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SUMMARY

For aggregation tests of genes or regions, the set of included variants often have small total minor allele
counts (MACs), and this is particularly true when the most deleterious sets of variants are considered.
When MAC is low, commonly used asymptotic tests are not well calibrated for binary phenotypes and can
have conservative or anti-conservative results and potential power loss. Empirical p-values obtained via
resampling methods are computationally costly for highly significant p-values and the results can be con-
servative due to the discrete nature of resampling tests. Based on the observation that only the individuals
containing minor alleles contribute to the score statistics, we develop an efficient resampling method for
single and multiple variant score-based tests that can adjust for covariates. Our method can improve com-
putational efficiency >1000-fold over conventional resampling for low MAC variant sets. We ameliorate
the conservativeness of results through the use of mid-p-values. Using the estimated minimum achievable
p-value for each test, we calibrate QQ plots and provide an effective number of tests. In analysis of a case–
control study with deep exome sequence, we demonstrate that our methods are both well calibrated and
also reduce computation time significantly compared with resampling methods.
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1. INTRODUCTION

Recent advances in sequencing technologies have made it possible to investigate the role of rare
variants in complex diseases, and numerous statistical methods have been developed to identify rare
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variant associations. Many of the currently popular gene- or region-based multiple variants tests are
based on individual variant score statistics, which provide rapid computation and natural adjustment
for covariates (Lee and others, 2014). For example, variance component tests use the weighted sum of
squared individual variant score statistics as in C-alpha (Neale and others, 2011), SSU (Pan, 2009), and
SKAT (Wu and others, 2011). Many versions of burden tests (Li and Leal, 2008; Lin and Tang, 2011;
Madsen and Browning, 2009) are essentially equivalent to collapsing the individual variant score statistics.
Other examples include SKAT-O (Lee, Emond, and others, 2012; Lee, Wu, and others, 2012) and Fisher
method (Derkach and others, 2012; Sun and others, 2013).

For a given gene or region, the number of variants tested together and the total of their minor allele
counts (MACs) can vary due to the sequence or genotyping coverage of the gene, the class of variants
tested, and the sample size. In the context of gene-based tests, we use MAC to refer to the total MAC of
all variants in a tested set (i.e. the sum of the MAC of the rare, low, and common frequency variants in the
set) and in the context of single variant tests, MAC refers to the single variant MAC.

In exome-sequencing studies, one approach (among many) is to test disruptive or predictively damaging
variants (Zuk and others, 2014). These tend to be very rare and tests based on these variants often
have sets of variants with very small total MACs (MAC � 40). Asymptotic-based score tests for a
single variant with small MAC, however, yield conservative results under a balanced case–control
design, and anti-conservative results under an unbalanced case–control design (Ma and others, 2013).
This lack of calibration can lead to lack of calibration in gene- or region-based asymptotic score tests.
A moment-based adjustment (MA) was developed to improve the Type I error control when testing vari-
ant sets with low MAC; however, this approach is also based on the asymptotic properties of the tests
(Lee, Emond, and others, 2012; Lee, Wu, and others, 2012) and may be less well calibrated, when testing
for very low MAC variant sets. An alternative approach would be to perform experiment-wise permutation
to control family wise error rate by obtaining the empirical distribution of asymptotic p-values across vari-
ant sets (Kiezun and others, 2012). However, because the degree of miscalibration for asymptotic p-values
can vary by MAC, this approach may have reduced power to detect specific classes of causal multiple
variant sets.

Resampling methods, such as permutation tests, do not rely on the asymptotic properties of the test
(Efron and Tibshirani, 1994). Permutation tests for genetic data often permute case and control status with-
out regard to differential odds of individual being a case based on covariates. This approach can result in
the inflated Type I error rates in the presence of confounding covariates, such as population stratification
(Epstein and others, 2012). In a more nuanced approach, permutations can be performed within strata of
one or more covariates, such as geographical region, so the underlying null distribution provides a better
match to the observed test statistic (Purcell and others, 2007). In the presence of continuous covariates,
such as principal components which are used to adjust for population stratification, Fisher’s noncentral
hypergeometric distribution-based permutation can be performed, allowing for individuals to have differ-
ent odds of being selected as a case (Efron and Tibshirani, 1994; Fog, 2008). The major limitation of the
permutation approach is that disease status is permuted across all study participants, requiring signifi-
cant computational cost, which increases as sample sizes become larger. Adaptive permutation procedures
can reduce computational time for the estimation of large or moderate p-values (Efron and Tibshirani,
1994), but substantial time is still required to estimate highly significant p-values. In addition, permuta-
tion p-values tend to be conservative for binary traits with small MAC, since test statistics are discrete
(Lancaster, 1961).

