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Summary

The most important physiological mechanism mediating

enhanced exercise performance is increased sympathetic, beta

adrenergic receptor (b-AR), and adenylyl cyclase (AC) activity. This

is the first report of decreased AC activity mediating increased

exercise performance. We demonstrated that AC5 disruption,

that is, knock out (KO) mice, a longevity model, increases exercise

performance. Importantly for its relation to longevity, exercise

was also improved in old AC5 KO. The mechanism resided in

skeletal muscle rather than in the heart, as confirmed by cardiac-

and skeletal muscle-specific AC5 KO’s, where exercise perfor-

mance was no longer improved by the cardiac-specific AC5 KO,

but was by the skeletal muscle-specific AC5 KO, and there was no

difference in cardiac output during exercise in AC5 KO vs. WT.

Mitochondrial biogenesis was a major mechanism mediating the

enhanced exercise. SIRT1, FoxO3a, MEK, and the anti-oxidant,

MnSOD were upregulated in AC5 KO mice. The improved exercise

in the AC5 KO was blocked with either a SIRT1 inhibitor, MEK

inhibitor, or by mating the AC5 KO with MnSOD hetero KO mice,

confirming the role of SIRT1, MEK, and oxidative stress mecha-

nisms. The Caenorhabditis elegans worm AC5 ortholog, acy-3 by

RNAi, also improved fitness, mitochondrial function, antioxidant

defense, and lifespan, attesting to the evolutionary conservation

of this pathway. Thus, decreasing sympathetic signaling through

loss of AC5 is not only a mechanism to improve exercise

performance, but is also a mechanism to improve healthful

aging, as exercise also protects against diabetes, obesity, and

cardiovascular disease, which all limit healthful aging.

Key words: antioxidant defense; exercise; mitochondrial

biogenesis; skeletal muscle; type 5 adenylyl cyclase.

Introduction

Exercise is central to longevity and more importantly healthful aging, as it

is well recognized to protect against diseases that limit longevity and

compromise healthy lifespan, most importantly obesity, diabetes, and

cardiovascular disease, but also hypertension, cancer, osteoporosis,

depression, and dementia (Lee & Paffenbarger, 2000; Gremeaux et al.,

2012; Reimers et al., 2012). Conversely, diminished exercise capacity is

one of the first signs of all cardiovascular diseases, as well as other

diseases, and improved exercise capacity is one of the first signs that

therapy is effective. The most widely recognized physiological mecha-

nism to improve exercise performance is enhanced sympathetic and beta

adrenergic receptor stimulation and increased adenylyl cyclase (AC)

activity (Esposito et al., 2008), whereas reducing sympathetic stimulation

is generally thought to impair exercise performance. We found that

inhibiting beta adrenergic signaling at the level of AC, by disrupting the

AC isoform type 5 (AC5), that is, AC5 knock out (KO), enhances

longevity (Yan et al., 2007). In view of the above, it becomes a natural

question as to whether inhibiting AC5 improves exercise performance.

Accordingly, the central goal of this investigation was to examine

exercise performance in the AC5 KO. An important adjunct was to

examine this in old AC5 KO mice. Interestingly, most mechanisms of

longevity are only studied in young mice and assumed to persist as the

animals reach old age.

It was then important to understand the molecular signaling linking

the AC5 loss of function to improved exercise. As enhanced exercise can

result from mechanisms originating in either the heart or skeletal muscle,

we examined cardiac and muscle function and also utilized tissue-

specific KOs in the heart and skeletal muscle. Skeletal muscle mitochon-

drial function (Yamamoto et al., 2011), mitochondrial biogenesis (Irrcher

et al., 2003), and resistance to oxidative stress (Nishiyama et al., 1998;

Fisher-Wellman et al., 2009; Ryan et al., 2010) were also examined, as

these mechanisms mediate exercise performance (Rockl et al., 2007).

