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Summary

There is substantial heterogeneity among primary prostate cancers, evident in the spectrum of
molecular abnormalities and its variable clinical course. As part of The Cancer Genome Atlas
(TCGA), we present a comprehensive molecular analysis of 333 primary prostate carcinomas. Our
results revealed a molecular taxonomy in which 74% of these tumors fell into one of seven
subtypes defined by specific gene fusions (ERG, ETV1/4, FLI1) or mutations (SPOP, FOXAL,
IDH1). Epigenetic profiles showed substantial heterogeneity, including an IDH1-mutant subset
with a methylator phenotype. Androgen receptor (AR) activity varied widely and in a subtype-
specific manner with SPOP and FOXA1 mutant tumors having the highest levels of AR-induced
transcripts. 25% of the prostate cancers had a presumed actionable lesion in the PI3K or MAPK
signaling pathways, and DNA repair genes were inactivated in 19%. Our analysis reveals
molecular heterogeneity among primary prostate cancers, as well as potentially actionable
molecular defects.

Introduction

Prostate cancer is the second most common cancer in men and the fourth most common
tumor type worldwide (Ferlay et al., 2013). It is estimated that in 2015, prostate cancer will
be diagnosed in 220,800 men in the United States alone and that 27,540 will die of their
disease (Siegel et al., 2015). Multiple genetic and demographic factors, including age,

Corresponding authors: Nikolaus Schultz (schultz@cbio.mskcc.org), Massimo Loda (massimo_loda@dfci.harvard.edu), Chris Sander
(chris@sanderlab.org).

Author Contributions

Project leaders: M. Loda and C. Sander; analysis leaders: N.S. and B.S.T.; project coordinators: I.F. and M. Sheth; data
coordinators: J. Armenia and N.S.; supplement coordinator: J. Armenia; pathology review: M.l., M. Loda, V.E.R., B.R.,, M.AR,,
P. Troncoso, L.D.T., and H.Y; clinical data: J. Bowen, N.M.C,, L.l., K.M.L., and T.M.L.; tumor cellularity analysis: J. Ahn,
P.C.B.,AD.C.,F.D, SH., D.P.,, MAR.,, J. Shih, S.T., and W.W.; exome sequencing analysis: M. Gupta, C. Sougnez, and E.V.A,;
whole-genome sequencing analysis: J. Armenia, Y.F., M.B.G., M. Gupta, E.K., L. Lochovsky, A. Pantazi, C. Sougnez, and E.V.A,;
copy-number analysis: A.D.C., and J. Shih; mRNA expression and fusion analysis: A. Sboner, N.S., M.D.W., and C.-C.W_;
androgen receptor analysis: J. Armenia, R.K.B., H.D., R AM., AJ.M., P.S.N,, and N.S.; DNA methylation analysis: P.W.L.,
S.K.R,, and H.S.; miRNA analysis: A.G.R.; RPPA analysis: R.A.,, W.L., Y.L, and G.B.M.; integrative analysis: A. Arora, A.D.C.,
D.I.H, L.I., N.S., R. Shen, B.S.T., and M.D.W.; batch effects analysis: R.A., A K., K-V.L,, S. Ling, AR, and J.N.W,; mRNA
degradation analysis: A.K., K.-V.L,, G.R., M.A.R., N.S., and M.D.W.; manuscript writing: C.E.B.,C.C.B.,P.R.C.,Y.C, AD.C.,
F.D., S.M.L., M. Loda, J. Simko, P.S.N., S.K.R., A.G.R.,, MAR., C. Sander, A. Shoner, N.S., B.S.T.,, SAT, EV.A, and J.N.W.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Page 2

family history, genetic susceptibility, and race, contribute to the high incidence of prostate
cancer (Al Olama et al., 2014).

In the current era of PSA screening, nearly 90% of prostate cancers are clinically localized
at the time of their diagnosis (Penney et al., 2013). The clinical behavior of localized
prostate cancer is highly variable — while some men will have aggressive cancer leading to
metastasis and death from the disease, many others will have indolent cancers that are cured
with initial therapy or may be safely observed. Multiple risk stratification systems have been
developed, combining the best currently available clinical and pathological parameters (such
as Gleason score, PSA levels, clinical and pathological staging); however, these tools still do
not adequately predict outcome (Cooperberg et al., 2009, D’Amico et al., 1998, Kattan et al.,
1998). Further risk stratification using molecular features could potentially help distinguish
indolent from aggressive prostate cancer.

Molecular and genetic profiles are increasingly being used to subtype cancers of all types
and to guide selection of more precisely targeted therapeutic interventions. Several recent
studies have explored the molecular basis of primary prostate cancer and have identified
multiple recurrent genomic alterations that include mutations, DNA copy-number changes,
rearrangements, and gene fusions (Baca et al., 2013, Barbieri et al., 2012, Berger et al.,
2011, Lapointe et al., 2007, Pflueger et al., 2011, Taylor et al., 2010, Tomlins et al., 2007,
Wang et al., 2011). The most common alterations in prostate cancer genomes are fusions of
androgen-regulated promoters with ERG and other members of the ETS family of
transcription factors. In particular, the TMPRSS2-ERG fusion is the most common molecular
alteration in prostate cancer (Tomlins et al., 2005), being found in between 40 and 50% of
prostate tumor foci, translating to more than 100,000 cases annually in the United States
(Tomlins et al., 2009). Nevertheless, among treated prostate cancers, and despite extensive
study, patients with fusion-bearing tumors do not appear to have a significantly different
prognosis following prostatectomy than those without (Gopalan et al., 2009, Pettersson et
al., 2012). Prostate cancers also have varying degrees of DNA copy-number alteration;
indolent and low-Gleason tumors have few alterations, whereas more aggressive primary
and metastatic tumors have extensive burdens of copy-number alteration genome-wide
(Taylor et al., 2010, Hieronymus et al., 2014, Lalonde et al., 2014). In contrast, somatic
point mutations are less common in prostate cancer than in most other solid tumors. The
most frequently mutated genes in primary prostate cancers are SPOP, TP53, FOXA1, and
PTEN (Barbieri et al., 2012). Only recently has the spectrum of epigenetic changes in
prostate cancer genomes been explored (Borno et al., 2012, Friedlander et al., 2012, Kim et
al., 2011, Kobayashi et al., 2012, Mahapatra et al., 2012).