In this paper, we develop an efficient resampling (ER) method for score statistic-based single and mul-
tiple variant tests that improves computational efficiency. Our method is based on the insight that only
individuals with minor alleles (assuming the minor allele is coded as one) contribute to the score test.
Instead of permuting case–control status across all individuals, resampling can be performed by resam-
pling the case–control status of individuals with a minor allele at a given variant (for a single variant test),
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and similarly, individuals with minor alleles at any included variants (for a multiple variant test). Within the
group of individuals with minor alleles, we allow for covariate adjustment through the use of Fisher’s non-
central hyper-geometric distribution (Epstein and others, 2012; Fog, 2008). The computational time for
the ER method increases as the MAC increases, so we developed a method for moderate to high variant
set MAC (MAC > 40) in which quantiles of the test statistics are estimated through ER (based on a more
limited number of permutations) and then used to better-calibrate our moment-matching approximation
quantile adjustment (QA).

Furthermore, we develop statistical approaches to calibrate the discrete nature of test statistics. Using
the ER method, we obtain mid-p-values (Lancaster, 1961). We estimate the lower limit of p-values for each
variant set (minimum achievable p-values (MAP)) (Kiezun and others, 2012), using the exact resampling
distribution. We use the MAP to estimate the effective number of tests and to calibrate quantile–quantile
(QQ) plots. Through simulation-based work and analysis of deep exome sequencing data, we demonstrate
that the ER-based methods and calibration approaches are computationally efficient, control the false-
positive rate (FPR) and can improve power.

2. METHODS

2.1 Statistical model and rare variant tests

To understand currently used rare variant tests, suppose that n subjects are sequenced with ncase diseased
individuals. The region being tested has p variant loci. For the i th subject, let yi denote a binary phenotype,
Gi = (gi1, . . . , gip)

′ the number of copies of the minor allele (gi j = 0, 1, 2), and X i = (xi1, . . . , xiq)
′ the

covariates. MAC is defined as the sum of all genotype values, MAC = ∑n
i=1

∑p
j=1 gi j . To relate geno-

types to binary phenotypes, we posit the logistic regression model, logit(πi ) = α0 + X ′
iα + G′

iβ, where
πi is a disease probability, α0 is the intercept, and α = (α1, . . . , αq)

′ and β = (β1, . . . , βp)
′ are regression

coefficients of covariates and genetic variants, respectively. A score statistic from a marginal model of
variant j is

Sj =
n∑

i=1

(yi − π̂i )gi j (2.1)

where π̂i is an estimate of πi under the null model H0 : β = 0. For single variant tests, S2
j is the score test

statistic of variant j and follows a (scaled) χ2 distribution with df = 1. Many popular gene- or region-based
tests are also based on Sj . For example, Burden and SKAT test statistics can be written as a weighted linear
and quadratic sum of Sj

QBurden =
⎛
⎝

p∑
j=1

w j S j

⎞
⎠

2

; QSKAT =
p∑

j=1

(w j S j )
2

where w j is a weight for variant j . SKAT-O combines Burden test and SKAT using the following frame-
work as Qρ = (1 − ρ)QSKAT + ρQBurden. Since the optimal ρ is not known in prior, SKAT-O uses the
minimum p-values over a grid of ρ as a test statistic.

2.2 ER method

In this section, we present the ER method for rare variant score tests with binary traits. We describe
the generation of B resamples to estimate the following four probabilities of the gene or region-based
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association test statistic Q, which is a function of Sj ( j = 1, . . . , p), given genotypes (G), phenotypes (Y )
and covariates (X ):

(1) ER p-value: PER = Pr(Q � Q̂|Y, G, X)

(2) ER mid-p-value: PER-mid = Pr(Q � Q̂|Y, G, X) − 0.5Pr(Q = Q̂|Y, G, X)

(3) ER minimum achievable p-value: MAPER = Pr(Q = Q̂max|Y, G, X)

(4) ER minimum achievable mid-p-value: MAPER-mid = Pr(Q = Q̂max|Y, G, X)/2

where Q̂ is a test statistic from the original phenotype, and Qmax is the maximum of all possible permu-
tation test statistics. Let m (<n) be the number of individuals with minor alleles in the gene or region,
m = ∑n

i=1 I (
∑p

j=1 gi j > 0), where I (·) is an indicator function. It is apparent that m is smaller than or
equal to MAC. From Equation (2.1), only individuals with minor alleles contribute to Sj , since the remain-
ing individuals have zero genotype values for all of their loci. This observation allows us to reduce the
computation time by restricting resampling to the case–control status of those m individuals only, rather
than using all n individuals. To estimate ER p-values, we use a two-step approach that is based on the fact
that p-value can be factorized as