The SIRT1, FOXO3a, and MEK pathways, key to mitochondrial biogenesis

and protection against oxidative stress, were also examined (Wu et al.,

1999; Lagouge et al., 2006; Gurd et al., 2009; Menzies et al., 2013; Li

et al., 2015; Smith et al., 2015). As one of the most potent mechanisms

limiting longevity is increased oxidative stress (Gemma et al., 2007),

MnSOD levels were examined and exercise was examined in AC5 KO

mice mated with MnSOD heterozygous (MnSOD+/�) mice. The evolu-

tionary conservation of the AC5/MnSOD pathway was demonstrated in

the worm, Caenorhabditis elegans AC5 ortholog, which, like the AC5

KO mouse, linked fitness and lifespan extension, testifying further to the

central role of AC5 inhibition in regulation of mitochondrial and muscle

function resulting in enhanced exercise.

Results

Enhanced exercise capacity in AC5 KO mice is not due to

improved cardiac function but rather due to improved

skeletal muscle function

AC5 systemic KO mice ran significantly, P < 0.01, longer than WT

littermates in both distance and time and also 17% faster, resulting in
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38% greater work to exhaustion (Fig. 1A–D). Exercise capacity was also

significantly improved, P < 0.01, in older AC5 KO mice compared to WT

(20 months) (Fig. 1E–H).

To investigate whether the enhanced exercise capacity in AC5 KO

mice was due to better cardiac function, we measured cardiac output in

chronically instrumented, conscious mice, at baseline and during

exercise. There were no significant differences between AC5 KO and

WT in ether baseline or peak exercise in heart rate (baseline: 646 � 23

vs. 700 � 13 beats min�1; peak exercise: 764 � 18 vs. 729 � 20

beats min�1), stroke volume (baseline: 21.8 � 1.1 vs. 20.7 � 1.4 ll;

peak exercise: 28.5 � 1.4 vs. 26.2 � 1.4 lL), and cardiac output

(baseline:15.3 � 1.0 vs. 13.2 � 0.7 mL min�1; peak exercise:

21.8 � 1.4 vs. 19.0 � 0.8 mL min�1) (Fig. 1I–K), indicating that the

mechanism for improvement in exercise did not reside at the level of the

heart, but more likely in skeletal muscle performance. Furthermore, we

measured VO2 during exercise, which was significantly increased at

peak exercise in AC5 KO vs. WT (143 � 5.5 vs.

130 � 4.4 mL kg�1 min�1, P < 0.05), suggesting that AC5 KO mice

take in more oxygen and deliver it to the muscles for better exercise

performance.
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Fig. 1 Exercise capacity is enhanced in young and old AC5 systemic KO mice and enhanced exercise capacity in AC5 KO mice is not due to improved cardiac function

but rather due to improved muscle function. Exercise capacity is enhanced in young (A–D) (n = 11; 3–6 months old) and old (E–H) (n = 8; 20 months old) AC5 KO mice,

as reflected by running longer distances, over shorter time, achieving higher speed, and doing more work. *P < 0.01 vs. WT. Although body weights tended to be less

in AC5 KO, there was no relationship between body weight and exercise capacity in this study between the groups, with further support by the differences in work,

which takes into account body weight. (I) A representative recording is shown for stroke volume and cardiac output in chronically instrumented, conscious mice, using

an implanted transonic flow probe on the ascending aorta. AC5 KO and WT increased stroke volume and cardiac output similarly. (J) Blood flow values, shown in mL min�1,

were similar in AC5 WT and AC5 KO both at baseline and peak exercise. (K) % increase in cardiac output in response to exercise was similar in WT and AC5 KO mice

