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Dear Editor,

Relapses after therapy-induced remissions remain a major challenge in cancer(1, 2).
Molecular detection of minimal residual disease (MRD) is valuable in relapse prediction but
its cellular basis remains largely unknown(3-5). Delineating therapy-resistant cells (Figure
1A), might inform new therapeutic strategies. ‘Cancer stem cells’, defined by xenografting,
have been suggested to preferentially evade therapy but evidence for persistence of
phenotypically and functionally distinct cells in patients undergoing treatment is largely
lacking.
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We investigated the cells responsible for MRD in childhood acute lymphoblastic leukaemia
(cALL) (for patient information see Table 1), where molecular MRD-monitoring has had a
practise-changing impact(6). At presentation cALLs comprise phenotypically distinct B-cell
stages including ProB-like [CD34*CD38*CD19%], and cells dubbed ‘Stem/B’ co-expressing
stem [CD34*CD38~/1°W] and B-cell [CD19%] markers, seen only in leukaemia and pre-
leukaemia(7, 8). Although recent studies suggest that cells capable of propagating cALL in
xenografts are plastic and extend beyond the Stem/B compartment(9), its leukaemia-
specificity provides a readily trackable biomarker in patients.

We first tracked the fate of leukaemic cells in MRD-positive remission samples of three
CALL patients that went on to relapse. In patient 1, BCR/ABL1-positive ‘Stem/B’ cells
selectively persisted at remission, when no BCR/ABL1* leukaemic cells could be found in
other B cell compartments (Figure 1B, C). A similar picture emerged from the analysis of
ProB-like and Stem/B cells in remission samples in two TEL/AML1 cases (patients 2 and 3;
Figure 1D and Supplemental Figure 1A) suggesting that in patients with relapsed disease,
cells within the Stem/B compartment are selectively chemoresistant, sustaining MRD and
potentially initiating relapse.

In good-prognosis TEL/AML1 patients that achieved and remain in long-term complete
(MRD-negative) remission, we observed two behaviours; either Stem/B cells were
eliminated with similar Kinetics to ProB-like cells (1 patient; Supplemental Figure 1B) or,
more slowly than their ProB counterparts (4 patients; Figure 1E, F and Supplemental Figure
1C-E).

Though variable, as might be expected in a setting where all leukaemic cells are ultimately
eliminated, the preferential chemoresistance of Stem/B cells seen in most patients suggests
enrichment of cells with specific functional properties within the Stem/B compartment. We
speculated that the Stem/B phenotype may represent a surrogate, biomarker for quiescence.
At diagnosis, Stem/B cells were more quiescent (Gg) and less actively cycling (S-M-G,)
than leukaemic ProB cells, in all 6 patients analyzed (Figure 1G). Moreover, in all MRD
samples investigated we found that chemotherapy further selected for a rare but almost
exclusively quiescent (Gg) population of Stem/B cells (Figure 1H).

Our findings (i) suggest that quiescence contributes mechanistically to enhanced chemo-
resistance within the Stem/B compartment in cALL, a disease arguably derived from B-cell
restricted progenitors which in contrast to stem cells normally cycle extensively; (ii)
highlight the importance and feasibility of tracking rare but distinct cancer cell populations
in patients undergoing therapy; and (iii) provide a conceptual framework for reframing the
cancer stem cell debate in terms of patient relevance in the form of MRD-sustaining and
relapse-initiating cells.

Our results merit comparison with those reported by Wilson et al. These workers concluded
that there was no specific cellular basis for therapy resistance in patients with cALL (10).
This conclusion is in line with their view that there is no specific cellular basis for tumour
propagation in xenograft models of cALL (9). The conclusion of the Wilson et al. study are
limited by that fact it was solely based on immunophenotypic analysis of patient samples,
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lacking molecular based PCR or FISH analyses affording unambiguous discrimination
between leukaemic and non leukaemic cells. Nevertheless, in line with our own results,
Wilson et al observed that the stem/B population, still phenotypically detectable in 7/11
MRD* remission samples, was proportionally spared during therapy relative to other
compartments. Wilson et al chose to interpret these results as reflecting a chemotherapy-
induced change in cell surface phenotype rather than a selective persistence of a specific cell
compartment. We cannot completely rule out that surface phenotypes change in immediate
response to chemotherapy but this does not seem a likely explanation for the selective
persistence of distinct immunophenotypes throughout extended remission phases.
Regardless and crucially, our results extend beyond simple cell surface analysis. We link the
Stem/B phenotype to the functional property of cell quiescence. This relationship was
observed in diagnostic samples that have not been exposed to treatment thus eliminating any
possibility of therapy induced cell surface modulation. We further show that in all
investigated cases therapy enriches for quiescent cells demonstrating the functional
relevance of the quiescent state which is enriched within the Stem/B compartment. This
highlights the fact that, although enriched for quiescence, not all Stem/B cells are quiescent.
Similarly not all quiescent cells within the leukaemia are Stem/B cells. It remains to be
determined how quiescence and the Stem/B phonotype are regulated and it is plausible that
either or both are mutable states influenced by extrinsic cues such as those, resident within
the bone marrow or stem cell niche. Such a view would account for stem cell or tumour
propagating cell ‘plasticity’ reported in cALL (9). Despite limitations of our study with
cases in which we determined leukaemic cells by aberrant phenotype in follow-up samples
or could not detect residual ALL cells in samples with evidence for molecular MRD our data
clearly suggest that persistent Stem/B cells in follow up samples carry increased risk of
relapse.