Pr(Q � Q̂|Y, G, X) =
m∑

d=0

Pr(Q � Q̂|D = d, Y, G, X)Pr(D = d|Y, G, X)

where D is the number of cases among m individuals carrying a minor allele in the tested region.
Step 1 is to estimate Pr(D = d|Y, G, X). If there are no covariates to adjust for, D follows the central-

hypergeometric distribution. When there are covariates to adjust for, we use Fisher’s noncentral hypergeo-
metric distribution, which allows each individual to have different odds of being a case (Fog, 2008). Since
estimating Pr(D = d|Y, G, X) while allowing all individuals to have different odds is computationally
challenging, we propose to stratify the m individuals into groups based on π̂i and to assume an average
common odds for all individuals within the same stratum. The n − m individuals without variants are
treated as a single group (Supplementary Appendix A). The only use of this stratification is to estimate
Pr(D = d|Y, G, X) for the m individuals in Step 1. We used 10 strata for the m individuals, for a total of
11 strata.

In Step 2, we estimate Pr(Q > Q̂|D = d, Y, G, X) by generating Bd = B × Pr(D = d|Y, G, X) per-
mutations of the case–control status of m individuals. Suppose S(b)

jd is the bth resample of Sj given

D = d, and Q(b)
d is the resulting test statistic Q. Examples of Q(b)

d include the resampled Burden and

SKAT test statistics, Q(b)
Burden,d = (

∑p
j=1 w j S(b)

jd )
2

and Q(b)
SKAT,d = ∑p

j=1(w j S(b)
jd )2. The probability for the

bth resample given D = d, say Pdb, is also calculated using Fisher’s noncentral hypergeometric distribu-
tion at the level of each individual in m (rather than the level of strata as in Step 1). Then the estimator of
Pr(Q � Q̂|D = d, Y, G, X) is

∑Bd
b=1 I (Q(b)

d � Q̂)Pdb and the ER p-value is

PER =
m∑

d=0

Bd∑
b=1

I (Q(b)
d � Q̂)Pdb Pr(D = d|Y, G, X).

The estimator of ER-mid p-value is

PER-mid = PER − 0.5
m∑

d=0

Bd∑
b=1

I (Q(b)
d = Q̂)Pdb Pr(D = d|Y, G, X),



Efficient resampling for rare variant tests 5

where the second term is an estimator of the tie probability. Suppose Qmax is the maximum of over all b
and d (i.e. Qmax = max Q(b)

d ). Then, estimators of MAPER and MAPER-mid are

MAPER =
m∑

d=0

Bd∑
b=1

I (Q(b)
d = Qmax)Pdb Pr(D = d|Y, G, X); MAPER-mid = MAPER/2.

The detailed derivations of Steps 1 and 2 are given in Supplementary Appendix A.
The computational complexity of the proposed method is O(Bmp) for SKAT and SKAT-O, and O(Bm)

for single variant and Burden tests, respectively. The computation complexity can be further reduced if
the total number of configurations of case–control status (CT ) is small. For example, the total number of
configurations of case–control status is 1024 when m = 10, indicating that we only need to evaluate 1024
possible configurations to obtain the exact resampling distribution. We note that we estimate MAPs when
the exact resampling distribution is obtained (i.e. B = CT ); otherwise, the MAP estimates are not accurate.
Since the computational cost of ER increases as m increases, it may not be practical to use ER for variant
sets with moderate or large MAC. We develop ER-based QA moment matching (Supplementary Appendix
B) for these variant sets, which produces more accurate p-values than the moment matching adjustment
and yet provides fast computation for moderate or large MAC variant sets.

Because Bonferroni correction and QQ plots assume that p-values have a uniform distribution,
they cannot correctly account for the fact that resampling p-values have lower limits, i.e., the MAPs.
Kiezun and others (2012) proposed a heuristic approach in which to first identify variant sets with
MAP < 0.001, and to count only these variant sets as the effective number of tests. We developed an alter-
native statistical approach to estimate the effective number of test and calibrating QQ plots using MAP
(Supplementary Appendix C).