(n = 7–8). AC, adenylyl cyclase; KO, knock out.
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To further confirm these results, we created both cardiac-specific and

skeletal muscle-specific (SKM) AC5 KO mice. The RNA levels were

reduced similar to that of total body AC5 KO in the tissue where the AC5

was specifically disrupted (Fig. 2); however, the cardiac-specific KO did

not show complete loss of AC5, most likely due to the fact that more

than 70% of cells in the heart are not myocytes. Examining only the

cardiac myocytes in the cardiac-specific AC5 KO showed more complete

elimination of AC5 (Fig. 2A). In contrast to the total body AC5 KO, the

cardiac-specific AC5 KO (AC5cardiac�/�) did not run faster or longer than

WT (Fig. 2B), but the running distance of SKM AC5 KO (AC5skm�/�) mice

was 19% greater, *P < 0.01 vs. WT mice, indicating that the lack of

AC5 in skeletal muscle mediates the enhanced exercise capacity

(Fig. 2B).

Increased mitochondrial content in skeletal muscle of AC5 KO

mice

The ratio between mitochondrial versus nuclear DNA (Fig. 3A) and

mitochondrial protein content (Fig. 3B) was significantly increased in the

gastrocnemius muscle of AC5 KO mice. ATP content, citrate synthase

activity, and complex IV activity were increased by ~50% in skeletal

muscle of AC5 KO (Fig. 3C–E), a finding confirmed in AC5 SKM KO mice

(Fig. 3F). Consistent with enhanced mitochondrial number, mRNA levels

of mitochondrial genes (Atp5 g1, Nrf-1, Ndufa2, citrate synthase, and

Cox IV) were increased in the skeletal muscle of AC5 SKM KO mice

(Fig. 3G). These results indicate that mitochondrial biogenesis was the

underlying mechanism in the enhanced exercise capacity of AC5 KO

mice.

Knockdown of AC5 in skeletal muscle myoblasts induces

increased mitochondrial content

To confirm that the effects on muscle physiology that were observed in

the germline and SKM AC5 KO mice were cell autonomous, we

investigated the effects of knockdown (KD) AC5 in myoblast cells

in vitro. The mRNA levels of several mitochondrial proteins were all

significantly increased in AC5 KD myoblasts (Fig. 4A). The mRNA levels

of nuclear respiratory factor 1 (Nrf-1), an important mitochondria DNA

transcription regulator, and manganese superoxide dismutase 2

(MnSOD), a mitochondrial enzyme involved in antioxidant defense,

were also increased in AC5 KD myoblasts. In line with these gene

expression changes, the oxygen consumption rate, which reflects the

mitochondrial metabolic rate, was increased by ~20% in the AC5 KD

myoblast cells (Fig. 4B). Likewise, citrate synthase activity was also ~20%

higher in the AC5 KD cells (Fig. 4C). In combination, these data support

the idea that disruption of AC5 in skeletal muscle myoblasts induced

mitochondrial biogenesis in a cell autonomous manner.

Deletion of AC5 increased mitochondrial function in

Caenorhabditis elegans

Phylogenetic studies indicated that the AC protein family is conserved

throughout evolution. In worms, the AC protein family consists of four

members named acy-1, acy-2, acy-3, and acy-4. According to the

C. elegans worm database (www.wormbase.org), acy-1 encodes an

adenylyl cyclase that is most closely related to the mammalian isoform

type 9, acy-2 to the isoform type 2 and 4, acy-3 to the isoform type 5,

and acy-4 to the isoform 5 and 6. acy-4 has been described to be

required for meiotic maturation (Govindan et al., 2009), while acy-3

seems to be involved in metabolic function as inactivation of this gene by

RNAi robustly reduces fat content in wild-type worms (Ashrafi et al.,

2003). We confirmed by BLAST (Basic Local Alignment Search Tool)

analysis that acy-3 is a close worm homolog of the mouse AC5 gene,

with 44% homology in its amino acid sequence (Fig. 4D). Oxygen

consumption rate increased in worms fed with acy-3 RNAi, compared

with worms fed with empty vector—an effect that was evident both in

basal and uncoupled conditions (Fig. 4E). Transgenic worms expressing

green fluorescent protein (GFP) in the mitochondria (Benedetti et al.,

2006) demonstrated a 1.5-fold and threefold increase in GFP signal,

respectively, in intestinal and muscle mitochondria in acy-3 RNAi (Fig. 4F,

G), indicating a conserved function of inhibiting AC5 throughout

evolution, as the AC5 homolog in C. elegans also improves mitochon-

drial metabolism.