Importantly, no studies have comprehensively integrated diverse omics data types to assess
the robustness of previously defined subtypes and potentially prognostic alterations. Here, to
gain further insight into the molecular-genetic heterogeneity of primary prostate cancer and
to establish a molecular taxonomy of the disease for future diagnostic, prognostic, and
therapeutic stratification, the TCGA Network has comprehensively characterized 333
primary prostate cancers using seven genomic platforms. This analysis reveals novel
molecular features that provide a better understanding of this disease and suggest potential
therapeutic strategies.
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Cohort and platforms—The cohort of primary prostate cancers analyzed resulted from
extensive pathologic, analytical, and quality control review, yielding 333 tumors from 425
available cases. Images of frozen tissue were evaluated by multiple expert genitourinary
pathologists and cases were excluded if no tumor cells were identifiable in the sample, or if
there was evidence of significant RNA degradation (Figure S1, Supplementary Methods).
For the subset of cases reviewed by two pathologists, tumor cellularity estimates were
within 20% of each other in 71% of cases. In total, 78% of Gleason scores were concordant
within one grade of the secondary pattern (Supplementary Methods). Moreover, due to the
challenge of acquiring primary prostate cancer specimens of high tumor cellularity, we also
performed a multi-platform analysis of tumor content, estimating tumor purity with
analytical approaches utilizing both DNA (Carter et al., 2012, Prandi et al., 2014) and RNA
(Quon et al., 2013, Ahn et al., 2013) sequencing data. The molecular and pathologic
estimates are presented in Table S1A and Figure S1. The clinical and pathological
characteristics of the final cohort are presented in Table 1. The average follow-up time
following radical prostatectomy was just under two years, which precluded outcomes
analysis due to the long natural history of primary prostate cancer.

We characterized isolated biomolecules from these 333 tumor samples using four platforms:
whole-exome sequencing for somatic mutations, array-based methods for profiling both
somatic copy-number changes and DNA methylation, and messenger RNA (mRNA)
sequencing. We also performed microRNA (miRNA) sequencing on 330 of these samples,
reverse-phase protein array (RPPA) on 152 samples, and low-pass and high-pass whole-
genome sequencing (WGS) on 100 and 19 tumor/normal pairs, respectively (Supplementary
Methods). For 19 samples, non-malignant adjacent prostate samples were also examined for
DNA methylation and RNA/miRNA expression analyses.

The molecular taxonomy of primary prostate cancer

Previous studies indicate that many genomically distinct subsets of prostate cancer exist.
These are driven in some cases by frequent events, such as androgen-regulated fusions of
ERG and other ETS-family members, or recurrent SPOP mutations, and in other cases by
less common genomic aberrations. Given the comprehensive nature of our data, we sought
to unify these disparate findings to establish a molecular taxonomy of primary disease that
integrates results from somatic mutations, gene fusions, somatic copy-number alterations
(SCNA), gene expression, and DNA methylation. We first performed unsupervised
clustering of data from each molecular platform as well as integrative clustering using
iCluster (Shen et al., 2009). These analyses uncovered both known and novel associations
with 74% of all tumors being assignable to one of seven molecular classes based on distinct
oncogenic drivers: fusions involving 1) ERG, 2) ETV1, 3) ETV4, or 4) FLI1 (46, 8, 4, and
1% respectively), or mutations in 5) SPOP, 6) FOXAL, or 7) IDH1 mutations (11, 3, and 1%
respectively) (Figures 1 and S2, Table S1A).

In total, 53% of tumors were found to have ETS-family gene fusions (ERG, ETV1, ETV4,
and FLI11) after analysis with two complementary algorithms (Sboner et al., 2010, Wang et
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al., 2010) (see Methods). While TMPRSS2 was the most frequent fusion partner in all ETS
fusions, we identified fusions with other previously described androgen-regulated 5’ partner
genes, including SLC45A3 and NDRGL1 (Table S5). We also identified several tumors that
overexpressed full-length ETS transcripts that were mutually exclusive with ETS fusions (12
ETV1 high tumors, 6 ETV4, and 2 FLI1) (Table S5). ETS overexpression in these cases
could possibly be mediated via epigenetic mechanisms or cryptic translocations of the entire
gene locus to a transcriptionally active neighborhood. In the one case with elevated ETV1
full-length expression studied by whole-genome sequencing, we identified a cryptic
genomic rearrangement 3’ of the ETV1 locus with a region on chromosome 14 near the
MIPOL1 gene adjacent to FOXA1. This event is similar to previously described ETV1
translocations in LNCaP and MDA-PCaz2b cell lines and in patient samples (Tomlins et al.,
2007, Gasi et al., 2011). Overall, while fusions in the four genes were mostly mutually
exclusive, three tumors showed evidence for fusions involving more than one of these genes
(Table S5). Given that histologically defined single tumor foci have been shown to be rarely
composed of different ETS fusion positive clones (Cooper et al., 2015, Kunju et al., 2014,
Pflueger et al., 2011), it is likely these cases reflect convergent phenotypic evolution in
clonally heterogeneous tumors. Tumors defined by SPOP mutations were mutually
exclusive with all ETS fusion-positive cases, though four of the SPOP-mutant tumors also
possessed FOXAL mutations. In all four of these tumors, both the SPOP and FOXA1
mutations were clonal, indicating they are present in the same tumor cells.