2.3 Numerical simulations

We generated 10 000 sequence haplotypes for an ∼250 kbps region using a coalescent simulator FTEC
(Reppell and others, 2012) with a faster-than-exponential growth model. In order to make variant sets
having wide-ranges of MAC, we randomly selected a regions ranging from 125 to 12 500 bps, and then
generated genotypes of variant sets using the simulated haplotypes. Three different case–control ratios
were considered (1000:1000, 500:1500, and 500:1500). The binary phenotypes were generated from the
logistic regression model:

logitP(Y = 1) = α0 + α1 X1 + α2 X2 + G ′
causalβcausal (2.2)

where Gcausal is a genotype vector containing causal variants, βcausal is a vector of genetic effect coefficients,
X1 was a binary covariate of Bernoulli (0.5), and X2 was a continuous covariate of N (0, 1). The intercept
α0 was chosen for the disease prevalence of 0.05. The non-genetic covariate coefficients α1 and α2 were 0
without covariates and 0.5 with covariates.

We applied five different methods to compute p-values for each of the Burden, SKAT and SKAT-O tests:
(i) ER with a p-value (ER); (ii) ER with a mid-p-value (ER-mid); (iii) QA moment matching; (iv) moment
matching adjustment (MA); and (v) unadjusted (UA) asymptotic tests. To verify that ER and the whole-
sample permutation methods produce essentially identical p-values, we generated 20 000 variants sets and
compared the p-values from ER and the permutation methods with and without covariates by generating
105 resamples (Supplementary Appendix E). We also compared computation times of SKAT-ER with
whole-sample permutation for m = 40 and total sample sizes ranging from 100 to 50 00 0 (Supplementary
Appendix E).



6 S. LEE AND OTHERS

To compare the FPR for different ranges of total MAC, we considered six total MAC bins: MAC �
10; 10 < MAC � 20; 20 < MAC � 40; 40 < MAC � 100; 100 < MAC � 200; and 200 < MAC � 500. For
each bin, we used ranges of the number of variant sets K = 5 to 20 000, corresponding to candidate gene
studies to genome-wide studies. In addition to FPR simulations, we carried out simulations to evaluate
the power of ER and other tests. Details of FPR and power simulations can be found in Supplementary
Appendix E.

3. RESULTS

3.1 Numerical simulations

We examine the FPR control, power, and computational time of two existing approaches, the MA and
UA p-value, and three newly developed ER-based methods, ER with p-value (ER), ER with mid-p-value
(ER-mid), and the ER-based quantile adjustment (QA) for single variant and multiple variant tests across a
range of MAC and case–control imbalance. For simulation-based data, we generated sequence haplotypes
with a European demographic model that mimics the MAF spectrum and linkage-disequilibrium (LD)
structure of the current European population (Reppell and others, 2012). The MAF spectrum of simulated
haplotypes was similar to that observed for the GoT2D exome sequencing data (Supplementary Figure S1).

3.1.1 Comparison of p-values obtained using ER or whole-sample permutations. We compared SKAT
p-values for 20 000 variant sets with total MAC � 40 using the ER method to those obtained from whole-
sample-based permutation, either in the absence of covariates (permutation of case–control status) or in
the presence of covariates (using Fishers noncentral hypergeometric distribution). The −log 10 p-values
were very highly correlated (r > 0.99) for tests with and without covariates, indicating that the ER-based
results mirror those obtained from whole-sample-based permutation methods (Figure 1). We observed
equally concordant p-values for Burden and SKAT-O tests (data not shown).

3.1.2 Comparison of computational times for the estimation of a significant gene-based p-value. To
compare the computation times for a significant gene-based p-value (0.05/20 000 genes), we generated
107 resamples for each method for a single variant set. This allows us to estimate a p-value = 2.5 × 10−6

with a standard error ∼0.2 of 2.5 × 10−6. When 40 individuals have minor alleles (MAC equal or slightly
higher than 40), SKAT-ER with no covariates ran in ∼10 s and the computation times were invariant to
sample size (100–50 000 samples). In contrast, for SKAT whole-sample permutations (SKAT-Perm), the
computation time increased linearly with total sample size, from 0.35 to 10 h for 2000 and 50 000 samples,
respectively (Figure 2(a)). With covariates, SKAT-ER also ran in ∼10 s and was invariant to sample size,
whereas SKAT Fisher’s noncentral hypergeometric distribution-based whole-sample permutations (SKAT-
FNHPerm) using the BiasedUrn R-package took >10 h for 2000 samples (Figure 2(b)). The running times
for SKAT-ER-mid were nearly identical to those for SKAT-ER (data not shown). In existing programs, 107

resamples of 2000 (50 000) samples with no covariates took 6 min (3.6 h) for C-alpha in PLINK/SEQ (and
substantially longer for SKAT), and with covariates, took 6.4 h (>240 h) in SCORE-Seq using the offered
set of 5 gene-based tests (Supplementary Table S1).