Reduced oxidative stress also contributed to AC5 KO-

enhanced exercise

Protection against oxidative stress is often linked with improved exercise

tolerance (Nishiyama et al., 1998; Fisher-Wellman et al., 2009; Ryan

et al., 2010). Paraquat, which increases oxidative stress, reduced WT
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the total AC5 KO was reduced in all tissues studied, but not in WT. The skeletal

muscle and cardiac-specific KO’s also showed no reduction in the tissues where the

AC5 was not disrupted, but there was specific reduction in the tissues where the

AC5 was disrupted. In the cardiac-specific AC5 KO, the levels were reduced in the

heart, but not as completely as in the total body knockout. One explanation is that

over 70% of cells in the heart are not myocytes. Accordingly, when the myocytes

alone were examined, there was more reduction in AC5. *P < 0.01 vs. WT and

**P < 0.05 vs. WT using one-way ANOVA; n = 6/group. Results are expressed as

the mean � SEM. (B) Running distance was similar in cardiac-specific AC5 KO

(n = 7), compared to WT, but was significantly greater, *P < 0.01, in skeletal

muscle AC5 KO (n = 6) compared to WT and cardiac-specific AC5 KO. WT was

combined from both groups, as they were similar (n = 11). AC, adenylyl cyclase;

KO, knock out.
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exercise capacity by 40%, and significantly less, P < 0.05, that is, by only

7% in AC5 KO (Fig. 5C) and induced ~40% less oxidative DNA damage

in AC5 KO muscles (Fig. 5E). We further examined the antioxidant,

MnSOD, in the gastrocnemius muscle and observed increased mRNA

and protein levels of MnSOD, which protects against oxidative stress

(Fig. 5A,B). To block this mechanism, we mated AC5 KO mice with

MnSOD heterozygous (MnSOD+/�) mice. The bigenic mice had signif-

icantly reduced MnSOD levels (Fig 5B) and reduced exercise capacity

compared to AC5 KO mice (Fig. 5D). Furthermore, 8-OHdG staining, an

indicator of oxidative stress, was reduced in AC5 KO (Fig. 5E). These

results indicate clearly that reduced oxidative stress is involved in the

enhanced exercise performance of AC5 KO.

Studies of oxidative stress in the worms supported the

findings in the AC5 KO mouse. Enhanced movement and

antioxidative defense in acy-3�/�worms is mediated by SOD-3

We then analyzed whether acy-3 in worms had a similar functional

impact on fitness. acy-3 RNAi�/� worms exposed to paraquat from the

L4 larval stage exhibited more than 70% survival and greater mobility

after 10 days compared to <35% survival for the control worms fed with

empty vector (Fig. 6A). We examined the expression of several GFP-

reporter worms that are specific for certain stress pathways, including

hsp-4 which is induced during endoplasmic reticulum stress, hsp-6 which

is specifically expressed in response to mitochondrial stress (Yoneda

et al., 2004), and sod-3 which is the homolog of the mitochondrial

superoxide dismutase SOD2 involved in detoxification of reactive oxygen

species (ROS) (Honda & Honda, 1999). In line with our data in AC5 KO

mice, these GFP fluorescence-based assays indicated that the increased

resistance to oxidative stress is mainly a consequence of sod-3

overexpression, an observation which was also supported by qPCR

experiments showing an induction in sod-3 expression (Fig. 6B,C).