The need to eliminate highly quiescent cALL cells provides a plausible explanation for the
requirement for prolonged (2-3yrs) maintenance therapy to achieve durable clinical
remissions in cALL (11, 12). It also provides a plausible explanation for cALL cases in
which the relapse clone resembles the presentation leukemic clone up to 8 years between
diagnosis and relapse (13).

One possible approach to eradicate resistant and quiescent ALL cells would be to induce cell
cycling. Proof of principle of such an approach has been demonstrated. Normal HSCs are
usually resistant to treatment with anti-proliferative drugs such as 5-fluoro-uracil. However,
after treatment with IFNa to induce cell cycle entry of HSCs, these cells were efficiently
killed with 5-fluoro-uracil (14). In a similar vein, recent xenograft studies have shown that
dormant AML cells become susceptible to chemotherapy after cell cycle inducing treatment
with G-CSF (15). Therefore, further exploration of combinations of cycle-inducing agents
with established chemotherapies might prove a profitable avenue for successful elimination
of otherwise resistant CALL cells(15).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Highly quiescent leukaemic cells account for MRD in cALL
A. Model depicting cellular bases for stochastic and selective resistance in CALL. B.

Differential persistence of Stem/B cells in remission phase of a BCR/ABL1* cALL case that
eventually relapsed; detailed patient characteristics on this and other cALL patients,
including MRD results are described in Table 1. FACS analysis of HSC, Stem/B and ProB
compartments in diagnostic, remission and relapse samples are shown with the percentage

contribution of these populations in total BM MNC indicated. Populations identified as

fusion gene positive by FISH, RQ-PCR and/or immunophenotyping are gated in red. Details
of fusion-gene analyses in these and related samples are described in Supplemental Table 1.

The frequencies of leukaemic ProB and Stem/B cells in this patient relative to total BM

MNC (set as 1) at diagnosis, day93, day121 and day149 after initiation of chemotherapy are
graphed in panel C. D. Differential persistence of Stem/B cells in remission phase of a TEL-
AML* cALL case that eventually relapsed. FACS analysis of HSCs, ProB cells and Stem/B
cells in a TEL/AML1* cALL case at diagnosis, remission and relapse (for patient
characteristics and MRD results, see Table 1). Percentages of HSCs, Stem/B and ProB cells
in total BM MNC are indicated. Populations identified as TEL-AML1-positive by FISH,

RQ-PCR and/or immunophenotyping are gated in red (see Supplemental Table 1 for details)
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E. Differential kinetics of ProB and Stem/B cell elimination during initial chemotherapy in a
good prognosis TEL-AML1 patient. FACS analysis of cell compartments at diagnosis (left)
and day 29 following initiation of chemotherapy (right). Percentages of HSCs, Stem/B and
ProB cells in total BM MNC are shown (¥no cells could be sorted) and populations
determined as leukaemic by RQ-PCR and/or FISH analysis are gated in red (see
Supplemental Table 1 for details). Frequencies of leukaemic ProB and Stem/B cells, relative
to total BM MNC (set as 1) at diagnosis, day15, day29 and day50 after initiation of
chemotherapy are graphed in F. G. Cell cycle analysis of leukaemic Stem/B and ProB cells
at diagnosis in one BCR/ABL1" and five TEL/AML1* cALLs. Percentages of cells in Gy
(DAPI~Ki677), G1 (DAPI"Ki67*) and S/GyM (DAPI*Ki67*) are shown. H. Cell cycle
analysis of residual Stem/B cells in MRD samples of one BCR/ABL1" and 4 TEL/AML1*
CALLs.
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