Table of Contents |
|
Preface………………………………………………………………………………………………………………………………… |
2251 |
1. Lipid Peroxidation as a Free Radical Amplification Process………………………………………………………………… |
2252 |
2. Structure, Properties and Generation of HNE………………………………………………………………………………… |
2255 |
3. Major Reaction Mechanisms…………………………………………………………………………………………………… |
2257 |
3.1. Reactions of the C=C Double Bond…………………………………………………………………………………………… |
2257 |
3.1.1. Michael Additions………………………………………………………………………………………………………… |
2257 |
3.1.2. Reduction………………………………………………………………………………………………………………… |
2258 |
3.1.3. Epoxidation……………………………………………………………………………………………………………… |
2259 |
3.2. Reactions of the Carbonyl Group…………………………………………………………………………………………… |
2259 |
3.2.1. Acetal and Thio-Acetal Formation……………………………………………………………………………………… |
2259 |
3.2.2. Schiff-Base Formation…………………………………………………………………………………………………… |
2259 |
3.2.3. Oxidation………………………………………………………………………………………………………………… |
2259 |
3.2.4. Reduction………………………………………………………………………………………………………………… |
2260 |
3.3. Reactions of the Hydroxy Group……………………………………………………………………………………………… |
2262 |
4. Biophysical Effects……………………………………………………………………………………………………………… |
2262 |
5. Biochemical Targets of HNE…………………………………………………………………………………………………… |
2262 |
5.1. Reactions with Peptides and Proteins………………………………………………………………………………………… |
2263 |
5.1.1. Substrates………………………………………………………………………………………………………………… |
2265 |
5.1.1.1. Glutathione……………………………………………………………………………………………………………… |
2265 |
5.1.1.2. Carnosine……………………………………………………………………………………………………………… |
2267 |
5.1.1.3. Thioredoxin…………………………………………………………………………………………………………… |
2267 |
5.1.1.4. Cytochrome c…………………………………………………………………………………………………………… |
2268 |
5.1.2. Enzymes………………………………………………………………………………………………………………… |
2268 |
5.1.2.1. Oxidoreductases………………………………………………………………………………………………………… |
2269 |
5.1.2.1.1. Lactate Dehydrogenase……………………………………………………………………………………………… |
2269 |
5.1.2.1.2. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH)………………………………………………………… |
2269 |
5.1.2.2. Transferases…………………………………………………………………………………………………………… |
2270 |
5.1.2.2.1. Glutathione-S-Transferase (GST)…………………………………………………………………………………… |
2270 |
5.1.2.2.2. Liver Kinase B1 (LKB1)……………………………………………………………………………………………… |
2270 |
5.1.2.2.3. 5'-AMP-Activated Protein Kinase (AMPK)………………………………………………………………………… |
2271 |
5.1.2.2.4. ZAK Kinase (Sterile Alpha Motif and Leucine Zipper Containing Kinase AZK)………………………………… |
2271 |
5.1.2.2.5. Serine/Threonine-Protein Kinase AKT2 (Proteinkinase B2)……………………………………………………… |
2271 |
5.1.2.3. Hydrolases……………………………………………………………………………………………………………… |
2271 |
5.1.2.3.1. ATP Synthase………………………………………………………………………………………………………… |
2271 |
5.1.2.3.2. Phosphatase and Tensin Homolog Deleted on Chromosome 10 (PTEN)…………………………………………… |
2272 |
5.1.2.3.3. Sirtuin 3 (SIRT3)…………………………………………………………………………………………………… |
2272 |
5.1.2.3.4. Cathepsins…………………………………………………………………………………………………………… |
2273 |
5.1.2.3.5. Neprilysin (NEP)…………………………………………………………………………………………………… |
2273 |
5.1.2.4. Lyases…………………………………………………………………………………………………………………… |
2273 |
5.1.2.4.1. Mitochondrial Aconitase (ACO2)…………………………………………………………………………………… |
2273 |
5.1.2.4.2. α-Enolase……………………………………………………………………………………………………………… |
2273 |
5.1.2.5. Isomerases……………………………………………………………………………………………………………… |
2274 |
5.1.2.5.1. Protein Disulfide Isomerase (PDI)…………………………………………………………………………………… |
2274 |
5.1.2.5.2. Peptidyl-Prolyl Cis/Trans-Isomerase A1 (Pin1)……………………………………………………………………… |
2274 |
5.1.2.6. Ligases: Glutamine Synthetase………………………………………………………………………………………… |
2274 |
5.1.3. Carriers…………………………………………………………………………………………………………………… |
2274 |
5.1.3.1. Albumin………………………………………………………………………………………………………………… |
2274 |
5.1.3.2. Hemoglobin and Myoglobin…………………………………………………………………………………………… |
2275 |
5.1.3.3. Liver and Adipocyte Fatty Acid-Binding Protein (FABP)…………………………………………………………… |
2275 |
5.1.3.4. Apolipoprotein B-100 (ApoB)………………………………………………………………………………………… |
2275 |
5.1.3.5. β-Lactoglobulin………………………………………………………………………………………………………… |
2276 |
5.1.4. Transporters and Channels……………………………………………………………………………………………… |
2276 |
5.1.4.1. Glutamate Transport Protein…………………………………………………………………………………………… |
2276 |
5.1.4.2. α-Synuclein (α-Syn)…………………………………………………………………………………………………… |
2276 |
5.1.4.3. Sarco/Endoplasmic Reticulum Ca2+-ATPase (SERCA1a)…………………………………………………………… |
2277 |
5.1.4.4. Transient Receptor Potential Vanilloid 1 (TRPV1)…………………………………………………………………… |
2277 |
5.1.4.5. Dopamine Transporter………………………………………………………………………………………………… |
2278 |
5.1.5. Receptors………………………………………………………………………………………………………………… |
2278 |
5.1.5.1. Platelet-Derived Growth Factor Receptor-β (PDGFR-β)……………………………………………………………… |