Beyond the class-defining lesions, there were multiple patterns of both known and novel
concurrent alterations in key prostate cancer genes. The former included the preponderance
of PTEN deletions in ERG fusion-positive cases (Taylor et al., 2010). Similarly, SPOP
mutations have previously been found to occur in approximately 10% of clinically localized
prostate cancers, were mutually exclusive of tumors defined by ETS rearrangements, and
may designate a distinct molecular class of disease based primarily on distinctive SCNA
profiles (including deletion of CHD1, 6q, and 2q) (Barbieri et al., 2012, Blattner et al.,
2014). Beyond reaffirming these known patterns, our taxonomy revealed new relationships
and subtypes. Specifically, the SPOP-mutant/CHD1-deleted subset of prostate cancers had
notable molecular features, including elevated levels of DNA methylation, homogeneous
gene expression patterns, as well as frequent overexpression of SPINK1 mRNA, supporting
SPOP mutation as a key feature in the molecular taxonomy of prostate cancer. Interestingly,
MRNA, copy-number, and methylation profiles were similar in tumors with FOXA1
mutations and those with SPOP mutations. Furthermore, we identified a new genomically
distinct subtype of prostate cancer defined by hotspot mutations in IDH1, described in
greater depth below.

Despite this detailed molecular taxonomy of primary prostate cancers, 26% of all tumors
studied appeared to be driven by still-occult molecular abnormalities or by one or more
frequent alterations that co-occur with the genomically defined classes. Some of these
tumors showed a high burden of copy-number alterations or DNA hypermethylation.
Enrichment analysis indicated that this subset of tumors was enriched for mutations in TP53,
KDMG6A, and KMT2D; deletions of chromosomes 6 and 16; and amplifications of
chromosomes 8 (spanning MYC) and 11 (CCND1) (Table S2). To further characterize this
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group further, we performed whole genome sequencing of 19 tumor specimens and their
matched normal tissues, a subset of which had high tumor cellularity but still lacked DNA
copy-number alterations or any known or presumed driver lesions. Interestingly, no occult
driver abnormalities or highly recurrent regulatory mutations were identified, such as the
TERT promoter mutation common to many other tumor types (Khurana et al., 2013).
Therefore, a significant (up to 26%) subset of primary prostate cancers of both good and
poor clinical prognosis (including those with Gleason scores of >8) are driven by as yet
unexplained molecular alterations.

mMRNA clusters were tightly correlated with ETS fusion status, where mRNA cluster 1
consisted primarily of ETS-negative tumors and mRNA clusters 2 and 3 were split among
ETS fusion-positive tumors (Figure 1, Figure S4). miRNA clustering showed a similar
pattern, revealing a general difference in miRNA expression between ETS-positive and
negative tumors (Figure 1, Figure S6). Clustering of RPPA data identified three distinct
subgroups, with cluster 3 exhibiting elevated PI3K/AKT, MAP-Kinase and receptor tyrosine
kinase activity (Figure S7A). The cluster was not enriched, however, in genomic alterations
in these pathways, and in general there was little correlation of increased pathway activity
(as measured by phospho-AKT and other downstream phospho-proteins) with the frequent
genomic alterations in the pathways (see the example of PTEN deletions in Figure S7B).

Recurrently altered genes and their patterns across subtypes

The overall mutational burden of the cohort, inferred from whole-exome sequencing, was
0.94 mutations per megabase (median, range 0.04 — 28 per megabase), which corresponds to
19 non-synonymous mutations per tumor genome (median; 13-25, 25th and 75th percentiles
respectively). This is consistent with prior exome and genome-scale sequencing results for
localized prostate cancers (Barbieri et al., 2012, Baca et al., 2013), and is lower than the
mutational burden of metastatic prostate cancers (Gundem et al., 2015, Grasso et al., 2012,
Robinson et al., 2015). These results reaffirm that prostate cancer possesses a lower
mutational burden than many other epithelial tumor types that are not associated with a
strong exogenous mutagen (Alexandrov et al., 2013, Lawrence et al., 2013). Prior exome
sequencing of 112 prostate cancers identified 12 recurrently mutated genes through focused
assessment of point mutations and short insertions and deletions (Barbieri et al., 2012). By
comparison, mutational significance analysis of these 333 tumor-normal pairs by MutSigCV
(Lawrence et al., 2013, 2014) identified 13 significantly mutated genes (g-value < 0.1),
seven of which had not been previously identified (Figure 2 and Tables S1B-S1C). Among
the significantly mutated genes, SPOP, TP53, FOXA1, PTEN, MED12, and CDKN1B were
previously identified as recurrently mutated. Additional clinically relevant genes were
identified with lower mutation frequencies; these included genes within canonical kinase
signaling pathways (BRAF, HRAS AKT1), the beta-catenin pathway (CTNNB1), and the
DNA repair pathway (ATM). The rate of BRAF mutations (2.4%) seen in this study is higher
than previously reported; these include several known activating mutations, but curiously
not the canonical V600E hotspot. We identified no BRAF fusions, which had previously
been reported in a subset of clinically advanced prostate cancer (Palanisamy et al., 2010).
NKX3-1, previously implicated in familial prostate cancer syndromes and often found to be
deleted, was also somatically mutated in this cohort (1% of tumors). While its functional
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significance is unknown, ZMYM3, an epigenetic regulatory protein not previously
implicated in prostate cancer but infrequently mutated in Ewing sarcomas (Tirode et al.,
2014) and various pediatric cancers (Huether et al, 2014), was also recurrently mutated (2%
of tumors). Genes with known biological relevance that were mutated at frequencies just
below the threshold of significance (g-value < 0.01) included KMT2C (MLL3), KMT2D
(MLL4), APC, IDH1, and PIK3CA (Figure 2 and Tables S1B-S1C). Mutations in the tumor
suppressor genes KMT2C, KMT2D, and APC were mostly truncating; the IDH1 and
PIK3CA mutations occurred in previously characterized hotspots and thus may have
therapeutic relevance for those occasional tumors with these mutations.

