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     The aging lung loses mass and undergoes several 
functional and structural changes ( Table 1  ). Lung 

function declines with age, as shown by changes in gas 
exchange and airfl ow limitation ( Fig 1  ). Older adults, 

defi ned as those aged  �  60 years, become more 
rapidly limited during exercise, and 50% of adults 
 .  70 years of age become exercise-limited by dysp-
nea, compared with only 20% of younger adults. 

 Idiopathic pulmonary fi brosis (IPF), a heterogeneous disease with respect to clinical presentation 
and rates of progression, disproportionately affects older adults. The diagnosis of IPF is descrip-
tive, based on clinical, radiologic, and histopathologic examination, and defi nitive diagnosis is 
hampered by poor interobserver agreement and lack of a consensus defi nition. There are no 
effective treatments. Cellular, molecular, genetic, and environmental risk factors have been iden-
tifi ed for IPF, but the initiating event and the characteristics of preclinical stages are not known. 
IPF is predominantly a disease of older adults, and the processes underlying normal aging might 
signifi cantly infl uence the development of IPF. Yet, the biology of aging and the principles of 
medical care for this population have been typically ignored in basic, translational, or clinical IPF 
research. In August 2009, the Association of Specialty Professors, in collaboration with the Ameri-
can College of Chest Physicians, the American Geriatrics Society, the National Institute on Aging, 
and the National Heart, Lung, and Blood Institute, held a workshop, summarized herein, to 
review what is known, to identify research gaps at the interface of aging and IPF, and to suggest 
priority areas for future research. Efforts to answer the questions identifi ed will require the inte-
gration of geriatrics, gerontology, and pulmonary research, but these efforts have great potential 
to improve care for patients with IPF.   CHEST 2010; 138(3):693 –703  

  Abbreviations:  EBV  5  Epstein-Barr virus; EMT  5  epithelial-mesenchymal transition; ER  5  endoplasmic reticulum; 
GERD  5  gastroesophageal refl ux disease; IPF  5  idiopathic pulmonary fi brosis; MSC  5  mesenchymal stem cell; PH  5  pul-
monary hypertension; SP-C  5  surfactant protein C; TERT  5  telomerase reverse transcriptase; TGF- b   5  transforming 
growth factor  b ; UIP  5  usual interstitial pneumonia 
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published by the American Thoracic Society and the 
European Respiratory Society, IPF is a specifi c form 
of chronic, progressive, fi brotic interstitial pneumonia 
of unknown cause, which occurs in adults and is lim-
ited to the lung. It is associated with a histopathologic 
and radiologic pattern of usual interstitial pneumonia 
(UIP)  4   and “honeycombing,” respectively.  5   

 IPF is a relatively rare disease, with an incidence of 
10.7 per 100,000 per year for men and 7.4 per 100,000 
per year for women. At any given time, there are 
35,000 to 50,000 cases of IPF in the United States. 
However, the occurrence of IPF increases in both 
prevalence and incidence in the sixth decade of life 
( Fig 2  ).  7   Symptoms typically occur at age 50 to 
70 years, and most patients are  .  60 years of age at the 
time of clinical presentation.  8,9   IPF is often fatal—the 
5-year survival rates for IPF are worse than those for 
any other lung disease except cancer  6  —but individu-
als with IPF have variable disease courses. Some 
patients experience rapid declines, which have been 
associated with poor survival,  10   and others experience 
slow declines but often succumb to acute exacerba-
tions.  11,12   It is diffi cult to predict from onset how long 
a patient will live or maintain pulmonary function or 
who will experience acute exacerbations. Moreover, 
even in retrospect, it is not clear why some patients 
live longer than others. Large clinical trials have 
yielded confl icting results with respect to lung func-
tion and blood gas measures, and the various patterns 
of progression, the relationship between age and fre-
quency of acute exacerbations, and triggers of exacer-
bations are poorly understood. 