In contrast to the invariance by sample size, the computation time for ER increased with increasing
number of individuals with minor alleles. For a single test with covariates, when the number of individuals
with minor alleles m = 10, 40, 100, and 500, SKAT-ER took 0.01, 10, 58, and 310 s; the burden test was
faster and SKAT-O slower (Figures 2(c) and (d); Supplementary Table S2). When m � 20, computation
took substantially less time because the total number of configurations of cases and controls among those
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Fig. 1. Comparison of SKAT p-values obtained using ER or whole-sample permutations. In the absence of covariates,
SKAT p-values were obtained through ER or whole-sample permutation (Perm) of disease status (top panel). In the
presence of covariates, SKAT p-value were obtained through ER or Fisher’s noncentral hypergeometric distribution
based whole-sample permutation (FNHPerm) implemented in the BiasedUrn R-package (bottom panel). From left to
the right, the plots consider case:control = 1000:1000, 500:1500, and 200:1800, respectively. The x-axis represents
− log10 SKAT-ER p-values and y-axis represents − log10 SKAT-Perm or SKAT-FNHPerm p-values. Variant sets were
randomly simulated, 20 000 sets with MAC � 40 selected, and 105 resamples were generated to compute p-values for
each method.

m individuals was <107. The increase in computation time with increasing m led us to develop a substan-
tially faster (∼6- to 18-fold) QA asymptotic method based on ER (QA) (Figure 2(d) and Supplementary
Table S2). QA was essentially linear in m and invariant to sample size (data not shown). For compari-
son, with covariates for m = 40 and sample size of 2000, the existing MA method for Burden, SKAT and
SKAT-O took <0.2 s (and was invariant to m), and UA for Burden, SKAT and SKAT-O took <0.02 s (and
was invariant to m) (data not shown).

3.1.3 FPRs for existing and ER-based methods. We compared empirical FPRs for variant sets for these
five methods. We define the best-calibrated test as the one that had the FPR closest to but, at most, slightly
exceeding the expected FPR at the Bonferroni corrected level α. Figure 3 shows the FPRs for SKAT in the
presence of covariates using Bonferroni corrected α = 0.05 for 5–20 000 sets of variants and MAC � 40.
Over the MAC and case–control imbalance scenarios, ER-mid had the best-calibrated FPRs, though it was
conservative when MAC � 10 for balanced case–control studies. ER was slightly more conservative than
ER-mid when MAC � 10, but otherwise behaved similarly. QA was designed to speed the computation
for moderate or large MAC. For MAC between 10 and 40 QA was conservative for balanced studies,
and slightly anti-conservative for imbalanced studies. MA had conservative or anti-conservative FPRs
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(a) (b)

(c) (d)

Fig. 2. Comparison of computation times for the estimation of a significant gene-based p-value using ER and existing
methods. Estimated computation time for 107 resamples of a single variant set for 40 individuals with minor alleles
(m = 40) and varying numbers of total samples (balanced case:control) using SKAT-ER or SKAT-Perm in the absence
of covariates (a) or using SKAT-ER or SKAT-FNHPerm in the presence of covariates (b). The BiasedUrn R-package
was used for SKAT-FNHPerm. Estimated computation time for 107 resamples of a single variant set for 2000 samples
(balanced case:control) in the presence of covariates for SKAT-O, SKAT, or Burden test for 10 � m � 40 individuals
with minor alleles using ER (c) or for 40 � m � 500 individuals with minor alleles using ER and QA (d). Each point
represents a median of 10 experiments. When m � 20, the number of all possible configurations of the case–control
status of individuals with minor alleles was smaller than 107; ER, therefore, obtained the exact resampling p-values.
The number of variant loci was 30 when m � 30, otherwise, it was the same as m.

depending on the scenario, and UA was both the most conservative for balanced studies at MAC � 10,
and the most anticonservative for imbalanced studies. We observed similar trends for the Burden test
(Supplementary Figure S2) and SKAT-O (Supplementary Figure S3).

