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Whole-transcriptome analysis links trastuzumab sensitivity 
of breast tumors to both HER2 dependence and immune cell 
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ABSTRACT

While results thus far demonstrate the clinical benefit of trastuzumab, 
some patients do not respond to this therapy. To identify a molecular predictor 
of trastuzumab benefit, we conducted whole-transcriptome analysis of primary 
HER2+ breast carcinomas obtained from patients treated with trastuzumab-containing 
therapies and correlated the molecular portrait with treatment benefit.

The estimated association between gene expression and relapse-free survival 
allowed development of a trastuzumab risk model (TRAR), with ERBB2 and ESR1 
expression as core elements, able to identify patients with high and low risk of 
relapse. Application of the TRAR model to 24 HER2+ core biopsies from patients 
treated with neo-adjuvant trastuzumab indicated that it is predictive of trastuzumab 
response. Examination of TRAR in available whole-transcriptome datasets indicated 
that this model stratifies patients according to response to trastuzumab-based 
neo-adjuvant treatment but not to chemotherapy alone. Pathway analysis revealed 
that TRAR-low tumors expressed genes of the immune response, with higher 
numbers of CD8-positive cells detected immunohistochemically compared to TRAR-
high tumors.

The TRAR model identifies tumors that benefit from trastuzumab-based treatment 
as those most enriched in CD8-positive immune infiltrating cells and with high ERBB2 
and low ESR1 mRNA levels, indicating the requirement for both features in achieving 
trastuzumab response.
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INTRODUCTION

Trastuzumab is the standard-of-care treatment for 
patients with HER2+ breast cancer (BC), reducing the 
risk of relapse and death in patients when administered 
with chemotherapy [1]. Even so, some patients do not 
benefit from this reagent and disease recurs [2, 3]. Thus, 
HER2 expression as determined by immunohistochemistry 
or fluorescence in situ hybridization is insufficient for 
selection of patients likely to benefit from this therapy, 
indicating the need to identify a biomarker(s) able to 
recognize such patients. Retrospective analyses from major 
studies of trastuzumab treatment have suggested that tumor 
dependence on HER2 or immune infiltrate might serve as 
predictive biomarkers. Two studies that used expression 
profiling of selected genes in archived formalin-fixed, 
paraffin-embedded (FFPE) tumor blocks support the 
significance of ERBB2 mRNA expression in predicting 
trastuzumab benefit [4, 5], and evidence for the predictive 
value of tumor-infiltrating lymphocytes is emerging [6, 7].

To determine whether whole-transcriptome 
analysis of HER2+ primary BCs might improve the 
search for molecular features predictive of trastuzumab 
benefit, we conducted gene expression profiling of 
archived FFPE tumor blocks from HER2+ BCs. A model 
constructed based on genes strictly associated with 
relapse-free survival (RFS) identified two subgroups of 
HER2+ BC with distinct biological characteristics that 
benefit differently from trastuzumab-based therapy both 
in adjuvant and neo-adjuvant settings. Responsive tumors 
were enriched both in HER2 dependent signals and in 
immune cell infiltration.

RESULTS

Construction of a model for risk of relapse

To test whether whole-transcriptome expression 
profiling of HER2+ BCs can identify a biomarker indicating 
benefit from adjuvant trastuzumab, we analyzed the 
gene expression profile of 53 tumors and developed the 
TRAstuzumab Risk (TRAR) prediction model (Figure 1). 
Using a semi-supervised principal component method, 
we identified patients with high and low risk of relapse 
(Figure 2A). Based on a threshold defined by a 10-fold 
cross-validation method [8], samples were grouped 
as high (n = 27) or low (n = 26) risk of early relapse, as 
confirmed by survival analysis revealing an 8-fold higher risk 
of relapse in the high- versus low-risk group in this selected 
cohort (HR = 8.0, 95% CI = 3.5–18.2, p = 0.0001). The model 
had a good performance (Figure 2B) and the classification 
was independent of clinico-pathological characteristics 
(Figure 2A). Among the 41 genes of the model (listed in 
Table S1), 9 that persisted in the model during permutation 
tests to define the relative weight of each gene represented 
a core element of TRAR. Six of these genes were 

associated with HER2 (ERBB2, GRB7, ORMDL3) or 
ER (C1orf186, ESR1, RERG). ERBB2-related genes were 
more highly expressed in low-risk than in high-risk patients, 
whereas the opposite was found for ESR1-associated genes 
(Figure 2A).

