| Table of Contents | |
| Preface………………………………………………………………………………………………………………………………… | 2251 |
| 1. Lipid Peroxidation as a Free Radical Amplification Process………………………………………………………………… | 2252 |
| 2. Structure, Properties and Generation of HNE………………………………………………………………………………… | 2255 |
| 3. Major Reaction Mechanisms…………………………………………………………………………………………………… | 2257 |
| 3.1. Reactions of the C=C Double Bond…………………………………………………………………………………………… | 2257 |
| 3.1.1. Michael Additions………………………………………………………………………………………………………… | 2257 |
| 3.1.2. Reduction………………………………………………………………………………………………………………… | 2258 |
| 3.1.3. Epoxidation……………………………………………………………………………………………………………… | 2259 |
| 3.2. Reactions of the Carbonyl Group…………………………………………………………………………………………… | 2259 |
| 3.2.1. Acetal and Thio-Acetal Formation……………………………………………………………………………………… | 2259 |
| 3.2.2. Schiff-Base Formation…………………………………………………………………………………………………… | 2259 |
| 3.2.3. Oxidation………………………………………………………………………………………………………………… | 2259 |
| 3.2.4. Reduction………………………………………………………………………………………………………………… | 2260 |
| 3.3. Reactions of the Hydroxy Group……………………………………………………………………………………………… | 2262 |
| 4. Biophysical Effects……………………………………………………………………………………………………………… | 2262 |
| 5. Biochemical Targets of HNE…………………………………………………………………………………………………… | 2262 |
| 5.1. Reactions with Peptides and Proteins………………………………………………………………………………………… | 2263 |
| 5.1.1. Substrates………………………………………………………………………………………………………………… | 2265 |
| 5.1.1.1. Glutathione……………………………………………………………………………………………………………… | 2265 |
| 5.1.1.2. Carnosine……………………………………………………………………………………………………………… | 2267 |
| 5.1.1.3. Thioredoxin…………………………………………………………………………………………………………… | 2267 |
| 5.1.1.4. Cytochrome c…………………………………………………………………………………………………………… | 2268 |
| 5.1.2. Enzymes………………………………………………………………………………………………………………… | 2268 |
| 5.1.2.1. Oxidoreductases………………………………………………………………………………………………………… | 2269 |
| 5.1.2.1.1. Lactate Dehydrogenase……………………………………………………………………………………………… | 2269 |
| 5.1.2.1.2. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH)………………………………………………………… | 2269 |
| 5.1.2.2. Transferases…………………………………………………………………………………………………………… | 2270 |
| 5.1.2.2.1. Glutathione-S-Transferase (GST)…………………………………………………………………………………… | 2270 |
| 5.1.2.2.2. Liver Kinase B1 (LKB1)……………………………………………………………………………………………… | 2270 |
| 5.1.2.2.3. 5'-AMP-Activated Protein Kinase (AMPK)………………………………………………………………………… | 2271 |
| 5.1.2.2.4. ZAK Kinase (Sterile Alpha Motif and Leucine Zipper Containing Kinase AZK)………………………………… | 2271 |
| 5.1.2.2.5. Serine/Threonine-Protein Kinase AKT2 (Proteinkinase B2)……………………………………………………… | 2271 |
| 5.1.2.3. Hydrolases……………………………………………………………………………………………………………… | 2271 |
| 5.1.2.3.1. ATP Synthase………………………………………………………………………………………………………… | 2271 |
| 5.1.2.3.2. Phosphatase and Tensin Homolog Deleted on Chromosome 10 (PTEN)…………………………………………… | 2272 |
| 5.1.2.3.3. Sirtuin 3 (SIRT3)…………………………………………………………………………………………………… | 2272 |
| 5.1.2.3.4. Cathepsins…………………………………………………………………………………………………………… | 2273 |
| 5.1.2.3.5. Neprilysin (NEP)…………………………………………………………………………………………………… | 2273 |
| 5.1.2.4. Lyases…………………………………………………………………………………………………………………… | 2273 |