 Diagnosis 

 IPF diagnosis relies on CT scanning of the chest or 
surgical lung biopsy. Yet patients often expect dysp-
nea to be a characteristic of normal aging; they thus 
limit their activity to accommodate IPF symptoms 
and do not consult with their physicians. For patients 
who do consult with them, physicians are often reluc-
tant to perform diagnostic tests, particularly surgical 
lung biopsies, because of the patients’ advanced age 
and because no standard treatment has clear benefi t. 
Moreover, the diagnosis of IPF is best established by 
consensus among radiologists, pathologists, and clini-
cians.,  5,13   However, interobserver agreement, both 
within and across disciplines, remains poor.  14   

 Diagnosis and prognosis would therefore benefi t 
from better predictors. Genomic signatures might be 
a predictor. A microarray analysis of lung samples or 
peripheral blood mononuclear cells from patients 
with IPF shows clear differences in expression among 
2,000 genes,  15-17   including genes activated by trans-
forming growth factor  b  (TGF- b ) and genes encoding 

In addition, older adults experience a loss of static 
elastic recoil resulting from non-smoking-related, 
emphysema-like changes.  2   Knowledge of the aging 
respiratory system remains incomplete, as most data 
come from studies done in the 1970s or earlier. Yet 
these structural and functional changes suggest that 
both infl ammation and age-associated emphysema con-
tribute to the development of other lung diseases. 

 Interstitial lung diseases form a heterogeneous 
group of nonmalignant, noninfectious processes of the 
lower respiratory tract characterized by dyspnea and 
cough, crackles on chest examination, restrictive ven-
tilatory impairment, diffuse interstitial opacities on 
chest images, and alveolointerstitial infl ammation with 
eventual fi brosis on histologic examination. Idiopathic 
interstitial pneumonias represent about 40% of inter-
stitial lung diseases in the United States, and of these 
more than half are cases of idiopathic pulmonary 
fi brosis (IPF). According to a recent joint defi nition 

 Table 1— Age-Associated Changes in Lung Structure 
and Function  

Hyperinfl ation with increased dead space  
Declining FEV 1 , arising primarily from reduced FVC  1  
 Loss of respiratory muscle strength
 Stiffening of chest wall
 Increased residual volume
 Loss of static elastic recoil  2  
Loss of central nervous system activity
 Decreased ventilator response to isocapnic hypoxia.
Morphologic changes  3  
 Reduced alveolar surface area
 Fewer capillaries per alveolus
 Decreased small-airway diameter
 Alterations in the composition of the lung matrix

  Figure  1. Age-related changes in measures of pulmonary func-
tion. In general, decreases in elasticity result in increased residual 
volumes and decreased vital capacity as TLC does not change in 
the absence of substantial lung disease or comorbidity (eg, severe 
kyphosis). ERV  5  expiratory reserve volume; FRC  5  functional 
residual capacity; IRV  5  inspiratory reserve volume; RV  5  residual 
volume; TLC  5  total lung capacity; VC  5  vital capacity.   
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els are not useful for evaluating the clinical manage-
ment of IPF.  24   

 Animal studies are also challenging because of dif-
ferences between models and humans in terms of 
disease assessments and age. Human assessments 
focus on symptoms, exercise testing, imaging, echocar-
diograms, and bronchoscopy, whereas animal assess-
ments focus on histology, morphometry, collagen 
tissue content, and matrix gene expression. In addi-
tion, most rodent studies are conducted in mice or 
rats aged 6 to 12 weeks, the equivalent of about 
10 to 12 years in humans. Some attempts to mimic older 
age have been made. For example, senescence-prone 
mice (SAMP8 in  Fig 3  ) have been used to mimic age 
and indeed develop more profound fi brosis than do 
younger mice,  25   but it is not clear whether the mech-
anisms underlying “age-related” differences in mice 
are the same as those in humans, and other abnor-
malities in these specifi c mice might impede inter-
pretation of study results. Novel imaging techniques 
and development of a clinical-pathologic-radiologic 
score based on several assessments have been pro-
posed as ways to overcome these concerns. 