ER-mid based p-values are conservative for variant sets with MAC < 20 because many of the vari-
ant sets cannot reach Bonferroni-corrected thresholds. To improve the calibration of ER-mid, we used a
mixture model (Supplementary Appendix C) to estimate the effective number of tests (Keff ) defined as
the number of independent tests that yields the expected Bonferroni corrected FPR (Figure 4). For SKAT-
ER-mid, when MAC � 10, Keff was substantially smaller than the number of variant sets, especially for
balanced studies. The Keff -based Bonferroni correction had a slightly anti-conservative FPR for balanced
case–control samples but well-calibrated FPRs for imbalanced case–control samples. The computation
time for the Keff -based multiple test adjustment are essentially the sum of the computation time to test
each variant set, as fitting the mixture model requires little additional computation. We observed similar
patterns of results for Burden test (Supplementary Figure S4) and SKAT-O (Supplementary Figure S5).
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Fig. 3. False positive rates (FPRs) for SKAT using ER-based and existing methods to compute p-values for variant sets
with MAC � 40. From top to bottom the plots show variant sets with MAC � 10; 10 < MAC � 20 and 20 < MAC �
40. From left to the right, the plots consider case:control = 1000:1000, 500:1500, and 200:1800. In each plot, the x-
axis is the number of variant sets (K ) and their corresponding Bonferroni corrected level α(= 0.05/K ), and the y-axis
is the empirical FPRs divided by the expected FPR. A well-calibrated test should have empirical/expected FRP = 1
(gray dashed line).

Next, we examined the FPRs for sets of variants with 40 < MAC � 500 in the presence of covariates.
SKAT-ER-mid was generally well calibrated, although it was slightly conservative or anti-conservative
at α = 2.5 × 10−6 (Supplementary Figure S6). SKAT-QA was slightly conservative for balanced studies
and slightly anti-conservative for studies with case–control imbalance. SKAT-MA was well calibrated or
slightly anti-conservative for balanced studies, and was anti-conservative for imbalanced studies. SKAT-
UA was not well calibrated in any of these scenarios. For Burden tests, all methods had close to the expected
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Fig. 4. Estimated effective number of tests (Keff ) and FPRs for SKAT-ER-mid for variant sets with MAC � 20. Variant
sets with MAC � 10 (top row) and 10 < MAC � 20 (bottom row) are shown. From left to the right, the plots consider
case:control = 1000:1000, 500:1500, and 200:1800. In each plot, the top panel shows a bar plot of the estimated
effective number of tests (Keff ) divided by the number of variant sets (K ), and the bottom panel shows the empirical
false positive rate (FPR) divided by the expected FPR of SKAT-ER-mid based on K (square) or Keff (circle). A well-
calibrated test should have empirical/expected FRP = 1 (black dashed line). The x-axis shows the number of variant
sets (K ).

FPRs for balanced studies and Burden-QA was best calibrated for unbalanced studies (Supplementary
Figure S7). We observed similar patterns of results for SKAT-O (Supplementary Figure S8).

Overall, the results were quantitatively the same in the absence of covariates or when, instead of testing
a set of variants, we tested single variants (a test which very similar to a Burden test with equal weights
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Table 1. Number of genes by MAC of selected variants in NHLBI-ESP whole-exome data and in
chromosome 2 GoT2D-exome data

1 �MAC �10 10 < MAC �20 20 < MAC �40 40 < MAC �100 100 < MAC Total

NHLBI ESP
Disruptive 7261 (62%) 1425 (12%) 1313 (11%) 1306 (11%) 485 (4%) 11 790
Disruptive + potentially
damaging

4250 (25%) 2636 (15%) 3135 (18%) 4034 (23%) 3185 (18%) 17 240

All nonsynonymous 1699 (9%) 1579 (9%) 2568 (14%) 4791 (27%) 7371 (41%) 18 008

GoT2D Chr2
Disruptive 312 (92%) 17 (5%) 5 (1%) 6 (2%) 0 (0%) 340
Disruptive + potentially
damaging

481 (46%) 174 (17%) 186 (18%) 161 (15%) 37 (4%) 1039

All nonsynonymous 284 (26%) 165 (15%) 208 (19%) 330 (30%) 123 (11%) 1110

Each cell has the number (percent) of genes in each MAC bin for genes with �1 variant. “Total” indicates the total number
of genes with �1 variant. Nonsense, splicing, and frame-shift variants are classified as “disruptive” variants, and possibly and
probably damaging variants by Polyphen2 and disruptive variants together are classified as “disruptive + potentially damaging”
variants.

for all variants) (data not shown). To test for the robustness of our methods in the presence of population
stratification, we simulated African American and European ancestry samples with a differential disease
risk and adjusted for stratification in the analysis. The Type 1 error rates (Supplementary Appendix F
and Supplementary Figures S9–S11) were quantitatively similar to those in Figure 3 and Supplementary
Figures S2, S3 for European ancestry only.

