Skip to main content
. 2015 Jun 4;31(19):3172–3180. doi: 10.1093/bioinformatics/btv349

Table 1.

Performance comparisons of CCLasso and SparCC based on simulation results

n Method d1 dF AUC
Random Model
200 CCLasso 0.033(0.001) 2.954(0.049) 0.791(0.015)
SparCC 0.057(0.001) 3.528(0.080) 0.823(0.014)
300 CCLasso 0.028(0.001) 2.409(0.057) 0.885(0.012)
SparCC 0.047(0.001) 2.901(0.059) 0.891(0.011)
500 CCLasso 0.023(0.001) 1.994(0.053) 0.953(0.007)
SparCC 0.038(0.001) 2.332(0.056) 0.951(0.006)
Neighbor Model
200 CCLasso 0.039(0.003) 3.355(0.206) 0.948(0.015)
SparCC 0.076(0.001) 4.606(0.081) 0.888(0.014)
300 CCLasso 0.033(0.002) 2.675(0.151) 0.986(0.006)
SparCC 0.070(0.001) 4.176(0.060) 0.931(0.009)
500 CCLasso 0.026(0.002) 2.064(0.121) 0.999(0.001)
SparCC 0.065(0.001) 3.800(0.041) 0.967(0.006)
AR(4) Model
200 CCLasso 0.021(0.001) 2.444(0.134) 0.885(0.021)
SparCC 0.061(0.001) 3.766(0.087) 0.858(0.019)
300 CCLasso 0.018(0.001) 1.994(0.133) 0.922(0.017)
SparCC 0.052(0.001) 3.210(0.078) 0.890(0.017)
500 CCLasso 0.015(0.001) 1.549(0.087) 0.958(0.011)
SparCC 0.044(0.001) 2.693(0.059) 0.918(0.011)
Hub Model
200 CCLasso 0.037(0.001) 3.453(0.037) 0.749(0.021)
SparCC 0.067(0.001) 4.194(0.070) 0.690(0.014)
300 CCLasso 0.036(0.001) 3.133(0.047) 0.768(0.021)
SparCC 0.059(0.001) 3.686(0.049) 0.735(0.012)
500 CCLasso 0.032(0.001) 2.918(0.048) 0.828(0.018)
SparCC 0.051(0.001) 3.248(0.043) 0.788(0.010)
Block Model
200 CCLasso 0.039(0.001) 3.307(0.113) 0.782(0.014)
SparCC 0.070(0.001) 4.268(0.072) 0.734(0.010)
300 CCLasso 0.035(0.001) 2.773(0.079) 0.854(0.014)
SparCC 0.062(0.001) 3.788(0.052) 0.765(0.011)
500 CCLasso 0.029(0.001) 2.258(0.076) 0.924(0.011)
SparCC 0.057(0.001) 3.374(0.038) 0.796(0.012)

d1 and dF are the two distances between the estimated correlation matrix and the true one defined in the text. AUC is the area under the receiver operation characteristics curve. The results are the averages over 100 simulation runs with standard deviations in brackets.