Based on the apparent relevance of ERBB2 and 
ESR1 mRNA levels in discriminating patients with low or 
high risk of relapse, we applied to our dataset the PAM50 
subtype predictor, which identifies the HER2-enriched 
(HER2E) subtype as the tumor group most responsive 
to trastuzumab [5]. Kaplan-Meier analysis confirmed 
that patients with HER2E tumors had the best survival 
outcome after adjuvant trastuzumab therapy compared to 
all other collective subtypes in our cohort ( p = 0.0020, 
Figure S1). PAM50 classification was significantly 
associated with TRAR ( p <0.0001), with all HER2E 
tumors classified as TRAR-low (Figure 2A) but not 
all TRAR-low classified as HER2E. Kaplan-Meier 
analysis stratifying TRAR-low tumors into HER2E and 
non-HER2E indicated that both had similar recurrence 
probability and a significantly lower recurrence probability 
than TRAR-high tumors (TRAR-low/non-HER2E 
vs TRAR-high: p = 0.0312, TRAR-low/HER2E vs 
TRAR-high: p = 0.0003, Figure 2C).

To test whether the TRAR model identifies patients 
with intrinsic poor prognosis independent of trastuzumab 
treatment, we analyzed 132 HER2+ BCs treated with 
adjuvant chemotherapy alone from the Metabric dataset. We 
found only borderline statistical significance toward better 
prognosis for TRAR-high versus TRAR-low tumors (HR = 
0.64; 95% CI: 0.38–1.08, p = 0.0986; Figure S2), suggesting 
that TRAR-low tumors have a bad prognosis if treated with 
chemotherapy alone and thus that the model is specific for 
the benefit from trastuzumab treatment. Notably, analysis 
of TRAR-low partitioned according to PAM50 indicated 
similar recurrence rates for both HER2E and non-HER2E 
tumors when treated with chemotherapy alone (Figure S2).

Predictive power of the TRAR model

To test the predictive performance of the TRAR 
classifier in identifying BCs that respond to neo-adjuvant 
trastuzumab, we analyzed the gene expression profile of 
24 core biopsies obtained from tumors retrieved from the 
TRUP window-of-opportunity trial [9] before any treatment. 
Application of TRAR to this dataset showed that patients 
achieving a complete response (pCR) to trastuzumab-based 
chemotherapy had significantly lower predictive indices 
than those with residual disease (Figure 3A). The classifier 
also showed good performance in identifying patients 
experiencing a response (AUC = 0.85, 95% CI: 0.69–1.00, 
p = 0.0133, Figure 3B) when the cut-off obtained in the 
GHEA cohort was applied, with all pCR found in the TRAR-
low group ( p = 0.0137, Figure 3C). Also in this cohort of 
patients, TRAR correlated with PAM50 classification 
(Figure 3C) and identified the 2 pathological complete 
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responses with perfect accuracy among non-HER2E tumors 
( p = 0.0273).

Note that patients whose tumors responded to one 
cycle of trastuzumab alone (i.e., a reduction in tumor 
volume) showed a borderline statistical significance toward 
lower predictive indices ( p = 0.0838) than those whose 
tumors progressed upon trastuzumab treatment (Figure 3D).