2278 |
5.1.5.2. Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 (LOX-1)……………………………………………… |
2278 |
5.1.5.3. Toll-Like Receptor 4 (TLR4)…………………………………………………………………………………………… |
2278 |
5.1.6. Cytoskeletal Proteins……………………………………………………………………………………………………… |
2279 |
5.1.6.1. Tau Proteins…………………………………………………………………………………………………………… |
2279 |
5.1.6.2. Ankyrin………………………………………………………………………………………………………………… |
2279 |
5.1.6.3. Spectrins………………………………………………………………………………………………………………… |
2280 |
5.1.7. Chaperones: Heat Shock Proteins 70 and 90…………………………………………………………………………… |
2280 |
5.1.8. Uncoupling Proteins 2 and 3 (UCP2 and UCP3)………………………………………………………………………… |
2282 |
5.1.9. Growth Factors: Platelet-Derived Growth Factor (PDGF)……………………………………………………………… |
2283 |
5.1.10. Peptide Hormones……………………………………………………………………………………………………… |
2283 |
5.1.10.1. Insulin………………………………………………………………………………………………………………… |
2283 |
5.1.10.2. Angiotensin II………………………………………………………………………………………………………… |
2283 |
5.1.11. Extracellular Matrix Proteins: Collagen………………………………………………………………………………… |
2283 |
5.1.12. Histones: Histone-H2A………………………………………………………………………………………………… |
2284 |
5.2. Reactions with Lipids………………………………………………………………………………………………………… |
2284 |
5.3. Reactions with Cofactors and Vitamins……………………………………………………………………………………… |
2284 |
5.3.1. Vitamin C (Ascorbic Acid)……………………………………………………………………………………………… |
2284 |
5.3.2. Pyridoxamine…………………………………………………………………………………………………………… |
2285 |
5.3.3. Lipoic Acid……………………………………………………………………………………………………………… |
2285 |
5.4. Reactions with Nucleic Acids………………………………………………………………………………………………… |
2285 |
6. Formation of HNE in Mammalian Cells and Tissues………………………………………………………………………… |
2287 |
6.1. HNE Formation in Cellular and Organ Systems……………………………………………………………………………… |
2287 |
6.2. HNE in the Whole Healthy Organism………………………………………………………………………………………… |
2289 |
6.3. Influence of Nutrition………………………………………………………………………………………………………… |
2290 |
7. Metabolism of HNE……………………………………………………………………………………………………………… |
2291 |
7.1. HNE Metabolism in Mammalian Cells and Organs………………………………………………………………………… |
2293 |
7.2. HNE Metabolism in Subcellular Organelles………………………………………………………………………………… |
2294 |
7.3. HNE Metabolism in Whole Animals and Interorgan Relationships………………………………………………………… |
2295 |
7.4. Primary HNE Intermediates—Enzymatic Reactions and Quantitative Results……………………………………………… |
2295 |
7.5. Secondary HNE Intermediates—Enzymatic Reactions and Quantitative Results…………………………………………… |
2301 |
7.6. HNE Metabolism as a Component of the Antioxidative Defense System…………………………………………………… |
2306 |
7.7. HNE Intermediates as Potential Biomarkers of LPO………………………………………………………………………… |
2307 |
7.8. Further Medical Applications of HNE Metabolism………………………………………………………………………… |
2307 |
8. Conclusions……………………………………………………………………………………………………………………… |
2309 |
Conflicts of Interest………………………………………………………………………………………………………………… |
2309 |
Abbreviations……………………………………………………………………………………………………………………… |
2309 |
References…………………………………………………………………………………………………………………………… |
2313 |
Tables and Figures |
|
Table 1. HNE concentrations in cells, tissues and organs…………………………………………………………………………… |
2289 |
Table 2. Maximal velocity of total HNE degradation in cells, subcellular organelles, and perfused organs………………………………………………………………………………………………………………………………… |
2292 |
Table 3. Primary HNE metabolites in different cells and tissues after the addition of 100 μM HNE to the biological system………………………………………………………………………………………………………………………………… |
2301 |
Figure 1. Idealized representation of the initiation and propagation reactions of lipid peroxidation |
2253 |
Figure 2. Formation of lipid hydroperoxides and cyclic peroxides from arachidonic acid.………………………………………… |
2254 |
Figure 3. Chemical structure of 4-hydroxy-2-trans-nonenal (HNE)………………………………………………………………… |
2255 |
Figure 4. Overview of the reactions of 4-hydroxy-nonenal with different biomolecules…………………………………………… |
2257 |
Figure 5. HNE plasma concentration in dependence on age of the blood donor (5 to 90 years)…………………………………… |
2288 |
Figure 6. Degradation/metabolism of 4-HNE in rat hepatocytes…………………………………………………………………… |
2292 |
Figure 7. Identification of HNE and 4-hydroxynonenoic acid (HNA) by isocratic HPLC separation……………………………… |
2297 |
Figure 8. Mass spectrum of dihydroxynonene urethane (HPLC plus MS) with fluorimetric detection…………………………… |
2298 |
Figure 9. HNE metabolites.…………………………………………………………………………………………………………… |
2299 |
Figure 10. HPLC chromatogram of the isoindol derivative of the HNE-GSH conjugate (reaction product in presence of o-phthalaldehyde)……………………………………………………………………………………………………………………… |
2306 |