The role of the SIRT1/FOXO and MEK pathways in mediating

the enhanced exercise in AC5 KO mice

Gastrocnemius muscles in whole body AC5KO contained higher levels of

SIRT1 and FoxO3a protein than that of the WT (Fig. 7A). To further

confirm that the SIRT1 pathway was involved in the enhanced exercise

capacity of AC5 KO mice, AC5 KO mice were treated with EX527, a

selective SIRT1 inhibitor (Napper et al., 2005), which abolished the

enhanced exercise capacity of AC5 KO mice (Fig. 7B). Running time,

maximum speed, and work to exhaustion were attenuated similarly to

running distance. This inhibitor also abolished mitochondrial biogenesis

in AC5 KO mice, as reflected by reduced mitochondrial DNA content, as

well as citrate synthase and complex IV activities (Fig. 7C–E). To further

confirm that the MEK pathway was involved in the enhanced exercise

capacity of AC5 KO mice, AC5 KO mice were treated with U0126, a

selective MEK inhibitor, which also abolished the enhanced exercise

capacity of AC5 KO mice (Fig. 7F).

Discussion

The major finding of this investigation is that disruption of AC5, which

actually decreases sympathetic tone, increases exercise performance.

This is novel, as the most common mechanism mediating enhanced
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exercise is via increased sympathetic stimulation and catecholamines,

resulting in increased AC activity and augmented cardiac output

(Esposito et al., 2008). This was not the mechanism in AC5 KO mice,

where AC activity is actually reduced, and there was no greater

increase in cardiac output during exercise compared with WT mice,

based on direct measurements of ascending aortic blood flow (stroke

volume) with implanted ultrasonic flow probes and heart rate in

chronically instrumented mice. Further confirming the lack of a cardiac

mechanism, the cardiac-specific AC5 KO did not exhibit enhanced

exercise. Accordingly, the mechanism resided at the level of the
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exercising skeletal muscles, which was confirmed, when we found that

exercise performance was also elevated in the skeletal muscle-specific

AC5 KO.

Exercise plays an essential role in longevity, in general, and healthful

aging, in particular, as it protects not only against obesity, diabetes, and

cardiovascular disease, but also reduces the risk of cancer and improves

bone health and even mental diseases that impair aging (Lee &

Paffenbarger, 2000; Gremeaux et al., 2012; Reimers et al., 2012).

Therefore, the demonstration of improved exercise performance in the

AC5 KO model is particularly germane, as this is also a model for

longevity (Yan et al., 2007), and protects against cardiovascular stress

(Okumura et al., 2003; Lai et al., 2013), diabetes, and obesity (Ho et al.,

2015). In view of the important link between exercise and longevity, it is

surprising that of 20 mouse models we reviewed, only two studied

exercise and found it to be increased.

Increased mitochondrial biogenesis is known to improve exercise

performance (Rockl et al., 2007; Yamamoto et al., 2011). In the present

investigation, using a mitochondrial DNA content assay, skeletal muscle

of AC5 KO mice was shown to contain more mitochondria. Mitochon-

drial function was also increased, as reflected by increased ATP content,

citrate synthase activity, and complex IV activity, in AC5 KO muscle.

Furthermore, levels of mitochondrial gene expression were also

enhanced in skeletal muscle of AC5 KO mice. The fact that we could

recapitulate many of our in vivo observations in skeletal muscle

myoblasts after AC5 KD further indicated the cell autonomous nature

of these effects. Importantly, in AC5 knockdown L6 myoblast cells, the

increased real-time O2 consumption rate supports the improved

mitochondrial biogenesis and function in the skeletal muscle AC5 KO

in vivo. Altogether, our results indicate that improved mitochondrial

number and function are involved in mediating the enhanced exercise

capacity of AC5 KO mice.

The SIRT1/FoxO and MEK pathways, which we showed were

upregulated in AC5 KO, have also been shown to mediate mitochondrial

biogenesis and oxidative stress (Kops et al., 2002; Brunet et al., 2004).