Notwithstanding these key somatic mutations, the most frequent molecular abnormalities
involved chromosomal arm-level copy-number alterations (Taylor et al., 2010). These
alterations included recurrent genomic gains of chromosome 7 and 8g and heterozygous
losses of 8p, 13q, 16q and 18 (Figure S3A). Significance analysis of recurrent focal DNA
copy-number alterations revealed 20 amplifications and 35 deletions (g-value < 0.25,
GISTIC 2.0; Figure S3A and Table S1D). Recurrent focal amplifications included those
spanning known oncogenes such as CCND1 (11g13.2, 2%), MYC (8qg24.21, 8%), as well as
FGFR1 and WHSC1L1 (8p11.23, 8%). Recurrent focal deletions were much more common:
Homozygous deletions spanning the PTEN locus occurred at one of the highest rates of any
tumor type studied thus far (15%). Focal deletions of the region between the TMPRSS2 and
ERG genes on 21g22.3, which result in TMPRSS2-ERG fusions, were unique to prostate
cancers as expected. Other focal deletions include those spanning tumor suppressors TP53
(17p13.1), CDKNI1B (12p13.1), MAP3K1 (5911.2), FANCD2 (3p26), as well as SPOPL
(2922.1) and the complex locus spanning FOXP1/RYBP/SHQ1 (3p13). MAP3K7 (6q.12-22)
was also frequently deleted, along with deletion of CHD1 (5q15-g21); co-deletion of these
loci has been associated with aggressive ETS-negative prostate cancer (Kluth et al., 2013,
Rodrigues et al., 2015).

As the pattern and extent of SCNAs in prostate cancer genomes have been associated with
probability of disease recurrence and metastasis in primary prostate cancers (Taylor et al.,
2010, Hieronymus et al., 2014, van Dekken et al., 2004, Paris et al., 2004), we sought to
identify similar structure in the burden of SCNAs by performing hierarchical clustering of
arm-level alterations. We identified three major groups of prostate cancers, one with mostly
unaltered genomes (hereafter referred to as quiet), a second group encompassing 50% of all
tumors with an intermediate level of SCNAs, and a third group with a high burden of arm
level genomic gains and losses (Figure S3B-S3C). While a formal outcome analysis was not
possible due to the limited clinical follow-up available for this cohort, the subset of tumors
with the greatest burden of SCNAs had significantly higher Gleason scores and PSA levels
than the other two groups (Figure S3B-S3D). The tumors in this group also had significantly
higher tumor cellularity (Figure S3C).

Epigenetic changes define molecularly distinct subtypes of prostate cancer

Integrative analysis of genetic and epigenetic changes revealed a diversity of DNA
methylation changes that defined molecularly distinct subsets of primary prostate cancer
(Figure 3). Unsupervised hierarchical clustering of the most variably hypermethylated CpGs
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identified four epigenetically distinct groups of prostate cancers (Figure SSA-S5B). When
integrated with the molecular taxonomy defined above, we found a number of striking
associations. Among these was a notable pattern within ERG fusion-positive tumors.
Specifically, while nearly two-thirds of all ERG fusion-positive tumors belonged to an
unsupervised cluster with only moderately elevated DNA methylation (DNA methylation
cluster 3), the remaining ERG fusion-positive tumors comprised a distinct hypermethylated
cluster (cluster 1) that was almost exclusively associated with ERG fusions. On average, this
cluster contained twice the number of hypermethylated loci as DNA methylation cluster 3
(Figure S5A), and the epigenetic patterns were largely distinct from those of ETV1 and
ETV4 fusion-positive tumors, which showed more heterogeneous methylation. What drives
these epigenetically distinct groups of ETS fusion-positive tumors is unknown, but there is
considerable diversity in their DNA methylation profiles that may reflect altered epigenetic
silencing (Figure S5A-S5B). Together, these results support further ETS fusion-based
subtyping of disease, but also reveal a greater molecular and likely biological diversity
among ERG fusion-positive tumors than previously appreciated. Likewise, these results are
consistent with in vivo mouse modeling and expression profiling studies that suggest
important molecular and clinicopathological differences between ERG and non-ERG ETS
fusion positive tumors (Baena et al., 2013, Tomlins et al., 2015).

SPOP and FOXA1-mutant tumors exhibited homogeneous epigenetic profiles. These tumors
belonged almost exclusively to DNA methylation cluster 2, a group that also contained a
majority of the ETV1 and ETV4 but not ERG-positive tumors. Lastly, the IDH1-mutant
tumors were notable given their strongly elevated levels of genome-wide DNA
hypermethylation (Figure S5B). While of low incidence, these IDH1 R132-mutant tumors
defined a distinct subgroup of what appears to be early onset prostate cancer (Figure 3B)
that possesses fewer DNA copy-number alterations (see Figure 1) or other canonical
genomic lesions that are common to most other prostate cancers. IDH1 and IDH2 mutations
have been associated with a DNA methylation phenotype in other tumor types, most notably
in gliomas (Noushmehr et al., 2010) and acute myeloid leukemias (AML, Figueroa et al.,
2010). Curiously, IDH1-mutant prostate cancers possessed even greater levels of genome-
wide hypermethylation than do either glioma or AML IDH1-mutant tumors (Figure 3B).
After further investigating DNA methylation differences between IDH-mutant and wild type
tumors among prostate cancers, gliomas, and AMLs, we found that hypermethylated loci
were specific to the cancer type rather than IDH mutants (Figure S5F).

Integrating these epigenetic data with mRNA expression levels, we identified 164 genes that
were epigenetically silenced in subsets of the cohort (Figure S5C, Table S1F). These
silenced genes were significantly enriched for genes previously found to be differentially
expressed in prostate cancer; specifically, genes that are down-regulated in metastatic
prostate cancer (Chandran et al., 2007) and genes involved in prostate organ development
(Schaeffer et al., 2008) (g-value < 2.0-107°). These 164 silenced genes displayed
heterogeneous frequencies of epigenetic silencing across the cohort. For example, SHF,
FAXDC2, GSTP1, ZNF154, and KLF8 were epigenetically silenced in almost all tumors
(>85%) whereas STAT6 was silenced predominantly in ETS fusion-positive tumors and not
in SPOP and IDH1-mutant tumors. Conversely, HEXA was silenced preferentially in SPOP-
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mutant tumors compared to ERG fusion-positive tumors (86.5 versus 14.5% respectively,
p<5.4-10719). Consistent with their increased DNA hypermethylation, the IDH1-mutant
prostate tumors also possessed the greatest number of epigenetically silenced genes among
all prostate tumors (Table S1F).

