Skip to main content
. 2015 Aug 30;31(24):3906–3913. doi: 10.1093/bioinformatics/btv505

Table 1.

 Runtime and memory benchmark results

Read length Algorithm Runtime (s)
Memory (GB)
SIM1 SIM2 SIM3
50 RASER 592.6 587.28 618.9 10.8
RASER DF 625.07 617.85 639.6 10.8
RASER OB 706.51 698.05 721.27 10.8
GSNAP 1869.37 1657.21 3310.93 24.8
STAR 9 11 10 28.9
TOPHAT2 636 618 638 4.3
100 RASER 724.93 748.41 768.43 10.8
RASER DF 854.06 899.75 919.89 10.8
RASER OB 951.95 1013.68 1021.67 10.8
GSNAP 549.58 366.21 482.04 24.8
STAR 11 13 15 28.9
TOPHAT2 814 858 921 4.8
150 RASER 1143.79 1241.51 1262.79 10.8
RASER DF 1502.06 1641.47 1557.84 10.8
RASER OB 1644.49 1800.12 1687.85 10.8
GSNAP 1015.73 848.68 1294.81 24.8
STAR 23 25 32 28.9
TOPHAT2 1085 1189 1252 5.3
200 RASER 1682.08 1789.76 1812.85 10.8
RASER DF 2278.6 2341.39 2411.74 10.8
RASER OB 2542.26 2580.5 2657.54 10.8
GSNAP 849.71 867.47 1773.6 24.8
STAR 25 31 42 28.9
TOPHAT2 1361 1508 1651 5.9

Comparison performed using 1 M reads, eight threads for each algorithm. There was no difference in memory usage for different sets of simulated datasets. RASER DF, RASER with double filtering; RASER OB, RASER with obviously best mapping.