 Cellular and Molecular Factors in IPF 

 Some understanding of the mechanisms underly-
ing IPF, particularly with respect to alveolar cells, has 
come from studies of familial pulmonary fi brosis. 
Mutations in genes encoding proteins involved in the 
synthesis and metabolism of surfactant have been 
associated with chronic lung disease, and in adults, 
mutations in surfactant protein C (SP-C) have been 
associated with pulmonary fi brosis with a UIP pat-
tern.  26   In vitro, transfection of mutant SP-C results in 
an abundance of insoluble protein aggregates in the 
lung, similar to the amyloid fi brils seen with Alzheimer 
disease in the brain, suggesting that SP-C mutations 
hinder the protein secretory pathway and stress the 
endoplasmic reticulum (ER). In mouse models, SP-C 
mutations targeted to alveolar type 2 cells result in 
cytotoxic protein aggregates that perturb lung devel-
opment in association with elevated ER stress and 
cell death. Markers of ER stress and apoptosis are 
also seen in epithelial cells from patients with spo-
radic IPF.  27   

 Cytoprotective responses of the ER decline with 
age. The number of ER chaperones that facilitate 
protein folding are reduced, and those that remain 
are especially vulnerable to oxidation because of 
declines in glutathione expression.  28,29   In addition, 
autophagy, one mechanism by which the cell rids 
itself of misfolded proteins, declines with age and 
contributes to cellular senescence. Mutant protein 
aggregates are thus expected to accumulate in older 

collagen, matrix metalloproteinases, surfactant pro-
teins, and epithelial proteins. In these studies, assess-
ing the altered expression of as few as 23 to as many as 
1,772 genes predicts diagnosis with some degree of 
accuracy. Microarray data also might differentiate 
between the accelerated and stable forms of IPF  18   
and distinguish an IPF from other types of interstitial 
pneumonia. Thus, genomic signatures could be useful 
not only in diagnosing IPF but also in prioritizing 
patients for treatment and monitoring the effects of 
treatment. Some evidence suggests that expression 
patterns of markers such as matrix metalloproteinase 
7 or toll-like receptor-9 might be useful in prognosis.  17,19   

 Animal Models for IPF Research 

 Much of what is known about IPF pathogenesis 
comes from studies using animal models, such 
as mice treated with bleomycin or fl uorescein 
isothiocyanate,  20   mice overexpressing TGF- b ,  21   and 
viral infections to model potential exacerbating fac-
tors. Those models mimic acute injury and some of 
the histologic features of IPF (eg, collagen accumu-
lation, architectural tissue distortion, epithelial cell 
hyperplasia, and isolated fi broblastic foci).  22   How-
ever, none of these models mimic the entire disease. 
In particular, because the initiating factor for IPF is 
unknown, no experimental approach models early, 
preclinical stages of the disease. In fact, a compari-
son of long-term studies of TGF- b  and bleomycin 
models over 100 days found that many animals that 
show acute lung injury and fi brosis immediately fol-
lowing or up to 28 days after bleomycin challenge 
revert to normal over time (M. Kolb, personal com-
munication).  23   Thus spontaneous reversals could 
hamper interpretation of these animal study results. 
In addition, a metaanalysis of trials examining  .  200 
promising drugs suggests that current animal mod-

  Figure  2. Onset of idiopathic pulmonary fi brosis (IPF) usually 
occurs between the ages of 50 and 70 years, but the mean age in 
this population of patients with IPF was 61.4 years (n  5  238, age 
range 27-79 years). Sixty-five percent of the subjects were 
 �  60 years of age ( ,  50 years, n  5  36; 50-59 years, n  5  48; 60-70 years, 
n  5  108;  .  70 years, n  5  46). (Data from King et al  6  )   .
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EMT might represent a mechanism for survival in 
response to stress or injury, which, in the context 
of aging, might include increased oxidant stress, 
increased production of TGF- b , excessive infl am-
matory responses to viral infections, and changes in 
extracellular matrix. However, it is not clear how 
age itself affects EMT of alveolar epithelial cells nor 
to what extent EMT contributes to the pathogenesis 
of pulmonary fi brosis. 