AR activity is variable in primary prostate cancers

The androgen receptor (AR) regulates normal prostate development as well as critical
growth and survival programs in prostate carcinoma. Primary prostate cancer is androgen
dependent, and androgen activity is a central axis in prostate cancer pathogenesis, driving
the creation and overexpression of most ETS fusion genes (Lin et al., 2011, Mani et al.,
2009, Tomlins et al., 2005). However, the extent to which individual primary prostate
cancers differ in androgen sensitivity or dependence is unknown, and the issue has
translational implications because AR targeting is therapeutically important. To address
these questions, we sought to infer the AR output of tumors by calculating an AR activity
score from the expression pattern of 20 genes that are experimentally validated AR
transcriptional targets (Hieronymus et al., 2006). This score suggested that a broad spectrum
of AR activity exists across all prostate tumors as well as between genomic subtypes (Figure
4A). Although ETS fusion genes are under AR control, the ETS fusion-positive groups had
variable AR transcriptional activity. In contrast, we found that tumors with SPOP or FOXA1
mutations had the highest AR transcriptional activity of all genotypically distinct subsets of
prostate cancer (p = 1.1-107% and 0.04, respectively, t-test). Consistent with this, SPOP
mutations have been previously implicated in androgen signaling in model systems, since
both AR and AR coactivators are substrates deregulated by SPOP mutation (Geng et al.
2013, An et al., 2014, Geng et al. 2014), providing a possible explanation for the associated
increase in AR activity seen in this subtype of prostate cancers.

While AR transcriptional output is a proxy for ligand-driven AR activity in many tumors,
AR transcript variants have been described that encode truncated AR proteins that lack the
ligand-binding domain and hence are capable of activating AR target genes in the absence of
androgens (Dehm et al., 2008, Watson et al., 2010). Using RNA sequencing reads that
spanned the splice junctions unique to each AR variant, we quantified the expression of these
AR transcript variants. This analysis revealed that several AR splice variants, most notably
AR-V7, can be detected at low levels in primary tumors and, in a few cases, in adjacent
benign prostate tissue (Figure 4B), and we validated these expression levels with gPCR
(Figure 4C). However, their expression was not associated with differential expression of
known AR target genes or with the seven previously defined genomic subtypes. Most
detected splice forms were truncated after the DNA-binding domain by the presence of a
cryptic exon rather than by skipping those exons encoding the ligand-binding domain.
Truncated AR splice variants were previously assumed to be expressed primarily in
metastatic castration-resistant prostate cancers, where, at least for AR-V7, their presence
was associated with resistance to hormone therapy (Antonarakis et al., 2014). Hence, our
finding that they are expressed in hormone-naive primary prostate cancers is notable.

In prostate cancers, the degree of AR pathway output is controlled not only by AR mRNA
and protein expression levels, but also by expression of and mutations in AR cofactors
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(Heemers et al., 2007). It is therefore notable that FOXAZ1 was recurrently mutated in our
cohort, as it is a pioneering transcription factor that targets AR and has a demonstrated role
in prostate cancer oncogenesis (Jin et al., 2013). We identified FOXA1 mutations in 4% of
the primary prostate cancers studied here, which is similar to the mutation frequency
observed previously (Barbieri et al., 2012, Grasso et al., 2012) (Figure 4A). While a subset
of these mutations were present in tumors that also possessed SPOP mutations and had
elevated levels of AR output, FOXA1 mutations were mutually exclusive with all other
alterations that define the genomic subclasses described here. While there were some
truncating mutations near the C-terminus and the C-terminal part of the forkhead domain,
the majority of the mutations found here and in other prostate cancer cohorts were missense
mutations that primarily affect the winged-helix DNA binding domain of FOXAL.
Curiously, these mutations do not directly alter FOXA1 DNA-binding residues (Figure 4D-
E), a pattern similar to the FOXAL mutations recently found in lobular breast cancers
(TCGA, unpublished), which suggests that the impact of FOXA1 mutations has less to do
with altering DNA binding than with disrupting or altering interactions with other
chromatin-bound cofactors.

Clinically actionable DNA repair defects in primary prostate cancers

Prior data indicate that several DNA repair pathways are disrupted in a subset of prostate
cancers (Karanika et al., 2014, Pritchard et al., 2014). Moreover, the PARP inhibitor
olaparib is effective in some patients with prostate cancer (Mateo et al., 2014). Here, we
found inactivation of several DNA repair genes that collectively affected 19% of patients
(Figure 5A). While we found only one inactivating BRCAL germline mutation, a frameshift
at V923 caused by a 4bp deletion (Clinvar RCVV000083190.3), BRCAZ inactivation affected
3% of tumors, including both germline and somatic truncating mutations. All six BRCA2
germline mutations were K3326*, a C-terminal truncating mutation with debated functional
impact but increased prevalence in several tumor types (Farrugia et al., 2008, Martin et al.,
2005, Delahaye-Sourdeix et al., 2015). Two additional tumors possessed focal BRCA2
homozygous deletions that were accompanied by very low BRCA2 transcript expression.
Four tumors (1%) possessed either loss-of-function mutations or homozygous deletion of
CDK12, a gene that has been implicated in DNA repair by regulating expression levels of
several DNA damage response genes (Blazek et al., 2011) and is recurrently mutated in
metastatic prostate cancer (Grasso et al., 2012). ATM, an apical kinase of the DNA damage
response, which is activated by the Mrel11 complex and mediates downstream checkpoint
signaling, was affected by a nonsense mutation in one case and by a likely kinase-dead
hotspot N2875 mutation in two cases. FANCD2 was similarly affected by diverse
uncommon lesions including a truncating mutation in one tumor, homozygous deletion in
two tumors, and focal heterozygous losses in 6% of the cohort (Figure 5B). RAD51C (3%)
was affected by focal DNA losses, most of which were heterozygous. Finally, it was notable
that heterozygous losses of BRCA2 (13¢q13.1) almost always coincided with concurrent loss
of the distant RB1 tumor suppressor gene (13914.2) (Figure S3D). The observation that
nearly 20% of primary prostate cancers bear genomic defects involving DNA repair
pathways is remarkably consistent with the recently announced TOPARP-A Phase 11 trial
results in patients with metastatic castration-resistant prostate cancer indicating that clinical
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responses to the PARP inhibitor olaparib likely occurred in the subgroup of tumors bearing
defects in DNA repair genes (Mateo et al., 2014, Robinson et al., 2015).

