junctions implanted in

each simulated dataset). (f) The numbers of novel and annotated junctions detected by each aligner in real RNA-Seq dataset. Annotated splice junctions were

defined as those that match perfectly or with less than 5 base difference to Genecode v19 annotation. Novel splice junctions were defined as those that were not

included in the Gencode v19 annotation. For each junction, we required a minimum read coverage of 3 and a preference for canonical GT-AG or GC-AG splice

sites

3910 J.Ahn and X.Xiao

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv505/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv505/-/DC1


junctions in these datasets (Fig. 3f). Based on the above results for

both simulated and real datasets, RASER is advantageous in iden-

tifying spliced junction reads.

3.3 Quantification of single-nucleotide

expression in RNA-Seq
To evaluate the performance of RASER in quantifying SNVs in

RNA-Seq reads, we implanted known SNPs (from the YH and

GM12878 genomes) to the SIM1, SIM2 and SIM3 reads (read

length being 50, 100, 150 and 200 nts). For each read that contains

a known SNP, the probability for the SNP to have the reference or

alternative allele was set to be 0.25, 0.5 and 0.75 (ratio defined as

the number of reads containing the reference allele/total number of

reads covering the SNP). Following read mapping, customized

post-mapping filters were applied prior to calculation of allelic

ratios, including removal of duplicated mappings, removal of reads

where the mismatches (corresponding to SNPs) were (i) within 5 nt

of read ends or (ii) with Sanger base quality less than 30, and re-

moval of SNPs with less than 5 reads. We calculated allelic ratios

for the remaining mismatches. Subsequently, we calculated for

each SNP the absolute difference between its simulated allelic ratio

and the observed allelic ratio from mapped reads, where allelic

ratio is defined in the same way as described above (number of

reads containing the reference allele/total number of reads covering

the SNP). Thus, larger allelic ratio differences reflect increased

mapping bias to the alternative alleles of the simulated SNP. At dif-

ferent thresholds of allelic ratio difference (0–0.2), we determined

the FDR of SNP quantification as FP/(FPþTP), where FP and TP

are numbers of false and true positives, respectively. At each

threshold, a given SNP is defined as a true positive if its allelic ratio

difference is less than the threshold; otherwise, this SNP is a false

positive.

In this comparison, RASER offers the smallest FDR among all

aligners tested for 55 cases among 72 cases (76%) (Fig. 4 and

Supplementary Fig. S3). FDR of TOPHAT2 was smaller than

RASER for 12 out of 18 cases of 50 nt read sets and GSNAP yielded

smaller FDR than RASER for 5 out of the remaining 54 cases, but

the differences were subtle. It is expected that aligners often have

mapping bias favoring the reference allele. Consistent with this ex-

pectation, FDR was generally lower for 0.75 (higher proportion of

the reference allele) compared with that for 0.25 (smaller proportion

of the reference allele). More importantly, we observed that the dif-

ference in FDR between RASER and the second best aligner in-

creases as allelic probability decreases, which confirms that RASER

is less biased to reference allele. In addition, the allelic ratios resulted

from RASER are not significantly different from simulated ratios for

any dataset (P value>0.05, Kolmogorov–Smirnov test) except two

cases (SIM3 of Supplementary Fig. S4q and u), whereas other align-

ers often lead to significant deviations of allelic ratios from the

ground truth (Supplementary Fig. S4).

Applied to real RNA-Seq datasets, RASER also demonstrates su-

perior performance in reducing mapping bias to alternative alleles of

SNPs (Supplementary Fig. S5a and c). Using the two datasets derived

from cells with whole-genome sequencing data (GM12878 and

YH), we observed that the average allelic ratio of SNPs is closest to

the expected 0.5 (ratio defined as number of reads containing the

reference allele/total number of reads) for reads mapped by RASER.

In contrast, the results from GSNAP, TOPHAT2 and STAR are

more biased toward the reference allele (>0.5), which is a known

issue where read mapping favors the reference allele of heterozygous

SNPs since the reference genome was used.