To validate the predictive performance of the classifier 
in identifying BCs that respond to neo-adjuvant trastuzumab, 
we applied TRAR to the only two available public datasets, 
GSE22358 and GSE50948. In this analysis, patients 
achieving a complete response to trastuzumab-based 
chemotherapy showed significantly lower predictive indices 
than those with residual disease ( p = 0.0057 and p = 0.0126, 
respectively; Figure S3). In both datasets, the classifier 
showed good performance in identifying patients  whose 
tumors responded (GSE22358: AUC = 0.81, 95% 
CI: 0.63–0.99, p = 0.0057; GSE50948: AUC = 0.66, 95% 
CI: 0.53–0.78, p = 0.0180; Figure S3). Again, the TRAR and 
PAM50 classifications were associated, with a significantly 
lower expression of the TRAR predictive indices in HER2E 

than non-HER2E tumors (Figure S3). Moreover, TRAR also 
showed fair ability (even if not statistically significant) in 
identifying responsive tumors classified as non-HER2E by 
PAM50 in these two datasets (GSE22358: AUC = 0.73, 95% 
CI: 0.34–1.00, p = 0.1918; GSE50948: AUC = 0.71, 95% 
CI: 0.49–0.93, p = 0.0591). In contrast, the TRAR predictive 
indices of HER2+ BCs that respond or do not respond to 
neo-adjuvant chemotherapy alone did not differ significantly 
in the GSE50948 and GSE41656 datasets (Figure S3). 
Comparison of the predictive performance of TRAR in the 
chemotherapy and trastuzumab arms of GSE50948 dataset 
showed that TRAR had a significantly higher performance 
in predicting response in the trastuzumab arm ( p = 0.0363), 
indicating that our model exhibits a different predictive value 
according to the addition of trastuzumab to chemotherapy.

Biological features of tumors according to TRAR 
and PAM50 classification

Exploiting the whole-transcriptome profile of the 
GHEA cohort, we investigated the biological features 

Figure 1: CONSORT diagram of the study. GHEA, Group HErceptin in Adjuvant Therapy [17]. ER, estrogen receptor; N, lymph 
node status.
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of TRAR-low and -high tumors. Enrichment analysis 
according to the TRAR model identified several gene sets 
differentially and significantly enriched in the TRAR-low 
subgroup characterized by overexpression of immune 
system-related genes and proliferation-associated pathways 
(Figure 4A and Table S2). Further examination of immune 
infiltration subtypes using immune metagenes [10] in 
the GHEA cohort showed that compared to TRAR-high 
tumors, TRAR-low tumors expressed significantly higher 
levels of lymphocyte-specific kinase (LCK) metagene, a 
surrogate marker of T cells, and STAT1 and interferon (IFN) 
metagenes, associated with IFN signal transduction (Figure 
4B). Pathological assessment of immune infiltrating cells in 
tumors by examining FFPE slides indicated no differences 
in their total amount according to TRAR classification, and 
immunohistochemical characterization of leukocytes and 
B lymphocytes revealed similar percentages of CD45+ 
and CD20+ cells in the two groups (Table 1). No or only very 
low numbers (<5 cells) of NK cells were found in tumors 
independent of TRAR classification (data not shown). In 
contrast, TRAR-low tumors showed significantly higher T 

cell infiltration ( p = 0.0084) and CD8+ T cell numbers than 
did TRAR-high tumors (Table 1 and Figure S4).

DISCUSSION

Our analyses of tumors derived from patients treated 
in routine clinical practice identify a new molecular 
classifier, TRAR, predictive of adjuvant trastuzumab benefit 
based on the expression levels of 41 genes associated with 
early relapse. Unlike previous works [4, 7], we did not base 
our gene selection on an empirical or biological approach, 
but instead applied a pre-developed semi-supervised learning 
method [11] to our dataset. The ability of our classifier to 
specifically identify tumors with low or high risk of relapse 
upon trastuzumab-containing therapy, but not chemotherapy 
alone, indicates that the molecular characteristics detected 
are specific in predicting benefit from HER2-targeted 
therapies rather than benefit from chemotherapy or due to 
low aggressiveness of the tumor. TRAR also showed good 
performance in predicting the response to trastuzumab 
neo-adjuvant treatment, consistent with the notion that the 

Figure 2: Development of 41-gene risk model. A. Heat-map of 41-gene model expression and TRAR classification (red, high risk; 
blue, low risk). Clinical and pathological characteristics are shown. pN, lymph node; ER, estrogen receptor; PGR, progesterone receptor. 
p-values by Fisher’s exact test. B. In-sample prediction performance of the classifier. Receiver-operator characteristics (ROC) curves were 
based on high- and low-risk classes computed using the 41-gene model on 10-fold cross-validation. C. Association between TRAR-high 
(red) and -low (HER2E, dotted blue; non-HER2E, blue) patients with RFS.
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molecular features detected by this model are indicative of 
anti-tumor trastuzumab activity.