Clinically actionable lesions in PI3K and Ras signaling

The long tail of the frequency distribution of molecular abnormalities is particularly notable
among primary prostate cancers. Beyond PTEN, which was deleted or mutated in 17% of
the cohort, various driver mutations in effectors of PI3K signaling were present at low
incidence (Figure 5C). PIK3CA, which encodes the 110 kDa catalytic subunit of
phosphatidylinositol 3-kinase, was mutated in six tumors including one case possessing
coincident activating mutations (E542A and N3451), both of which appeared to be
subclonal. The other four PIK3CA mutations were all known activating mutational hotspots
(E545K, Q546K, N3451, C420R), while one had a mutation of unknown function (E474A).
Focal PIK3CA amplification with associated mMRNA overexpression occurred in ~1% of
cases. Interestingly, PIK3CB was mutated in two tumors that also possessed coincident
homozygous deletions of PTEN, both of which were clonal. PIK3CB E552K was found in
one tumor at a paralogous residue to the canonical PIK3CA helical domain E545K mutant,
and is presumably activating (Figure 5E). As PTEN-deleted tumors are likely PIK3CB-
dependent due to the feedback inhibition of PIK3CA, co-existent loss and mutation of PTEN
and PIK3CB may be elevating PI3K pathway output and perhaps indicating a set of tumors
in which combined PI3K and androgen signaling inhibition may be effective (Schwartz et
al., 2015). Among other lesions that drive PI3K signaling, AKT1 was mutated in three
tumors. Two tumors had the known E17K hotspot mutation, while another encoded a
D323Y mutation. Whereas E17K is the most common hotspot in AKT1 across human
cancer, the D323Y variant is uncommon, having been identified previously in one lung
adenocarcinoma (Cancer Genome Atlas Research Network, 2014) and one urothelial bladder
cancer (Guo et al., 2013). Nevertheless, while distant linearly from the activating E17K
hotspot, in three dimensions this D323Y kinase domain mutant directly abuts the PH-
domain containing E17K (Figure 5D), and has been described as potentially activating
(Parikh et al., 2012).

We also identified known or presumed driver mutations in several other genes of the MAPK
pathway, affecting 25% of the tumors (Figure 5A). HRAS was mutated in four tumors, of
which three were Q61R hotspot mutations. Two mutations arose in other Ras-family small
GTPases. While both RAC1 Q61R and RRAS2 Q72L occurred only once each, they affected
residues paralogous to the RAS Q61 hotspot (Figure 5E) (Chang et al., 2015). We also
identified eight BRAF mutations, though, curiously, none were the common V600E
mutation that is prevalent in cutaneous melanomas, thyroid cancers, and many other tumor
types. Five BRAF mutations are likely activating, including known hotspots (K601E,
G469A, L597R), two of which confer sensitivity to MEK inhibitors (Dahlman et al., 2012,
Bowyer et al., 2014). Another mutation was a likely activating in-frame 3 amino acid
deletion at K601 (Figure 5F), while the final mutation (F468C) affected the adjacent residue
to the known G469 hotspot. Together, these findings reveal a long tail of low-incidence
potentially actionable predicted driver mutations present across the molecular taxonomy of
prostate cancer.
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Comparison with metastatic prostate cancer

To put these results in context, we compared our findings with those from a recently
published cohort of 150 castration-resistant metastatic prostate cancer samples (Robinson et
al., 2015). The analysis revealed some similarities and many differences between primary
and treated metastatic disease. Although the overall burden of copy-number alterations and
mutations was significantly higher in the metastatic samples (Figure 6A), consistent with
previous findings (Taylor et al., 2010, Grasso et al., 2012), the primary and metastatic
samples were remarkably similar in their subtype distribution, with the exception that the
metastatic data set contained no IDH1-mutant tumors (Figure 6B). We compared the
frequencies of all recurrently altered genes described in both studies and found that, similar
to the overall burden of genomic alterations (Figure 6A), many genes and pathways have
increased alteration rates in the metastatic samples (Figure 6C, Table S3). Androgen
receptor signaling was more frequently altered in the metastatic samples, most often by
amplification or mutation of AR, events that were essentially absent in primary samples.
Interestingly, SPOP mutations were somewhat less frequent in the metastatic samples (8%
vs 11% in the primary samples). DNA repair and PI3K pathway alterations were more
frequent in the metastatic samples, as were mutations or deletions of TP53, RB1, KMT2C
and KMT2D. Interestingly, we found no focal, clonal MYCL amplifications, which were
recently described in primary prostate cancer (Boutros et al., 2015), in either data set nor in a
separate set of 63 untreated prostate cancer samples (Hovelson et al., 2015).

Discussion

The comprehensive molecular analyses of primary prostate cancers presented here reveal
highly diverse genomic, epigenomic, and transcriptomic patterns. Major subtypes could be
defined by fusions of the ETS family genes ERG, ETV, ETV4, or FLI1 and by mutations in
SPOP, FOXAL, or IDH1. However, even within the groups there was significant diversity in
DNA copy-number alterations, gene expression, and DNA methylation. The mutational
heterogeneity mirrors the heterogeneous natural history of primary prostate cancers.

Although the broad spectrum of copy-number alterations in tumors with ETS fusions has
been previously characterized (Demichelis et al., 2009, Taylor et al., 2010), here we
uncovered additional differences between the epigenetic profiles of those tumors. We found
that ERG fusion-positive tumors can be subdivided into two methylation subtypes: one with
lower levels of methylation, and one with a distinct spectrum of hypermethylation. Many
genes were epigenetically silenced as a result of the hypermethylation in the latter tumors.
While further studies will be required to determine which silencing events are linked to
prostate cancer pathogenesis, the findings presented here reveal variability among what was
previously considered to be genetically homogeneous prostate cancer subtypes.