 Bone marrow-derived cells have also been shown 
to regulate the pathogenesis of pulmonary fi brosis. 
Mesenchymal stem cells (MSCs) appear to be repar-
ative, as suggested by their ability to localize to the 
injured lung, engraft as alveolar epithelial cells, sup-
press infl ammation,  38   reduce collagen deposition,  39   
and induce growth factors. Fibrocytes, however, 
appear to be pathogenic. Transgenic mice that express 
green fl uorescent protein only in bone marrow 
progenitor cells show abundant green fl uorescent 
protein-expressing fi broblasts in the lung following 
bleomycin challenge.  40   Adoptive transfer of purifi ed 
fi brocytes worsens lung injury in mouse models.  41   
Herpesvirus exacerbation of lung fi brosis has been 
associated with enhanced fi brocyte recruitment,  42   and 
human fi brocytes migrate to injured lungs in mouse 
models.  43   Moreover,  44   patients with IPF exhibit more 
lung fi brocytes than do healthy volunteers,  24,45   and 
fi brocytes obtained from patients with IPF are more 
proliferative. 

adults, and it is likely that infection or other processes 
that overwhelm autophagy exacerbate that accumula-
tion. Thus, the usual paradigm of chemical chaper-
ones might in fact be deleterious for patients with 
IPF, and lysosomotropic drugs, which block autophagy 
and are recommended for pediatric lung condi-
tions,  30,31   could contribute to further accumulation of 
misfolded protein aggregates in IPF. 

 The associations between SP-C mutations, pro-
tein aggregates, and lung disease are consistent with 
a central role for alveolar epithelium in the patho-
genesis of IPF, wherein dysregulated epithelial 
repair following injury might create a profi brotic 
environment.  32   Epithelial-mesenchymal transition 
(EMT), an extreme form of epithelial cell plasticity 
in which fully differentiated epithelial cells adopt a 
mesenchymal phenotype, might also contribute 
fi broblasts following epithelial stress or injury in 
adult tissues.  33   Although type 2 alveolar epithelial 
cells typically serve as progenitors for type 1 cells 
in vitro, type 1-like cells can revert to a type 2 cell 
phenotype under certain culture conditions.  32,34   
EMT is marked by loss of polarity and epithelial 
markers and acquisition of fi broblast/myofi broblast 
markers, such as a spindle-shaped morphology and 
a migratory phenotype. Treatment with TGF- b  
induces EMT in alveolar epithelial cells,  33,35   and 
EMT has been observed in animal models of injury 
and in lung samples from patients with IPF.  36,37   

  Figure  3. ( A ) Mice with accelerated aging process (SAMP8) develop more pronounced fi brosis in response to bleomycin, as shown by 
histology and hydroxyproline content, compared with mice that are resistant to aging (SAMR1). Fibrosis in these animals is accompanied 
by the presence of high numbers of mesenchymal progenitor cells in the blood fi brocytes (not shown). (hematoxylin and eosin and Masson 
trichrome; magnifi cation  3  10 and  3  40.) ( B ) Bone marrow-derived mesenchymal stem cells, which are less differentiated than fi brocytes, 
do not differentiate into chondrocytes in aging mice as they do in senescence-resistant mice, suggesting that they might already 
be “destined” to become fi brocytes and thus promote fi brosis in aging individuals. (alcian blue for chondrocytes [blue cells] and oil 
red O staining for adipocytes [red cells]; magnifi cation  3  20 and  3  100.) (Reprinted with permission from Xu et al.  25  )   
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delays the clearance of toxins such as aluminosilicate. 
Studies in rodents also suggest that exposure to ciga-
rette smoke alters gene expression in both the airways 
and parenchyma and that altered expression patterns 
could revert to normal when the exposure ends.  53,54   

 Viral infection might also play a role in the cause of 
IPF, as suggested by fi ndings from animal studies. 
Herpesviruses have been positively associated with 
equine pulmonary fi brosis,  55   and studies in animal 
models indicate that infection with a murine form of 
Epstein-Barr virus (EBV) can trigger and exacerbate 
progressive fi brosis.  42,56-59   In addition, several studies 
have found EBV proteins and DNA in lung samples 
from patients with IPF,  60,61   although others have 
observed EBV DNA in control lungs and in fi brotic 
lungs associated with systemic sclerosis.  62   In one 
patient with mild symptoms and a higher EBV load, 
lung function was stabilized and viral load decreased 
upon initiation of antiviral therapy.  63   Viral infection 
might trigger IPF by augmenting the effects of ER 
stress or by promoting fi brocyte recruitment and 
fi brotic growth. Viral reactivation also might repre-
sent a chronic injury to the lung. 