Our analyses point to the relevance of simultaneous 
high ERBB2 and low ESR1 expression in dictating 
trastuzumab efficacy, as demonstrated by the association of 
these characteristics with TRAR-low cases. Thus, among 
~20, 000 genes analyzed for expression levels, mRNA 
levels of ERBB2- and ESR1-related genes emerge as those 
crucial in mirroring tumor susceptibility to anti-HER2 
therapy. In this context, the association of the TRAR-low 
tumor subset with the HER2E intrinsic profile further 
supports the notion that tumors with the highest activation 
of HER2 signal are those most sensitive to trastuzumab. 
Additionally, our analysis revealed the existence of a 
TRAR-low subset of tumors not strictly dependent on 
HER2 signals (non-HER2E) that takes advantage of 
trastuzumab-containing treatment, suggesting that TRAR 
predicts trastuzumab benefit better than does PAM50. 

TRAR-high tumors might instead grow through signals 
derived from other receptors (e.g., ER, IGFR), with 
consequent low benefit from anti-HER2 therapy. The 
observation that low expression of ESR1 is associated 
with good benefit from trastuzumab is consistent with 
several lines of evidence suggesting that ER signaling is a 
mediator of trastuzumab resistance [12].

The whole-transcriptome approach also indicated 
that TRAR-low tumors are enriched in expression of 
immune-associated pathways, pointing to the existence 
in the same tumors of both HER2 dependency and 
immune infiltration and suggesting a possible direct 
relationship between the two features that would explain 
the ability of either feature to predict disease outcome 
in trastuzumab-treated patients. In this context, we found 
that tumors of patients who benefit from trastuzumab 
have significantly higher CD8+ T cells in their 
microenvironment, pointing for the first time in clinical 

Figure 3: Predictive performance of TRAR model. A. Association between TRAR predictive indices and response to trastuzumab 
neo-adjuvant therapy in HER2+ BCs of the TRUP cohort. CR: pathological complete response (n = 6), RD: residual disease (n = 18). p-values 
by unpaired t-test. B. ROC curve of response prediction for the 41-gene model. AUC: Area under the ROC curve. C. Association between 
predictive indices and clinical and pathological characteristics. TRAR classification (red, high risk; blue, low risk); pN, lymph node; ER, 
estrogen receptor; PGR, progesterone receptor; pCR: pathological complete response; Clin Resp: clinical response. Grey boxes indicate 
missing data. p-values by Fisher’s exact test. D. Association between TRAR predictive indices and clinical response to one cycle of 
trastuzumab alone. Tumors were considered responsive (Yes, n = 13) when clinical dimensions were smaller after treatment than before 
and non-responsive (No, n = 8) when the opposite occurred. p-values by unpaired t-test.
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samples to the relevance of these cells for trastuzumab 
activity, so far described only in preclinical models 
[13, 14]. These data, rather than supporting the exploration 
of the predictive performance of CD8+ cells in identifying 
patients who will benefit from trastuzumab, suggest that 
trastuzumab may elicit the anti-tumor activity of immune 
cells infiltrating TRAR-low tumors, in agreement with 
observations in tumors of other histotypes treated with 
inhibitors of their driver oncogenes [15].

From a clinical perspective, it is critical to 
understand whether trastuzumab alone is sufficient to 
activate the pre-existing immune microenvironment 

favorable to its activity in TRAR-low patients, or whether 
the addition of chemotherapy, reported to induce immune 
system activation [16], is necessary to generate this 
response. The response of TRAR-low tumors to one cycle 
of trastuzumab alone in the TRUP cohort suggests that the 
immune microenvironment of such BCs could support 
trastuzumab anti-tumor activity without chemotherapy 
addition.