| 5.1.2.4.1. Mitochondrial Aconitase (ACO2)…………………………………………………………………………………… | 2273 |
| 5.1.2.4.2. α-Enolase……………………………………………………………………………………………………………… | 2273 |
| 5.1.2.5. Isomerases……………………………………………………………………………………………………………… | 2274 |
| 5.1.2.5.1. Protein Disulfide Isomerase (PDI)…………………………………………………………………………………… | 2274 |
| 5.1.2.5.2. Peptidyl-Prolyl Cis/Trans-Isomerase A1 (Pin1)……………………………………………………………………… | 2274 |
| 5.1.2.6. Ligases: Glutamine Synthetase………………………………………………………………………………………… | 2274 |
| 5.1.3. Carriers…………………………………………………………………………………………………………………… | 2274 |
| 5.1.3.1. Albumin………………………………………………………………………………………………………………… | 2274 |
| 5.1.3.2. Hemoglobin and Myoglobin…………………………………………………………………………………………… | 2275 |
| 5.1.3.3. Liver and Adipocyte Fatty Acid-Binding Protein (FABP)…………………………………………………………… | 2275 |
| 5.1.3.4. Apolipoprotein B-100 (ApoB)………………………………………………………………………………………… | 2275 |
| 5.1.3.5. β-Lactoglobulin………………………………………………………………………………………………………… | 2276 |
| 5.1.4. Transporters and Channels……………………………………………………………………………………………… | 2276 |
| 5.1.4.1. Glutamate Transport Protein…………………………………………………………………………………………… | 2276 |
| 5.1.4.2. α-Synuclein (α-Syn)…………………………………………………………………………………………………… | 2276 |
| 5.1.4.3. Sarco/Endoplasmic Reticulum Ca2+-ATPase (SERCA1a)…………………………………………………………… | 2277 |
| 5.1.4.4. Transient Receptor Potential Vanilloid 1 (TRPV1)…………………………………………………………………… | 2277 |
| 5.1.4.5. Dopamine Transporter………………………………………………………………………………………………… | 2278 |
| 5.1.5. Receptors………………………………………………………………………………………………………………… | 2278 |
| 5.1.5.1. Platelet-Derived Growth Factor Receptor-β (PDGFR-β)……………………………………………………………… | 2278 |
| 5.1.5.2. Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 (LOX-1)……………………………………………… | 2278 |
| 5.1.5.3. Toll-Like Receptor 4 (TLR4)…………………………………………………………………………………………… | 2278 |
| 5.1.6. Cytoskeletal Proteins……………………………………………………………………………………………………… | 2279 |
| 5.1.6.1. Tau Proteins…………………………………………………………………………………………………………… | 2279 |
| 5.1.6.2. Ankyrin………………………………………………………………………………………………………………… | 2279 |
| 5.1.6.3. Spectrins………………………………………………………………………………………………………………… | 2280 |
| 5.1.7. Chaperones: Heat Shock Proteins 70 and 90…………………………………………………………………………… | 2280 |
| 5.1.8. Uncoupling Proteins 2 and 3 (UCP2 and UCP3)………………………………………………………………………… | 2282 |
| 5.1.9. Growth Factors: Platelet-Derived Growth Factor (PDGF)……………………………………………………………… | 2283 |
| 5.1.10. Peptide Hormones……………………………………………………………………………………………………… | 2283 |
| 5.1.10.1. Insulin………………………………………………………………………………………………………………… | 2283 |
| 5.1.10.2. Angiotensin II………………………………………………………………………………………………………… | 2283 |
| 5.1.11. Extracellular Matrix Proteins: Collagen………………………………………………………………………………… | 2283 |
| 5.1.12. Histones: Histone-H2A………………………………………………………………………………………………… | 2284 |
| 5.2. Reactions with Lipids………………………………………………………………………………………………………… | 2284 |
| 5.3. Reactions with Cofactors and Vitamins……………………………………………………………………………………… | 2284 |
| 5.3.1. Vitamin C (Ascorbic Acid)……………………………………………………………………………………………… | 2284 |
| 5.3.2. Pyridoxamine…………………………………………………………………………………………………………… | 2285 |
| 5.3.3. Lipoic Acid……………………………………………………………………………………………………………… | 2285 |