 IPF and Comorbidities 

 Functional status is probably the most important 
predictor of health outcomes in older patients, and it 
becomes more predictive than specifi c diagnoses or 
laboratory measures as people age.  64   Among patients 
with IPF waiting for lung transplants, performance 
on the 6-min walk test is more predictive of survival 
than lung function.  65   Further, functional disability, 
depression, and cognitive function all predict mortality 

 Both MSCs and fi brocytes are recruited by the 
same chemokine signals, suggesting that the repair of 
lung injury requires a balancing act between repara-
tive MSCs and pathogenic fi brocytes. Evidence sug-
gests that aging alters the balance; MSC recruitment 
appears to be favored in younger individuals, whereas 
fi brocyte recruitment is favored in older individuals.  46   
In senescence-prone mice, increased recruitment of 
fi brocytes and more fi brosis is observed following 
injury, and MSCs isolated from these mice are less 
able to migrate.  25   Thus chemokine- or chemokine 
receptor-targeted therapies for IPF might increase 
the risk for infection or impair wound repair, and 
treatments designed to increase the number of MSCs 
might work only during the infl ammatory phase 
immediately following injury. In addition, treatments 
designed to limit fi brocytes might prove problematic, 
because chemokine receptor expression and cellular 
subsets are poorly defi ned, and not all patients with 
IPF show elevations in circulating fi brocytes. 

 Genome linkage scans in families affected by the 
familial form of pulmonary fi brosis, and further anal-
ysis of these families and of individuals with IPF, 
have revealed mutations in telomerase, an enzyme 
that protects telomeres from damage and whose 
activity declines with age.  47   These results are consis-
tent with the fi rst reports of mutations in TERT, the 
protein component of telomerase; these mutations 
were described in a family affected by dyskeratosis 
congenita, a rare disorder characterized partly by 
pulmonary fi brosis.  48   All mutations identifi ed in the 
more recent analyses are loss-of-function mutations 
leading to reduced telomerase activity and decreased 
telomere length.  49   Thus IPF is the third “telomeropa-
thy” identifi ed ( Table 2  ). However, even in families 
affected by telomerase mutations, pulmonary fi bro-
sis still appears to be an age-associated disease, sug-
gesting a requirement for a second hit to trigger 
disease onset. Aside from age, gender and smoking 
history appear to modify the effects of telomerase 
mutations. 

 Environmental Factors and IPF 

 Smoking is a major risk factor for the development 
of IPF. Most patients are current or former smokers 
at the time of IPF diagnosis,  8,9   and in families affected 
by the familial form of pulmonary fi brosis, ever smok-
ing is the largest risk factor associated with eventual 
development of the disease.  51   Smoking status affects 
FVC, gas exchange, and blood gases, and although its 
role in the natural history of IPF is not clear, smoking 
likely exerts synergistic effects with other factors. 
Exposure to cigarette smoke augments the effects 
of bleomycin injury in animal models,  52   and smoking 

 Table 2— Telomeropathies  

Characteristic DKC
Bone Marrow 

Failure IPF

Mode of 
 inheritance

X-linked 
 recessive

Autosomal 
 dominant

Autosomal 
 dominant

Autosomal 
 dominant

Autosomal 
 recessive

Autosomal 
 recessive

Age of onset 10-30 y All ages  .  50 y
Skin phenotype Yes No No
Bone marrow 
 failure

Yes Yes Anemia

Somatic 
 manifestations

Yes Rare Osteoporosis
 Cirrhosis

Cancer Yes Yes Unknown
Mutations DKC1  .  

 TERC  .  TERT
TERC  .  TERT TERT  .  TERC

Shortened 
 telomeres

Yes Yes Yes

Adapted from Garcia et al.  50   DKC  5  dyskeratosis congenita; IPF  5  idio-
pathic pulmonary fi brosis; TERC  5  telomerase RNA component; 
TERT  5  telomerase reverse transcriptase  .