Over a range of MAC and case–control ratios, no approach yielded an optimal mix of control of FPR
and efficient computation. Based on our findings, we propose an ER-based hybrid approach (ER-mid when
variant set MAC � 40; MA when variant set MAC > 40 and balanced case–control; and QA when variant
set MAC > 40 and imbalanced case–control) to provide a balance of well-calibrated FPRs and computation
time.

3.1.4 Comparison of power to identify associations between low MAC variant sets and binary phenotypes.
We next compared power for the ER-based hybrid approach using either experiment-wide permutations
of the total sample or the effective number of tests (Keff ) based Bonferroni correction, and power for
the MA or UA tests using experiment-wide permutations. We estimated the power to detect one causal
variant set (MAC = 20) out of a background of 19 999 non-causal variant sets with the MAC distribution of
disruptive + potentially damaging variants observed in NHLBI ESP data (Supplementary Appendix D and
Table 1). Our causal variant set had 50% causal variants, either all increasing risk or with half the variants
increasing and half decreasing risk. Over the different gene-based tests approaches and varying case control
ratios, we observed similar power for ER-based hybrid approach using experiment wide permutations or
Keff -based Bonferroni correction (Supplementary Figure S12). For SKAT and SKAT-O, the ER-based
hybrid approach had higher power than MA or UA. For the burden test, MA or UA had similar or slightly
higher power to the ER-hybrid approach, but neither test was consistently higher power. We observed
similar trends for causal MAC = 40 (Supplementary Figure S13).

3.2 GoT2D data analysis

We performed single and multiple variant tests using GoT2D chromosome 2 deep exome sequence data
(1326 cases and 1331 controls) (Supplementary Appendix G). 35 576 (84%) of 42 045 chromosome 2
variants had MAF < 0.01 (corresponding MAC � 53). For single variant tests of MAF < 0.01 variants, the
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Fig. 5. MAP-adjusted and un-adjusted QQ plots of single variant and SKAT-ER-hybrid p-values from analysis of
GoT2D chromosome 2 exome data. QQ plots of single variant tests with all rare variants (MAF < 0.01) (a) and
rare variants with MAC � 2 (b). QQ plots of ER-hybrid SKAT p-values with disruptive variants (c) and disrup-
tive + potentially damaging variants (d). In each plot, the x-axis is the MAP-adjusted or un-adjusted expected quantile
of −log10 p-values, and the y-axis is observed quantiles of −log10 p-values. Observed p-values are plotted against
the MAP-adjusted expected quantiles (black dots) and un-adjusted expected quantiles (gray dots). The dashed line
represents a 95% confidence band based on 500 random draws from the MAP-based mixture distribution.

estimated effective number of tests (Keff ) was 2762, giving an order of magnitude less stringent thresh-
old than the family-wise error rate 0.05. No variants were significant at Keff -based Bonferroni-corrected
α = 0.05. The unadjusted QQ plot for single variant results showed a substantial p-value deflation com-
pared with the expected p-value (Figure 5(a)); though the deflation was less pronounced when testing was
restricted to variants with MAC � 2 (Figure 5(b)). In contrast, in QQ plots based on a mixture model of
the minimum achievable p-values, no p-value deflation was observed (Figures 5(a) and (b)).

In the chromosome 2 GoT2D data, 334 of 340 (98%) genes with at least one disruptive variant had
1 � MAF � 40, and 841 of 1039 (81%) genes with at least one disruptive + potentially damaging variant
had 1 � MAC � 40 (Table 1). Even in the whole-exome data from the larger NHLBI-ESP sample, 85%
and 58% of genes with at least one disruptive or disruptive + potentially disruptive variant, respectively,
had 1 � MAC � 40 (Supplementary Appendix D and Table 1). We used SKAT-ER-hybrid to perform gene-
based tests for disruptive and disruptive + potentially damaging variants (Keff = 44 and 540, respectively)
in the chromosome 2 GoT2D exome data. No gene was significant at the Keff -based Bonferroni corrected
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α = 0.05. In unadjusted QQ plots, we observed deflation of the gene-based p-values, whereas in MAP
adjusted QQ plots the p-values were not deflated and results for disruptive variants were near the upper
95% confidence bound (Figures 5(c) and (d)). We observed similar results for ER-hybrid Burden and
SKAT-O tests (Supplementary Figures S14 and S15).

Within the disruptive + potentially damaging variant tests, YSK4 Sps1/Ste20-related kinase
homolog (YSK4) was the most significant gene for the Burden-ER-mid test (p-value = 1.7 × 10−3,
MAC = 27) and the second most significant gene for SKAT-O-ER-mid (p-value = 5.2 × 10−3). Recent
large-scale meta-analysis has shown that a common variant in YSK4 is associated with fasting
insulin (Scott and others, 2012).