The above analyses used the same customized post-mapping fil-

ters as described for simulated reads. As an alternative method for

SNP filtering, we used GATK with default parameters (DePristo

et al., 2011) to call SNPs based on the mapping results of each

aligner in analyzing GM12878 and YH datasets. Supplementary

Figure S5b and d show the distribution of allelic ratios of SNPs

called by GATK in each dataset. RASER again shows the most un-

biased results, which are similar to the distributions in

Supplementary Figure S5a and c that used the SNP calling filters we

implemented.

In addition, we evaluated the performance of the aligners in SNP

calling resulted from GATK. We counted true-positive and false-

positive SNPs and calculated FDR on SNP detection. True positives

were defined as correctly detected SNPs by GATK when compared

with known GM12878 or YH SNPs based on their respective gen-

ome sequencing data. False positives were defined as GATK-called

SNPs that satisfied all three requirements: (i) the predicted SNP was

not known GM12878 or YH SNPs; (ii) the predicted SNP was not

listed as known human editing sites in the RADAR database

(Ramaswami and Li, 2014) and (iii) the SNP was covered with more

than 20 reads in total. Although these ‘false positives’ could indeed

be true SNPs missed by genome sequencing or true RNA editing sites

not in RADAR, we can reasonably assume that they proportionally

represent the amount of wrong SNPs identified by each aligner.

For the YH data, RASER yielded the smallest FDR

(Supplementary Fig. S5f). For GM12878, RASER demonstrated

smaller FDR than GSNAP and STAR and slightly larger FDR than

TOPHAT2 (Supplementary Fig S5e). These results can be explained

by the fact that TOPHAT2 showed generally good performance for

Fig. 4. FDR in the quantification of allelic ratios of SNPs expressed in RNA-

Seq. SNPs were implanted in SIM1 data of (a) 100, (b) 150 bases in length.

SNPs in the YH (left panels) or GM12878 samples (right panels), both of which

had corresponding whole-genome sequencing data, were implanted into the

simulated reads. The ‘obviously best’ scheme was used for RASER and

unique mapping was reported from the other aligners. For a specific SNP, its

allelic ratio is defined as (number of reads containing the reference allele/total

number of reads covering the SNP). The allelic ratio difference of this SNP is

defined as the absolute difference between its observed allelic ratio and the

simulated allelic ratio. At different thresholds of allelic ratio difference (0–0.2,

x axis), the FDR of SNP quantification is defined as FP/(FPþTP), where FP

and TP are numbers of false and true positives, respectively. At each thresh-

old, a given SNP is defined as a true positive if its allelic ratio difference is

less than the threshold; otherwise, this SNP is a false positive
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short (50 bp) reads and GM12878 reads (76 bp) are shorter than

YH reads (100 bp). It should be noted that, although RASER has

slightly lower recall rate in read mapping (Fig. 3b), its sensitivity in

SNP calling is not lower than other aligners. As shown in

Supplementary Figure S5e and f, the number of true-positive SNPs

identified by RASER is often larger than those by other aligners.

3.4 Identification of RNA editing sites
Another application of single-nucleotide analysis of RNA-Seq data

is to identify RNA editing sites, which is gaining broad attention

in recent years (Lee et al., 2013). In previous studies, since read

mapping is not perfect, a series of post-mapping filters were de-

signed to remove likely false-positive editing sites resulted from

possible mapping artifacts (Lee et al., 2013). We thus applied these

artifact filters to the results of each aligner (see Supplementary

Fig. S6 legend). RASER yielded the highest % AG values in all

three datasets with or without these artifact filters (Supplementary

Fig. S6).

The %AG value represents percentage of A-to-G mismatches

among all predicted RNA–DNA differences. It is generally accepted

that higher the %AG, the better the accuracy of predicted editing

sites (Peng et al., 2012; Ramaswami et al., 2013). This is based on a

prevailing assumption in the field that A-to-I editing (leading to

A-to-G mismatches) should account for most of the observed editing

sites.