698 Special Features

poorer survival in patients with IPF.  85   In addition, 
patients with combined pulmonary fi brosis and emphy-
sema syndrome have a poor prognosis, which might 
be associated with higher pulmonary vascular resis-
tance and PH.  86-88   

 Gastroesophageal refl ux disease (GERD) is also a 
common comorbidity in patients with IPF,  73   and the 
likelihood of having both IPF and GERD increases 
in patients  .  60 years of age.  89,90   Patients with IPF 
and GERD are at higher risk for hospitalizations from 
any cause and from respiratory illness, perhaps result-
ing, at least in part, from the contribution of uncon-
trolled refl ux and microaspiration to pulmonary 
fi brosis. Some case reports suggest that controlling 
refl ux might stabilize IPF.  90,91   These observations 
suggest a hypothesis in which recurrent epithelial 
injury caused by microaspiration of gastric juice and 
contents causes alveolar damage and pulmonary 
fi brosis. However, the prevalence of microaspiration 
in patients with IPF is not known, and it is not clear 
whether microaspiration represents an intrinsic risk 
factor or causes acute exacerbations of IPF. More-
over, whether GERD is more common in older adults 
is not known. 

 Treatment 

 Treatment benefi t is often measured in terms of 
average change in a cohort of patients. This approach 
assumes a fairly homogeneous population. With IPF, 
however, there is likely a heterogeneous distribution 

risk in older people.  64,66   Disease-associated functional 
decline arises both from the insidious decline associ-
ated with disease progression and accelerated declines 
associated with hospitalization.  67,68   Functional mea-
sures could thus enhance traditional measures in pre-
dicting outcomes and response to therapy among 
patients with IPF. A minimal dataset of a few such 
measures ( Table 3  )  69   could provide a solid under-
standing of a patient’s function without excessive 
time burden. However, more study is needed to 
assess geriatric measures of function in patients 
with IPF. 

 Comorbidities may play a role in the heterogeneity 
seen among patients with IPF. As suggested by 
Medicare data,  70   older individuals are likely to have at 
least three chronic conditions, and evidence suggests 
that the presence of these comorbidities infl uences 
both the eligibility of patients with IPF for lung 
transplants and their survival while on the waitlist. In 
addition, comorbidities, and the medications pre-
scribed for them, can often contribute to symptoms 
and thus hamper diagnosis and treatment.  71   Vascular 
or coronary artery disease, obstructive sleep apnea, 
diabetes,  71-74   corticosteroid-associated osteoporosis, 
and sarcopenia are commonly observed in patients 
with IPF.  75-81   

 The incidence of and mortality risk associated with 
pulmonary hypertension (PH), a common feature of 
advanced IPF, increases in individuals  .  60 years of 
age.  82-84   The pathogenesis of PH in these patients is 
not clear. Retrospective studies of patients with IPF 
indicate that a resting mean pulmonary artery pres-
sure  .  25 mm Hg, as measured by right-heart cath-
eterization, remains the defi nitive diagnostic method 
for PH rather than ECG or high-resolution CT scan.  83   
On the basis of this defi nition, PH is associated with 

 Table 3— A Suggested Minimum Dataset for Functional 
Status Assessment in Older Adult Cohorts Including 

Those With IPF   69   

Measure
Estimated Time 

Requirement, min

ADL 2
Instrumental ADL (eg, handling 
 money, medication, housework) 2
Mobility (eg, 6-min walk) 6
Geriatric syndromes (falls and 
 incontinence)

1

Mini-Mental State Examination 
 (cognitive function)

5

Depression (Geriatric Depression 
 Scale) 3
Social functioning (social support or 
 social isolation, depending on 
 purpose of the study) 2

The proposed dataset is intended for research purposes. A minimum 
clinical dataset would likely include fewer measures. ADL  5  activities 
of daily living. See Table 2 legend for expansion of other abbreviation.