To assess the ER method using dosage data, we compared the results of ER and whole-sample permu-
tations for variant set-based testing using dosage data from non-exomal GOT2D low-pass sequencing and
found very similar p-values (Supplementary Appendix H and Supplementary Figure 16).

4. DISCUSSION

In this paper, we develop an ER method for binary traits for score statistic-based tests of variant sets with
low MAC that allows inclusion of covariates in analysis. The ER methods are necessary because the exist-
ing asymptotic (UA) or asymptotic-based adjustment methods (MA) have poor calibration of FPRs at lower
MAC and imbalanced case control ratios. As in whole-sample permutations, the ER method preserves the
correlation structure or LD among variants in the tested set. Across almost all tested MAC bins and case–
control ratios, we found that one or more of the ER-based methods were well calibrated. Based on these
observations and the computational time considerations, we recommend a hybrid approach using ER-mid
for small variant set MAC (MAC � 40); MA for moderate or large variant set MAC with balanced case–
control and QA for moderate or large variant set MAC with unbalanced case–control. Use of a threshold of
MAC = 40 is a practical compromise between computational time and Type 1 error rate; a slightly lower
threshold would result in faster computation time but at the risk of slightly higher Type 1 error rate, par-
ticularly for the SKAT and SKAT-O. If a permutation approach is desired, then ER-mid is (substantially)
faster than whole-sample permutations even for large MAC.

Estimation of the effective number of tests, Keff , using MAP is a simple and fast alternative to perform-
ing experiment-wise permutation of the total sample to control the family-wise error rate. One limitation
of the MAP approach is that it cannot account for correlations among tests, and may result in conservative
FPRs in the presence of the strong correlations of variants between genes. However, we expect that gene-
based tests will be less correlated than single variant tests, since they involve multiple variants and genes
located further away from each other than individual variants.

When MAC is extremely small, MAP is unlikely to reach genome-wide significance. One approach to
increase power would be to construct larger sets by combining adjacent regions or including more classes
of potentially functional variants.

The ER method can be used for imputed dosage, as well as genotype data; permutations are performed
within the individuals with non-zero genotype or dosage values. If many individuals have very small dosage
values (e.g. <0.1), the number of individuals with minor alleles can be larger than MAC (i.e. MAC < m).
Thus, for the same MAC, computational time can be higher with dosage data than with genotype data;
however, the ER method still takes substantially less time than whole-sample permutation method.

QQ plots comparing observed vs. expected p-value distributions are used in genetic association studies
to assess both the presence of confounding (or misimplimented/misspecified test) and the presence of
significant association signals. However, when MAC is small, the expected p-value distribution of the
resampling-based test is not uniform (0,1), and hence the (unadjusted) QQ plot cannot be used to accurately
assess the concordance (or departure) of the observed p-value distribution from the expected. In the spirit of

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxv033
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experiment wide permutations (Kiezun and others, 2012), we use the MAP-adjusted p-value distribution
to model the expected distribution of ER-hybrid p-values. In the MAP-adjusted QQ plot, the GoT2D gene-
based p-value distribution for disruptive variants lies near the top of the 95% confidence band. This view
allows better assessment of potentially interesting results than the unadjusted QQ plot in which the p-value
distribution is deflated.

Most of variant sets in whole-exome or whole-genome data will not require 107 resampling since their
p-values will be substantially higher than exome-wide (or genome-wide) significant levels. Hence, an
adaptive resampling procedure, which reduces the number of resamples when a test has a moderate or
large p-value, can substantially reduce computation time and has been implemented for the ER method.
However, the use of adaptive resampling precludes the calculation of the effective number of test and the
use of MAP-adjusted QQ plots, and thus we recommend the adaptive resampling procedure only for the
case where case–control combinations among individuals with minor alleles are substantially larger than
the number of resamples performed (for example, MAC > 20 for 107 resamples).

Our work has focused on providing well-calibrated gene-based tests for single studies across a range
of MAC and case–control imbalance. Meta-analysis of gene-based tests can increase the power to detect
genes of interest, but meta-analysis is sensitive to the calibration of the underlying tests (Ma and others,
2013), and may be particularly sensitive to the inclusion of studies with highly imbalanced case–control
ratios. Further work will be needed to determine how best to combine results or data from across studies
with a variety of case–control ratios.

5. SOFTWARE

ER-mid, ER, QA, and MA methods are implemented in the SKAT R-package.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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