The SIRT1 and MEK pathways have also been shown to mediate

increased exercise performance (Dufresne et al., 2001; Chalkiadaki

et al., 2014), although the role of Foxo3a is novel to the current

investigation. We confirmed that these pathways were also involved in

mediating the enhanced exercise performance in the AC5 KO mouse by

blocking SIRT1 activity using a specific SIRT1 inhibitor, EX527, which

abolished not only the enhanced exercise capacity, but also mitochon-

drial biogenesis, in AC5 KO mice. The involvement of the Raf/MEKERK

signaling pathway was confirmed by blocking MEK with a specific

inhibitor, U0126. AMPK, which like AC5 KO reduces AC, has also been

shown to be linked to the SIRT1 and MEK pathways (Canto et al., 2009;

Suchankova et al., 2009).

Another key finding of the current investigation was demonstrating

that protection against oxidative stress, by increased MnSOD levels and

activity in AC5-deficient skeletal muscles, is also involved in the

mechanism of enhanced exercise capacity in AC5 KO mice, as exercise

capacity of AC5 KO mice was significantly attenuated in AC5

KO 9 MnSOD heterozygous KO bigenic mice. As MnSOD is a down-

stream target of SIRT1 (Lai et al., 2013), and FoxO3a is known to

regulate MnSOD transcriptionally, it is likely that AC5 regulates

expression levels of MnSOD in skeletal muscle also through SIRT1 and

FoxO3a. It should be noted that although most studies indicate that
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antioxidants protect against oxidative stress and thus extend lifespan

(Anisimov et al., 2011; Niu et al., 2013) and lead to enhanced exercise

capacity (Ji et al., 1998), recently some reports indicated that antioxi-

dants have no beneficial effects on exercise or are even harmful in high

concentrations (Selman et al., 2013). In addition, although a number of

studies have reported that exercise leads to increased longevity (Holloszy,

1998; Navarro et al., 2004; Barnes, 2015), one study in mice is not in

agreement (Garcia-Valles et al., 2013). However, the overwhelming

preponderance of data in patients support the concept that exercise

improves not only healthy lifespan, but also longevity, as it clearly is

protective against cardiovascular disease, diabetes, and obesity, all of

which are known to reduce lifespan. As the AC5 KO mice exhibit

longevity and protection against diabetes, obesity, and cardiovascular

disease (Yan et al., 2007, 2014; Lai et al., 2013; Ho et al., 2015) along

with enhanced exercise performance demonstrated in the current

investigation, this model replicates the human paradigm of healthful

aging. Conversely, enhanced b adrenergic signaling results in diminished

lifespan, not only in transgenic animal models, for example, overexpres-

sion of Gsa (Iwase et al., 1996, 1997), but also in human aging studies

with increased b2 adrenergic receptor genotype, where longevity is

diminished (Zhao et al., 2012).

Further support for the role of AC5 as a key gene involved in healthy

aging comes from our studies in C. elegans, where the acy-3 (the worm

homolog of AC5) mutant showed improved mitochondrial metabolism

and antioxidative stress defense, via the induction of the expression of

sod-3, the worm homolog of MnSOD. The evolutionary conservation of

the pathway involving decreased AC5 and increased MnSOD further

testifies to the importance and essential nature of this signaling

mechanism. Notably, we and others have previously shown that both

enhanced mitochondrial metabolism and stress defense pathways are

heavily controlled by sir-2.1 the worm homolog of SIRT1 (Berdichevsky

et al., 2010; Mouchiroud et al., 2013). The evolutionary conservation of

the AC5/SIRT1 signaling pathway further testifies to the importance and

essential nature of this signaling mechanism.