Another metric to evaluate performance of aligners is to calcu-

late an FDR defined as the percentage of originally identified editing

sites that were removed by the artifact filters (Lee et al., 2013). By

definition, these filters remove artifacts in the mapping results.

Thus, the more sites that were removed by the filters, the more arti-

facts there were in the original results.

To focus on the differences of the aligners, we segregated the pre-

dicted editing sites into those that were only identified by RASER,

only by the other aligner in comparison or by both RASER and the

counterpart aligner. We calculated the %AG (post-filtering) and

FDR for each subset of editing sites (Fig. 5 and Supplementary Fig.

S7). The results showed that RASER out-performs the other aligners

in terms of both %AG and FDR for all three datasets included in

this study.

It should be noted that editing sites common to RASER and an-

other aligner generally had lower FDR than sites that were specific

to one aligner (Supplementary Fig. S7c and d), except in the YH

data where RASER-specific sites had the lowest FDR (Fig. S7e). This

observation is consistent with the expectation that results common

to multiple aligners should be highly accurate, which in one way

confirms the validity of our method to evaluate accuracy (i.e. by

FDR). It should also be noted that RASER normally identifies less

editing sites than the other aligners (Supplementary Fig. S7c–e).

However, because those sites that were unique to the other aligners

had high FDR, RASER’s performance in accuracy outweighs its

somewhat lower sensitivity because improved accuracy is highly de-

sirable in editing analysis.

3.5 Evaluation of running time and memory
We compared running time of different aligners for 12 simulated

datasets on a machine with Intel (R) Xeon (R) CPU E5-2680 v2 at

2.80 GHz�40, and 256 GB of memory (Table 1). In general, run-

ning time of RASER is similar to that of TOPHAT2 (slightly faster

than TOPHAT2 if the read length�100 bases and somewhat slower

otherwise). RASER with the OB mapping scheme is slower than

RASER without any mapping scheme or with the DF scheme. This

is because OB mapping requires a search for all the possible candi-

date mappings with a large mismatch ratio (mrþob). As expected,

STAR shows extraordinarily short running time. GSNAP is rela-

tively slow for short read length (50 nt), but the running time is im-

proved for longer read length (100–200 nt). For memory, RASER

required less than 50% of memory than GSNAP or STAR.

TOPHAT2 is the most memory efficient but with increased memory

requirement for longer reads. Supplementary Figure S8 shows a vi-

gnette-like example flow of RASER.

Fig. 5. Identification of RNA editing sites in K562 data. The ‘obviously best’

scheme was used for RASER and unique mapping was reported from the

other aligners. Editing sites that were only identified by RASER (‘RASER

only’) or by the other aligner were analyzed. Percentage of A to G editing sites

(blue) and FDR values (red) are shown. FDR is defined as the percentage of

originally predicted editing sites that were removed by the artifact filters.

These filters remove RNA–DNA differences sites that satisfy one of the fol-

lowing: (i) covered by reads with a strand bias, (ii) with 100% editing, (iii) with

low-editing levels (<10% or <3 edited reads), (iv) close to splice sites

(i.e. �4 nt from spliced junctions), (v) within simple repeats (defined by

Repeatmasker), (vi) within homopolymer repeats (Repeatmasker) and (vii)

overlapping known SNPs in public databases (dbSNP) (see Lee et al., 2013 for

details)