Although further studies in an independent large 
cohort of patients treated with trastuzumab-containing 
therapy are needed to corroborate these findings, our 
results revealed that the therapeutic effects of trastuzumab 

Figure 4: Immune metagene expression according to TRAR classification. A. Enrichment Map of pathways (Gene Ontology 
Biological Processes) significantly enriched ( p < 0.005, FDR <0.1) in TRAR-low compared to TRAR-high tumors by GSEA analysis. 
B. Association between immune metagene expression (HCK: hematopoietic cell kinase, IFN: interferon, LCK: lymphocyte-specific kinase 
metagenes) and TRAR subtypes. p-values by one-way ANOVA (*p = 0.023–0.025, **p = 0.0034).
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are associated with both tumor dependence on HER2 
signal and high T cell infiltration and numbers of 
CD8+ T cells. Comparison of the predictive performance 
of the two features alone or combined, as in TRAR model, 
will determine the best method to identify the tumors most 
sensitive to anti-HER2 drugs.

MATERIALS AND METHODS

Study design and patient cohorts

The 53 tumors profiled, with a median follow-up of 
22 months, were obtained from BC patients treated with 
adjuvant chemotherapy plus trastuzumab between 2005 
and 2009, deriving from our recent multicenter Italian 
observational study GHEA [17]. All patients received 
chemotherapy and trastuzumab at 3-week intervals for a 
median period of 1 year; hormone therapy was used in 
53% of patients (Table S3). Relapsed samples (n = 23) 
were matched 1:1 (16 tumors) and 1:2 (7 tumors) with 
non-relapsed tumors (n = 30) for patient age, estrogen 
receptor positivity (ER), lymph node involvement and 
tumor size. All selected samples contained at least 70% 
tumor cells.

Twenty-four tumors of the trastuzumab-upfront 
in HER2 positive locally advanced breast cancer 
(TRUP) cohort were obtained from patients with locally 
advanced primary BC diagnosed using incisional biopsy 
and deriving from our recent prospective neo-adjuvant 
study [9]. Patients were treated with one cycle of 
trastuzumab alone followed by 4 cycles of chemotherapy 
and trastuzumab (Table S4). All procedures were in 
accordance with the Helsinki Declaration. Biospecimens 
used for research consisted of leftover material of 
samples collected during standard surgical and medical 
approaches at Fondazione IRCCS Istituto Nazionale dei 
Tumori of Milan and Istituti Ospitalieri di Cremona. 
Samples were donated by patients to the Institutional 
BioBanks for research purposes, and aliquots were 
allocated to this study after approval by the Institutional 

Review Board and a specific request to the Independent 
Ethical Committee of the institutes.

Immunohistochemistry

HER2, Ki67 and ER positivity were re-evaluated 
by HercepTest, antibody clone MIB-1 and antibody clone 
EP1 (all from Dako, Hamburg, Germany), respectively, 
on histological sections consecutive to those used for 
gene expression profiling. HER2 positivity was defined as 
3+ overexpression in more than 10% of tumor cells by 
immunohistochemical (IHC) testing or 2+ overexpression 
and HER2 amplification ratio of at least 2.2 by 
fluorescence in situ hybridization (FISH). Tumors were 
considered Ki67- and ER-positive if at least 14% and 10% 
of cells showed immunoreactivity, respectively.

Immune cell infiltration evaluation

Pathological assessment of stromal lymphocytic 
infiltration was carried out as described [18].