One question that arose is whether these effects of enhanced exercise

in AC5 KO mice are simply due to a decrease in AC, which might be

evoked in a KO from any of the 9 AC isoforms, or are they due to unique

signaling in AC5. To address this question, we examined exercise in 10

AC6 KO mice and 7 WT controls. The AC6 KO mice did not show

increased distance (497 m) or speed (30 m min�1) with exercise

compared to their WT (distance (510 m) or maximal speed

(30 m min�1), and results in AC6 KO WT were not different from those

in AC5 KO WT (Fig. 1). Therefore, the enhanced exercise was not simply

due to a reduction in AC, but was rather unique to the AC5 KO and its

signaling pathway noted above.

In summary, we discovered a novel pathway for augmenting exercise

performance, which does not involve increased sympathetic tone, but

actually reduced AC activity and beta adrenergic receptor signaling, by

inhibiting AC5. Mechanistically, AC5 loss-of-function leads to enhanced

exercise performance due to increased mitochondrial function and

inhibition of oxidative stress through SIRT1, FoxO3a, MEK, and MnSOD.

As in heart failure, exercise tolerance is markedly diminished and is

actually an early diagnostic sign, which precedes the overt manifestation

of the inherent cardiac defect at rest, the development of a new

therapeutic modality based on the salutary effects of the AC5 KO would

be significant, not only to maintain fitness, but could also to ameliorate

diseases such as heart failure, diabetes, obesity, and other chronic

illnesses, which limit healthful aging.

Experimental procedures

Animal experimental procedures

All experiments were performed in 3- to 6-month- and 20-month-old

systemic AC5 KO, 3- to 6-month-old skeletal muscle or cardiac-specific

AC5 KO and their corresponding WT littermates. For exercise studies,

AC5 KO and WT were matched for body weight. For SIRT1 inhibition,

the SIRT1 inhibitor, EX527 (Sigma-Aldrich, St. Louis, MO, USA) was
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Fig. 6 Increased sod-3 underlies the fitness

and antioxidant defense of acy-3 RNAi

worms. (A) Resistance to oxidative stress

and mobility upon paraquat treatment is

increased after acy-3 RNAi compared to

worms treated with vehicle only. (B) Heat-

shock protein (hsp-4) and antioxidant

defense (sod-3), but not markers of the

mitochondrial unfolded protein response,

are increased upon acy-3 RNAi as revealed

by fluorescence quantification. *P < 0.01

using Student’s t-test. (C) Quantitative RT-

PCR analysis of acy-3 RNAi treated worms

confirms acy-3 knockdown and shows

increased expression of sod-3 in

mitochondrial oxidative metabolism.

**P < 0.05 Student’s t-test. Results are

expressed as the mean � SEM.
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delivered to AC5 KO and wild-type (WT) control littermates at a dose of

10 mg kg�1 day�1 with a mini-osmotic pump (ALZET model 2001,

DURECT Corp., Cupertino, CA, USA) for 7 days. For MEK inhibition, the

MEK inhibitor, U0126 (Sigma), was delivered to AC5 KO and wild-type

(WT) control littermates at a dose of 10 mg kg�1 day�1 with a mini-

osmotic pump (ALZET model 2001, DURECT Corp) for 7 days. To induce

oxidative stress, AC5 KO and WT mice were treated with paraquat

(35 mg kg�1, i.p.) for 10 days. After treatment, the mice were subjected

to exercise twice at intervals of 2 days. The indices of exercise capacity

were measured as described above, and the extent of oxidative stress

was measured by 8-hydroxy-deoxyguanosine (8-OHdG) staining in the

gastrocnemius muscle. Animals used in this study were maintained in

accordance with the Guide for the Care and Use of Laboratory Animals

(National Research Council, Eighth Edition 2011). These studies were

approved by the Institutional Animal Care and Use Committee of

Rutgers University—New Jersey Medical School.

Exercise protocol and indices of exercise capacity

Mice were exercised on a treadmill (Omnitech Electronics, Columbus,

OH, USA) with metabolic chambers to measure indices defining

exercise capacity. All mice were subjected to a practice trial 3 days

before the experiment to adapt to the treadmill testing environment.