Table 1. Runtime and memory benchmark results

Read

length

Algorithm Runtime (s) Memory

(GB)
SIM1 SIM2 SIM3

50 RASER 592.6 587.28 618.9 10.8

RASER DF 625.07 617.85 639.6 10.8

RASER OB 706.51 698.05 721.27 10.8

GSNAP 1869.37 1657.21 3310.93 24.8

STAR 9 11 10 28.9

TOPHAT2 636 618 638 4.3

100 RASER 724.93 748.41 768.43 10.8

RASER DF 854.06 899.75 919.89 10.8

RASER OB 951.95 1013.68 1021.67 10.8

GSNAP 549.58 366.21 482.04 24.8

STAR 11 13 15 28.9

TOPHAT2 814 858 921 4.8

150 RASER 1143.79 1241.51 1262.79 10.8

RASER DF 1502.06 1641.47 1557.84 10.8

RASER OB 1644.49 1800.12 1687.85 10.8

GSNAP 1015.73 848.68 1294.81 24.8

STAR 23 25 32 28.9

TOPHAT2 1085 1189 1252 5.3

200 RASER 1682.08 1789.76 1812.85 10.8

RASER DF 2278.6 2341.39 2411.74 10.8

RASER OB 2542.26 2580.5 2657.54 10.8

GSNAP 849.71 867.47 1773.6 24.8

STAR 25 31 42 28.9

TOPHAT2 1361 1508 1651 5.9

Comparison performed using 1 M reads, eight threads for each algorithm.

There was no difference in memory usage for different sets of simulated data-

sets. RASER DF, RASER with double filtering; RASER OB, RASER with ob-

viously best mapping.
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4 Discussion

Accurate and unbiased identification and quantification of SNPs or

RNA editing sites using RNA-Seq data proved to be challenging

tasks (Degner et al., 2009; Heap et al., 2010; Lee et al., 2013;

Pastinen, 2010). These challenges call for an in-depth analysis of the

performance of short read aligners in handling SNVs and develop-

ment of new aligners tailored for this purpose. Because of existence

of sequence similarity across different regions of a genome, false-

positive mappings may occur where reads originated from one

region align to another region by mistake with a small number of

mismatches. These mismatches are then exploited in subsequent

analysis for studies of SNPs or RNA editing. Mapping errors may

only affect a relatively small number of reads. However, since the

total number of reads harboring true SNVs is expected to be small

relative to all reads of a dataset, those incorrectly mapped reads

often constitute a considerable portion of reads used to analyze for

SNPs or RNA editing sites. Therefore, these applications call for

very accurate read mapping.

To tackle this problem, we reason that if an aligner can find all

or almost all mapping positions of a read, these results can then be

examined strategically to exclude ambiguous mappings and

reduce false-positive rate. RASER was designed according to this

rationale. In contrast, existing aligners do not generally report all

or almost all mapping positions of a read, thus impractical to be

combined with the OB or DF schemes integrated into RASER. We

showed that RASER can effectively identify repeat-generated

reads as multiply mapped reads and its mapping precision is higher

than other popular aligners. Although RASER outperforms

other aligners in overall mapping precision by a small margin, this

seemingly small improvement enabled considerably better results

in the analyses of SNPs and RNA editing sites. This observation is

again due to the sensitivity of such analyses to incorrectly mapped

reads that contain apparent mismatches relative to the reference.

In addition, RASER also demonstrates superior performance in

identifying spliced junctions, a critical aspect of RNA-Seq read

mapping.

Many aligners have been developed to map short reads generated

by high-throughput sequencing experiments. It is important to note

that different applications call for different aligners with specific

properties. RASER is appropriate for applications where accurate

mapping is highly desirable, especially if SNVs in the short reads are

sought after. The improved mapping precision of RASER is largely

resulted from its novel tree structure that reduces ambiguity in map-

ping of repetitive sequences and relatively complete search of all

possible mappings. Despite its extensive search for alternative map-

ping positions, RASER shows comparable mapping speed to

TOPHAT2 or GSNAP. Furthermore, RASER requires less memory

than GSNAP and STAR, which is a desirable feature for aligners in

parallel computing environments where memory usage is often an

important issue.

Note that RASER benefits from removing ambiguously mapped

reads for applications involving SNPs or RNA editing prediction.

Removal of ambiguous reads may not be advisable for other appli-

cations, such as transcript reconstruction where ambiguous reads

can be utilized (Pertea et al., 2015; Zickmann et al., 2014).
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