Infiltration of total leukocytes, T, B, CD8+ T cells 
and NK cells was analyzed immunohistochemically on 
FFPE tumor sections using the Automated Immunostainer. 
The following antibodies were used: mouse anti-human 
CD45 (1:200, Dako), rabbit anti-human CD3 
(1:400, Dako), mouse anti-human CD20 (1:400, Dako), 
mouse anti-human CD8 (1:200, Dako), and mouse 
anti-human CD56 (1:400, NeoMarkers, Fremont, CA), 
respectively. Antigen retrieval was carried out using the 
Target Retrieval Solution pH9 (Dako). Immunoreactions 
were visualized  using streptavidin-biotin-peroxidase, 
followed by counterstaining with Carazzi hematoxylin. 
Stained slides were digitized by a slide scanner 
(ImageScope XT, Aperio), and the virtual slides were 
subsequently evaluated using the ‘positive pixel count’ 
algorithm of  Aperio ImageScope. The percentage of 
positive stromal cells was calculated as  the number 
of positive pixels/μm2. Data were divided into two groups 
(positive and negative) using median value as cut-off.

Table 1: Association between immune infiltrates and TRAR classification
Variable TRAR-high n/tot (%) TRAR-low n/tot (%) p-valueŦ

CD45 positive* 11/27 (41) 14/26 (54) 0.4142

CD20 positive* 11/26 (42) 12/20 (60) 0.3726

CD3 positive* 8/25 (32) 16/22 (73) 0.0084

CD8 positive* 7/27 (26) 16/24 (67) 0.0050

*Tumors were considered positive when the percentage of positive pixels/μm2, as evaluated in the digitalized stained slides, 
was higher than the median value. See methods for details.
Ŧp-value calculated by Fisher’s exact test.
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Gene expression analysis

RNA was extracted from FFPE tissue slices 
of primary tumors of the GHEA cohort using the 
miRNeasy FFPE kit (Qiagen, Valencia, CA) according 
to the manufacturer’s protocol and from frozen incisional 
biopsies of the TRUP cohort using the miRNeasy MINI 
KIT (Qiagen). RNA quality was checked by pre-analytical 
screening using RT-qPCR as described [19]. Gene 
expression profiles were generated using Whole-Genome 
DASL (cDNA-mediated Annealing, Selection, Extension, 
and Ligation) assay and HumanHT12_v4 BeadChips 
(Illumina, San Diego, CA), according to protocol. 
The Illumina BeadArray Reader was used for scanning the 
arrays. Illumina BeadScan software was used for image 
acquisition and recovery of primary data, after which the 
data were quantile-normalized using BeadStudio software. 
The BeadChips cover more than 29, 000 annotated genes 
derived from RefSeq (Build 36.2, Release 38) and, after 
filtering, a data matrix for the GHEA cohort and the TRUP 
cohort were generated. The data were deposited at the 
Gene Expression Omnibus repository (accession numbers 
GSE55348 and GSE62327, respectively).

Bioinformatics analysis

Bioinformatic analysis was performed using  R 
[20], version 2.15, BioConductor [21], release  2.10, 
and BrB-ArrayTool developed by Dr. Richard  Simon 
and the BRB-ArrayTools Development Team 
(v4.2.0, http://linus.nci.nih.gov/BRB-ArrayTools.html).

Gene-set enrichment analysis was performed using 
GSEA v2.0.13 [22] on GO biological processes. Genes 
represented by more than one probe were collapsed to the 
probe with the maximum value using the Collapse Dataset 
tool. Gene set permutation type was applied 1000 times 
and gene set enrichment was considered significant at 
p < 0.05, FDR <10%.

Survival model development and performance

A survival model was developed in the GHEA53 
training set. A disease-free survival profile was identified 
using a semi-standardized method involving principal 
component analysis [11]. Significance of each gene entered 
into the model was measured based on a univariate Cox 
proportional hazards regression of survival time versus 
the gene log expression level. A 10-fold cross-validation 
method was applied: 10% of the cases were omitted 
and for the remaining cases, the genes correlated with 
RFS at p < 0.001 were selected. Subsequently, principal 
component analysis was used to reduce the dimensionality 
of genes present in the model to capture most of their 
variability. The first two principal components, PC1 and 
PC2, were used to develop a prognostic model in which a 
prognostic trastuzumab risk (TRAR) score was calculated 
as: TRAR = α PC1 + β PC2, where α and β are the 

regression coefficients of the two principal components 
fitted by the Cox proportional hazards model in 10-fold 
cross-validation. Samples were classified as high- or 
low-risk by a 10-fold cross-validation approach: based 
on the median index values obtained in the training set 
comprising 90% of the cases, the remaining 10% of 
omitted test cases were classified. After reiteration of the 
entire procedure, omitting a different 10% of cases until 
each case was omitted once, all cases were stratified. 
Analysis and plotting were conducted using R package 
superpc (http://www-stat.stanford.edu/~tibs/superpc).