| 5.4. Reactions with Nucleic Acids………………………………………………………………………………………………… | 2285 |
| 6. Formation of HNE in Mammalian Cells and Tissues………………………………………………………………………… | 2287 |
| 6.1. HNE Formation in Cellular and Organ Systems……………………………………………………………………………… | 2287 |
| 6.2. HNE in the Whole Healthy Organism………………………………………………………………………………………… | 2289 |
| 6.3. Influence of Nutrition………………………………………………………………………………………………………… | 2290 |
| 7. Metabolism of HNE……………………………………………………………………………………………………………… | 2291 |
| 7.1. HNE Metabolism in Mammalian Cells and Organs………………………………………………………………………… | 2293 |
| 7.2. HNE Metabolism in Subcellular Organelles………………………………………………………………………………… | 2294 |
| 7.3. HNE Metabolism in Whole Animals and Interorgan Relationships………………………………………………………… | 2295 |
| 7.4. Primary HNE Intermediates—Enzymatic Reactions and Quantitative Results……………………………………………… | 2295 |
| 7.5. Secondary HNE Intermediates—Enzymatic Reactions and Quantitative Results…………………………………………… | 2301 |
| 7.6. HNE Metabolism as a Component of the Antioxidative Defense System…………………………………………………… | 2306 |
| 7.7. HNE Intermediates as Potential Biomarkers of LPO………………………………………………………………………… | 2307 |
| 7.8. Further Medical Applications of HNE Metabolism………………………………………………………………………… | 2307 |
| 8. Conclusions……………………………………………………………………………………………………………………… | 2309 |
| Conflicts of Interest………………………………………………………………………………………………………………… | 2309 |
| Abbreviations……………………………………………………………………………………………………………………… | 2309 |
| References…………………………………………………………………………………………………………………………… | 2313 |
| Tables and Figures | |
| Table 1. HNE concentrations in cells, tissues and organs…………………………………………………………………………… | 2289 |
| Table 2. Maximal velocity of total HNE degradation in cells, subcellular organelles, and perfused organs………………………………………………………………………………………………………………………………… | 2292 |
| Table 3. Primary HNE metabolites in different cells and tissues after the addition of 100 μM HNE to the biological system………………………………………………………………………………………………………………………………… | 2301 |
| Figure 1. Idealized representation of the initiation and propagation reactions of lipid peroxidation | 2253 |
| Figure 2. Formation of lipid hydroperoxides and cyclic peroxides from arachidonic acid.………………………………………… | 2254 |
| Figure 3. Chemical structure of 4-hydroxy-2-trans-nonenal (HNE)………………………………………………………………… | 2255 |
| Figure 4. Overview of the reactions of 4-hydroxy-nonenal with different biomolecules…………………………………………… | 2257 |
| Figure 5. HNE plasma concentration in dependence on age of the blood donor (5 to 90 years)…………………………………… | 2288 |
| Figure 6. Degradation/metabolism of 4-HNE in rat hepatocytes…………………………………………………………………… | 2292 |
| Figure 7. Identification of HNE and 4-hydroxynonenoic acid (HNA) by isocratic HPLC separation……………………………… | 2297 |
| Figure 8. Mass spectrum of dihydroxynonene urethane (HPLC plus MS) with fluorimetric detection…………………………… | 2298 |
| Figure 9. HNE metabolites.…………………………………………………………………………………………………………… | 2299 |
| Figure 10. HPLC chromatogram of the isoindol derivative of the HNE-GSH conjugate (reaction product in presence of o-phthalaldehyde)……………………………………………………………………………………………………………………… | 2306 |