  Figure  4. Patients aged  .  60 years form the largest growing seg-
ment of transplant recipients, with an increase of 648% since 1996 
and 175% since 2004 ( A ). Although survival is lower in this group, 
the absolute difference at 2 years is  ,  10% when compared with 
any of the younger cohorts ( B ).   
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oxidant N-acetylcysteine, in combination with pred-
nisone and azathioprine, has been associated with 
a slower decline in FVC over 12 months  94   com-
pared with prednisone and azathioprine alone,  95   but 
the clinical signifi cance of these results is unclear. 
Studies of novel therapies, such as pirfenidone  96,97   
bosentan,  98   and sildenafi l, have shown no clear treat-
ment benefi t. 

of treatment benefi t, with some patients deriving 
benefi t from any given therapy and others deriving 
no benefi t or even harm.  92   The 2000 American Tho-
racic Society/European Respiratory Society consen-
sus statement on the management of IPF pointed out 
that there was little evidence of effectiveness for any 
treatment,  13   and there are no high-quality studies of 
antiinfl ammatory treatments.  93   The use of the anti-

 Table 4— Recommended Research Questions  

Area of Study Research Questions Needs

Epidemiology  1.  Are there patient subsets that could potentially be diagnosed as “at risk” 
for IPF?

1.  Appropriately matched control 
groups (eg, age-matched, commonly 
encountered comorbidities in IPF, such 
as pulmonary hypertension or GERD.)

 2.  How can the fi rst complaints or symptoms of IPF be differentiated from 
normal aging with greatest accuracy?

2.  Standardized outcome measures among 
various fi brotic diseases, which will 
allow investigators of different studies to 
collect the same types of information.

 3.  What are the effects of comorbidities and functional status on outcomes 
and management of IPF?

Pathophysiology  1. Does IPF represent multiple disorders with a common outcome? 1.  Appropriately aged animal models.
 2.  Are nonspecifi c interstitial pneumonia, which appears in younger 

individuals, and UIP, which typically appears in older individuals, 
components of the same pathway?

2.  Reagents to identify different cell types 
in more easily obtained specimens, such 
as peripheral blood, sputum, and BAL.

 3.  What are the effects of immune response and immune senescence on 
IPF?

3.  Fresh tissue from lungs removed during 
transplant, as well as from control lungs.

 4.  Is IPF a disease of senescence or of accumulated insult? 4.  Longitudinal studies of the familial form 
of IPF.

 5.  How does age affect IPF-related cellular processes, such as EMT of 
alveolar cells?

 6.  What is the relative contribution of alveolar epithelial cell EMT to 
pathogenesis of human fi brosis?

 7.  Is EMT largely a manifestation of epithelial injury, and is it protective 
against apoptosis or senescence?

 8.  Which intrinsic and extrinsic factors (matrix, oxidant, immune) 
associated with aging might predispose alveolar epithelial cells to 
undergo EMT?

 9.  Can prevention or reversal of EMT affect progression of pulmonary 
fi brosis?

10.  Can EMT be prevented or reversed, and does this affect progression 
of pulmonary fi brosis?

11.  What is the intrinsic susceptibility of the IPF lung to stress, and how are
cytoprotective measures affected when stress has already occurred?

12.  What role does autophagy, which is markedly infl uenced by age, play 
in IPF pathogenesis?

Diagnosis  1.  What is the applicability of genomic and proteomic profi les in 
screening populations for IPF or determining prognosis or response to 
therapy?

1.  Imaging and blood markers to better 
identify fi brotic UIPs and to distinguish 
disease processes, abnormal healing 
responses, and nonresponse to treatment.

 2.  Can biomarkers of aging provide additional diagnostic or prognostic 
value?

2.  Better defi nition of radiographic fi ndings 
(eg, “honeycombing”); will require 
improved interobserver agreement.

Treatment  1.  What are the effects of age and comorbidities on treatment response 
and side effects?