We have also identified a distinct subgroup of tumors with IDH1 R132 mutations that is
associated with younger age at diagnosis. Although IDH1 mutations have previously been
identified in prostate cancer with a similar incidence (2.7%) (Ghiam et al., 2012, Kang et al.,
2009), we show here that those tumors are all ETS fusion-negative and SPOP wildtype,
have little SCNA burden, and possess elevated levels of genome-wide methylation. The
levels of methylation observed in this methylator phenotype are higher than those observed
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in IDH1-mutant GBMs and AMLs. Consistent with our observations, a recently published
clinical study of 117 prostate cancers identified a single IDH1-mutant prostate cancer from
56-year old patient that also lacked significant copy number alterations, ETS gene fusions,
or driver mutations (Hovelson et al., 2015). Future studies in cohorts with sufficient clinical
follow-up will be able to ask whether the IDH1-mutant prostate cancers are prognostically
distinct, as noted for gliomas (Noushmehr et al., 2010) and AMLs (Mardis et al., 2009), and
if they are sensitive to newly developed IDH1-targeted therapeutics (Rohle et al., 2013).

Interestingly, 26% of the tumors in this study could not be characterized by one of the
taxonomy-defining cardinal genomic alterations. The 26% were clinically and genomically
heterogeneous, with some tumors exhibiting extensive DNA copy-number alterations and
high Gleason scores indicative of poorer prognosis. About a third of them were genomically
similar to SPOP and FOXA1 mutant tumors but lacked any canonical mutation (iCluster 1,
methylation cluster 2, mRNA cluster 1); others were enriched for mutations of TP53,
KDMG6A, and KMT2D or specific SCNASs spanning MYC and CCND1. Many of the tumors
had low Gleason score with few if any DNA copy-number alterations and a normal-like
DNA methylation pattern. As previously reported, tumors with fewer genomic alterations
were also more commonly Gleason score 6 tumors (38% in the ‘quiet’ class vs 8% in the
class with the greatest burden of alterations).

Tumor cellularity, as assessed by pathology review, was lower among tumors with fewer
SCNA s (one-sided Mann-Whitney test, p = 0.0002), indicating that the apparent lower
burden of alterations in tumors with smaller volumes may be due in part to their tumor
purities being lower. However, the lower cellularity of these tumors did not limit the
detection of clonal molecular lesions since tumor cellularity between ETS fusion-positive
and these fusion-negative tumors was not significantly different (two-sided Mann-Whitney
test, p = 0.32). One must also keep in mind that this study was limited to a single tumor
focus for each patient, even though the vast majority of primary prostate tumors are
multifocal and molecular heterogeneity between different foci has been demonstrated
(Cooper et al., 2015, Boutros et al., 2015, Lindberg et al., 2013). Such issues must be
considered when designing new therapeutic approaches and biomarker panels for clinical
use, as patients likely have more than one of these molecular subtypes present due to this
commonly occurring tumor multifocality and molecular heterogeneity.

Primary prostate cancers exhibit a wide range of androgen receptor activity. This study
demonstrates for the first time a direct association between mutations in SPOP or FOXA1
and increased AR-driven transcription in human prostate cancers. Further studies in
preclinical models as well as in clinical trial settings will be required to understand the
implications of variable AR activity in the contexts of chemoprevention and prostate cancer-
directed treatment strategies (Mostaghel et al., 2010). Other, more immediately actionable
opportunities for targeted therapy exist for the 19% of primary prostate cancers that have
defects in DNA repair, and for the nearly equal number of cancers with altered key effectors
of both PI3K and MAPK pathways. While the numbers of DNA repair defects found in
organ-confined prostate tumors may be lower than those found in metastatic prostate cancer
(Robinson et al., 2015), an increase in the number of such defects with disease progression
suggests a possible advantage to targeting DNA repair-deficient tumors at an earlier stage of
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disease, perhaps at initial diagnosis. Such strategies may include preventing DNA damage as
well as targeting deficient DNA repair (Ferguson et al., 2015). Alterations in the PI3K/
MTOR pathway also play an important role: beyond the frequent inactivation of PTEN, we
document rare activation of PIK3CA, PIK3CB, AKT1, and MTOR, and of several small
GTPases, including HRAS as well as BRAF. As DNA sequencing of tumor samples
becomes more widely adopted earlier in the clinical care of cancer patients, such alterations
may emerge as candidates for inclusion in clinical trials after front-line therapy.

In summary, our integrative assessment of 333 primary prostate cancers has confirmed
previously defined molecular subtypes across multiple genomic platforms and identified
novel alterations and subtype diversity. It provides a resource for continued investigation
into the molecular and biological heterogeneity of the most common cancer in American
men.

Experimental Procedures

Tumor and matched normal specimens were obtained from prostate cancer patients that
provided informed consent and were approved for collection and distribution by local
Institutional Review boards. Blocks frozen in OCT were made of all tumors and of paired
benign tissue when present. A 5 micron section was cut from both the top and bottom of the
OCT block of 111 tumor cases and from the top or bottom only of the OCT block of 222
tumor cases. Out of 39 normal samples included in the freeze 23 underwent pathology
review, and prostate origin (i.e., no seminal vesicles) and absence of tumor and high grade
prostate intraepithelial neoplasia (HGPIN) was confirmed. Tissue images were reviewed by
eight genitourinary pathologists, who reported the primary and secondary Gleason patterns
of cancer for each slide and estimates of tumor cellularity in 10% increments (from 0-
100%). In case of discrepancies of Gleason scores between the top and bottom sections, the
Gleason scores of cancer in the section with the largest area of tumor was used. A subset of
54 cases was reviewed by two pathologists. Discrepancies that occurred between the two
pathologists were reconciled by blind review by a third pathologist.

DNA, RNA, and protein were purified and distributed throughout the TCGA network.
Samples with evidence for RNA degradation were excluded from the study (Supplementary
Methods). In total, 333 primary tumors with associated clinicopathologic data were assayed
on at least four molecular profiling platforms. Platforms included exome and whole genome
DNA sequencing, RNA sequencing, miRNA sequencing, SNP arrays, DNA methylation
arrays, and reverse phase protein arrays. Integrated multiplatform analyses were performed.