Food was withdrawn at least 3 h before the exercise. At the time of

the experiment, each mouse was placed on a treadmill at a constant

10° angle enclosed by a metabolic chamber through which air flow

passes at a constant speed. Then, the treadmill was started at

4 m min�1 and the speed incrementally increased 2 m min�1 every

2 min until the mice reached exhaustion. Exhaustion was defined as

spending time (10 s) on the electric stimulus platform without

attempting to re-engage the treadmill belt. The maximal running

speed and distance were calculated. The work to exhaustion was

calculated based on the vertical running distance to exhaustion and

body weight.

Cardiac output during exercise

AC5 KO and WT mice were chronically instrumented with transonic flow

probes on the ascending aorta to allow for beat-by-beat measurements

of stroke volume, which were integrated over time, measuring cardiac

output (the product of heart rate and stroke volume) at rest and during

exercise.
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Caenorhabditis elegans experiments

Caenorhabditis elegans strains were cultured at 20 °C on nematode

growth media agar plates seeded with E. coli strain. Strains used were

WT Bristol N2, KN259 (huIs33[sod-3::GFP + pRF4(rol-6(su1006))]),

SJ4100 (zcIs13[hsp-6::GFP]), SJ4005 (zcIs4[hsp-4::GFP]), SJ4143

(zcIs17[ges-1::GFP(mit)]), and SJ4103 (zcIs14[myo-3::GFP(mit)]). Strains

were provided by the Caenorhabditis Genetics Center (University of

Minnesota). The clone used was acy-3 (C44F1.5) and was purchased

from GeneService and sequenced. Caenorhabditis elegans strains,

RNAi feeding experiments, GFP expression analysis, GFP imaging

microscopy, and O2 consumption measurements using Seahorse XF24

were performed according to standardized procedures (Mouchiroud

et al., 2013).

Measurement of cellular respiration and metabolic rates

Generation of AC5 shRNA adenovirus (Ad-AC5 shRNA) was described

previously (Lai et al., 2013). Ad-AC5 shRNA was added to L6 rat skeletal

muscle cells with 80% confluence, following 72–96 h of incubation.

Real-time O2 consumption rates (OCR) in L6 myoblast cells infected with

either Ad-AC5 shRNA or Ad-LacZ were measured with Seahorse XF24 as

described (Yamamoto et al., 2011).

Histological analyses

8-OHdG staining with anti-8-hydroxy-20-deoxyguanosine (8-OHdG)

antibody (Oxis International, Inc.) has been described previously

(Yamamoto et al., 2003).

Biochemical analyses

Quantitative RT-PCR Total RNA was prepared from frozen heart tissues or

cell cultures using Trizol reagent (Sigma). ThemRNA of interest was reverse

transcribed according to standard protocol. Quantitative real-time PCR

(7700 Prizm, Perkin-Elmer/Applied Biosystems, Waltham, MA, USA) was

performed with specific primers. Results were normalized to beta-actin.

Immunoblotting Proteins separated by SDS-PAGE were transferred to

nitrocellulose membranes. The membranes were probed with primary

antibodies to complex I, II, III, V (MitoSciences, Eugene, OR, USA), SIRT1

(Cell Signaling, Danvers, MA, USA), FoxO3a (Cell Signaling), and MnSOD

(Sigma-Aldrich, St. Louis, MO, USA ) at 4 °C overnight. The bands were

visualized using chemiluminescence reagents. The linear range of

detection for different proteins and band intensities were determined

by densitometry. Blots were reprobed with GAPDH to equalize sample

loading.

Statistical analysis

All data are expressed as mean � SEM. To compare two independent

groups, we used Student’s unpaired t-test. For a comparison of three or

more groups, one-way analysis of variance (ANOVA) was used.
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