1.  Inclusion of mechanistic studies in 
therapeutic trials.

 2.  Are there multicomponent or cell-based therapies that would be 
effective against IPF?

2.  Sustainable trial networks.

3.  Phase I/II studies.

Available cohorts: IPFnet, LTRC  , COPD cohorts, industry cohorts, Cardiovascular Health Study, Women’s Health Study, Health and Retirement 
Study, Baltimore Longitudinal Study of Aging, Lung Cancer Early Detection Study, immunologic cohorts, Multi-ethnic Study of Atherosclerosis. 
Future cohorts should require consensus diagnoses made by communication among clinicians, radiologists, pathologists, and geriatricians. 
EMT  5  epithelial-mesenchymal transition; GERD  5  gastroesophageal refl ux disease; LTRC  5  Lung Tissue Research Consortium; UIP  5  usual 
interstitial pneumonia. See Table 2 for expansion of other abbreviation.
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cation, at the time of diagnosis, of individuals at high-
est risk for progression. In addition, the present 
diagnostic criteria for IPF are descriptive, might mis-
classify phenotypically similar but etiologically dis-
tinct conditions, and might miss early disease. A 
precise biologically based screening tool, based on 
increased understanding of underlying mechanisms 
and the identifi cation of relevant biomarkers, is 
needed to improve the sensitivity and specifi city of 
diagnosis. Symptom management and interactions 
between IPF and comorbidities also should be 
explored further. Therapeutic trials should include 
mechanistic substudies, which will require sustain-
able trial networks and phase I/II studies, and cell-
based therapies and multicomponent approaches 
should be explored. 

 Although IPF is assumed to be a disease of aging, 
it is not clear what aspects of age are associated with 
the disease. Previously identifi ed senescence markers 
appear to have little or no validity when applied to 
studies of IPF. In addition, the effects of age on the 
distribution of cell types in the lung, as well as on 
the cellular processes related to fi broproliferation, are 
not known. Future studies will require control groups 
of appropriate age and physiologic status to separate 
the effects of IPF from those of normal aging. Thus 
traditional age restrictions on clinical trial participa-
tion should be lifted. In addition, appropriately aged 
animal models will be needed in basic science and 
preclinical studies, and the selection of the specifi c 
model will depend on the research question. Reagents 
to facilitate the study of different cell types also are 
needed; for example, fi brocytes are particularly diffi -
cult to study.   
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 Common treatment approaches for IPF include 
pulmonary rehabilitation, long-term oxygen therapy, 
and treatment of comorbidities. Pulmonary rehabili-
tation appears to benefi t both symptoms and function.  99   
The treatment of IPF-associated PH remains contro-
versial. Lung transplant, usually the end stage in IPF 
treatment, is still a fairly new approach. Until 2005, 
the number of deaths while waiting for a transplant 
was higher for the lung than for any other organ, and 
the risk for waitlist mortality was highest among 
patients with IPF. With the implementation of the 
Lung Allocation System, which scores patients based 
on their risk for waitlist mortality and assigns higher 
allocation scores for IPF,  100   transplantation volumes 
have increased, waiting times have decreased, and 
IPF is now the most common indication for trans-
plant. Although short- and long-term survival have 
improved, patients with IPF continue to exhibit the 
worst post-transplant outcomes.  101   It should be noted, 
however, that the mortality rate among these patients 
has decreased since 1998, and the Lung Allocation 
System allows transplantation in critically ill patients, 
among whom survival is the worst. The optimal tim-
ing for transplant for patients with IPF is not known. 

 The International Society for Heart and Lung 
Transplantation guidelines list age  .  65 years of age 
as a relative contraindication for lung transplantation. 
However, the average age of lung transplant recipients 
is 51 years. The percentage of those  .  60 years of age has 
grown since 1987, and patients  .  65 years of age repre-
sent the largest growing segment of transplant recipi-
ents ( Fig 4   ).  102,103   The survival rate among patients 
aged 61 to 74 years is about 78% at 1 year and 69% at 
2 years.  104   Mortality is slightly increased among 
patients  .  65 years of age, with a survival rate of 71% 
( Fig 4 ). Thus, although it is likely that advanced age 
and IPF confer the highest mortality risk, it is not 
clear that advanced age should be a contraindication 
for transplantation. Moreover, quality of life, func-
tional status, neurocognition and psychologic status, 
and the effects of comorbidities on transplant out-
comes are still poorly understood. GERD appears to 
be a risk factor for organ rejection and bronchiolitis 
obliterans,  105,106   the most common cause of death 
posttransplant, but more study of post-transplant 
complications in patients with IPF is needed. In addi-
tion, it is not clear whether immunosuppression 
methods should differ for patients of advanced age. 

 Recommended Research Priorities 

 Specifi c research questions and potential research 
cohorts appear in  Table 4  . Increasing knowledge 
about the natural history of IPF is chief among 
research priorities, as this will begin to allow identifi -
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