The data and analysis results can be explored through the Broad Institute FireBrowse portal
(http://firebrowse.org/?cohort=PRAD), the cBioPortal for Cancer Genomics (http://
www.chioportal.org/study.do?cancer_study id=prad_tcga pub), TCGA Batch Effects
(http://bicinformatics.mdanderson.org/tcgambatch/), Regulome Explorer (http://
explorer.cancerregulome.org/) and Next-Generation Clustered Heat Maps (http://
bioinformatics.mdanderson.org/TCGA/NGCHMPortal/). See also Supplemental Information
and the TCGA publication page (https://tcga-data.nci.nih.gov/docs/publications/
prad_2015/).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The molecular taxonomy of primary prostate cancer
Comprehensive molecular profiling of 333 primary prostate cancer samples revealed seven

genomically distinct subtypes, defined (top to bottom) by ERG fusions (46%), ETV1/ETV4/
FLI1 fusions or overexpression (8%, 4%, 1%, respectively), or by SPOP (11%), FOXA1
(3%), and IDH1 (1%) mutations. A subset of these subtypes was correlated with clusters
computationally derived from the individual characterization platforms (somatic copy-
number alterations, methylation, MRNA, microRNA, and protein levels from reverse phase
protein arrays). The heatmap shows DNA copy-number for all cases, with chromosomes
shown from left to right. Regions of loss are indicated by shades of blue, and gains by
shades of red.

See also Figures S1, S2, S3, S4, S5, S6, S7, and Tables S1A, S1B, S1E, S2.
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Figure 2. Recurrent alterations in primary prostate cancer
The spectrum and type of recurrent alterations and genes (mutations, fusions, deletions, and

overexpression) in the cohort are shown (left to right) grouped by the molecular subtypes
defined in Figure 1. On the right, the statistical significance of individual mutant genes
(MutSig g-value) is shown. Mutations in IDH1, PIK3CA, RB1, KMT2D, CHD1, BRCAZ2,
and CDK12 are also shown, despite their not being statistically significant. SPINK1
overexpression is shown for reference.

See also Tables S1B, S1C, S1D, S1E.
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Figure 3. Hypermethylation is common across primary prostate cancer
A. Primary prostate cancers show diverse methylation changes compared to normal prostate

samples (left). Unsupervised clustering was performed on the beta-values of the 5,000 most
hypermethylated loci, and the results mapped to the genomic subtypes. ERG-positive tumors
had a high diversity of methylation changes, with a distinct subgroup (cluster 1) nearly
unique to this group. SPOP and FOXA1 mutant tumors also exhibited global
hypermethylation. B. IDH1-mutant prostate cancers, which are associated with younger age,
are among the most hypermethylated tumors, as in Glioblastoma (GBM) and Acute Myeloid
Leukemia (AML).

See also Figure S4 and Table S1F.
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Figure 4. The diversity of androgen receptor activity in primary prostate cancer
A. Androgen receptor activity, as inferred by the induction of AR target genes, was

significantly increased in SPOP and FOXA1 mutant tumors when compared to normal
prostate or ERG-positive tumors. This increase in activity cannot be fully explained by AR
mRNA or protein levels. B. Multiple known AR splice variants were detected in benign
prostate (left) and primary prostate cancer (right), with the AR-V7 variant detected in 50%
of tumors. C. Real-time gPCR comparison of AR-V7 in 74 tumor samples (grey) and 5
adjacent-normal samples (blue). D. FOXAL missense mutations were clustered in the
forkhead domain, mostly in residues that do not form contacts with DNA (see also the 3-D
structure in panel E).
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Figure 5. Alterations in clinically relevant pathways
A. Alterations in DNA repair genes were common in primary prostate cancer, affecting

almost 20% of samples through mutations or deletions in BRCA2, BRCAL, CDK12, ATM,
FANCD2, or RAD51C. B. Focal deletions of FANCD2 were found in 7% of samples and
were associated with reduced mRNA expression of FANCD2. C. The RAS or PI-3-Kinase
pathways were altered in about a quarter of tumors, mostly through deletion or mutation of
PTEN, but also through rare mutations in other pathway members. D. AKT1 mutations were
found in three samples. Two of them were the known activating E17K, and the third one
affected the D323 residue, which is adjacent to E17 in the protein structure. E. One of the
observed PIK3CB mutations, E552K, is paralogous to the known activating E545K mutation
in PIK3CA, and the RAC1 Q61 and RRAS2 Q72 mutations are paralogous to the Q61
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mutations in KRAS. F. BRAF mutations were found in 2% of samples, mostly in known
non-V600E hotspots in the kinase domain.
See also Figure S3.
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Figure 6. Comparison of primary with metastatic prostate cancer
A. Metastatic prostate cancer samples have more copy-number alterations (top panel,

measured as fraction of genome altered) and mutations (bottom panel). B. The relative
distribution of main subtypes (ERG, ETV1/4, FLI1, SPOP, FOXA1, IDH1, other) is similar
in primary and metastatic samples. C. The alteration frequencies of several genes and
pathways are higher in metastatic samples. The upper bar for each gene indicates the
alteration frequency in primary samples, the lower bar for metastatic samples. The most
notable differences in alteration frequencies involve the Androgen Receptor pathway, the
PI3K pathway, and TP53.
See also Table S3.
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Table 1

Cohort Characteristics

Clinical feature

Age 61 (43-76)
Pre-operative PSA 7.4 (1.6-87.0)

Gleason Score

3+3 65
3+4 102
4+3 78
28 88

Tumor Cellularity (pathology)

<20% 7
21-40% 40
41-60% 84
61-80% 115
81-100% 87

Pathologic Stage

pT2a/b 18
pT2c 111
pT3a 110
pT3b 82
pT4 6
PSA Recurrence

Yes 33
Nolal 248

Not Available 47
Margin Status

Positive 69

Negative 193

Not Available 71
Ethnicity

Caucasian 270

African descent 43
Asian 8
Not Available 12

[a]

Either no evidence of recurrence or insufficient follow-up
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