Prediction accuracy was evaluated through 
time-dependent ROC curves at maximum time points 
of follow-up using the SurvJamda R package [23]. 
ROC curve assessment for censored survival data was 
performed using the non-parametric estimator based on 
nearest neighbor bivariate distribution [24]. Accuracy of 
the prediction was plotted after 10-fold cross-validation 
and reported as mean and standard deviation.

Validation of the TRAR model was carried out as 
described [25] on the TRUP dataset. Briefly, the training 
and the validation sets were normalized using the 
empirical Bayes (EB) method [26] to build a joint dataset. 
This tool is designed to reduce non-biological systematic 
technical biases due to the use of chips belonging to 
different production batches. After batch correction, the 
entire 41-gene model was applied to the validation set 
without any modification.

External datasets and signatures

TRAR was applied to HER2-positive patients of 
the following public datasets (see Figure 1): Metabric 
(treated with adjuvant chemotherapy alone) [27]; 
ii) GSE22358 (treated with neo-adjuvant chemotherapy 
and trastuzumab) [28]; iii) GSE41656 (treated with 
neo-adjuvant chemotherapy alone) [29]; and iv) 
GSE50948 (treated with neo-adjuvant chemotherapy 
alone or chemotherapy and trastuzumab) [5]. Microarray 
data were processed starting from the authors’ raw data; 
if raw data or processing methods were not available, the 
processed data were retrieved. From the Metabric dataset, 
132 cases were selected by IHC and HER2-gain obtained 
by CNV data through Affymetrix SNP 6.0 chip SNP6 
(IHC 3+ and IHC 2+ with HER2_GAIN). Raw gene 
expression data profiled on HumanHT12_v3 BeadChips 
(Illumina) were retrieved from the EMBL-EBI repository 
(https://www.ebi.ac.uk/ega/datasets/) and RSN-normalized 
using the R-package: lumi [30]. Raw data for GSE22358 
and GSE41656 profiled on Agilent and Affymetrix 
platforms, respectively, were retrieved from the GEO 
repository (http://www.ncbi.nlm.nih.gov/gds/) and 
processed as described [28, 29].

Immune metagenes were determined based on 
the method of Rody et al [10]. The 569 Affymetrix 
ProbeSets were first mapped on the Illumina platform 
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and, among  7  immune metagenes, 3 were excluded 
(MHC-I, MHC-II and IgG metagenes) due to low 
gene number. Principal component analysis using the 
pcaMethods R/Bioconductor package [31] was used 
for genes contained in the remaining 4 metagenes to 
determine the first component able to capture most of the 
variation in the data.

The research-based PAM50 subtype predictor was 
applied to the GHEA and TRUP datasets using the publicly 
available algorithm as described [5] after performing median 
centering of the PAM50 genes. For external datasets, we 
used PAM50 subtype calls as previously reported.

Statistical analysis

Association among categorical variables was tested 
by Fisher’s exact test. Two-sided p < 0.05 was considered 
significant. Survival functions were assessed using the 
Kaplan-Meier estimator, while log-rank test was used 
to compare survival distributions; RFS was defined as 
the time from start of trastuzumab treatment to the first 
event of local, regional or distant recurrence. Pathological 
complete response in the TRUP cohort was defined as 
no residual invasive tumor or in situ carcinoma in the 
primary tumor and in the nodes. Cox proportional hazards 
regression models were used for survival analysis, and 
hazard ratios (HR) were used to quantify the effects of 
explanatory variables on event hazards [32].
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