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Abstract

Biofilm disruption and eradication were investigated as a function of nitric oxide- (NO) releasing 

chitosan oligosaccharide dose with results compared to control (ie non-NO-releasing) chitosan 

oligosaccharides and tobramycin. Quantification of biofilm expansion/contraction and multiple-

particle tracking microrheology were used to assess the structural integrity of the biofilm before 

and after antibacterial treatment. While tobramycin had no effect on the physical properties of the 

biofilm, NO-releasing chitosan oligosaccharides exhibited dose-dependent behavior with biofilm 

degradation. Control chitosan oligosaccharides increased biofilm elasticity, indicating that the 

scaffold may mitigate the biofilm disrupting power of nitric oxide somewhat. The results from this 

study indicate that nitric oxide-releasing chitosan oligosaccharides act as dual-action therapeutics 

capable of eradicating and physically disrupting P. aeruginosa biofilms.
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Introduction

Cystic fibrosis (CF) lung disease is caused by defective chloride transport, resulting in 

thickened, dehydrated mucus with altered biophysical properties such as increased 

viscoelasticity and osmotic pressure (Button et al. 2012; Matsui et al. 2006). One 

pathological consequence of the altered CF mucus is the inhibition of mucociliary clearance, 

ultimately resulting in increased airway inflammation and infection (Cohen & Prince 2012; 

Gibson et al. 2003). In addition to preventing the removal of pathogens, thickened CF mucus 

restricts bacterial motility and promotes P. aeruginosa biofilm formation (Matsui et al. 
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2006). While biofilms are traditionally defined as cooperative communities of bacteria 

within a protective matrix (Mah & O'Toole 2001), they also constitute viscoelastic materials 

with well-defined physical and mechanical properties (Lieleg et al. 2011, Zrelli et al. 2013). 

Strategies for treating P. aeruginosa biofilms and infections in the CF airways to date have 

focused on reducing bacterial viability through antibiotic treatment, specifically through the 

use of inhalable tobramycin. Inhaled tobramycin is currently the only antibiotic 

recommended for both the treatment of initial (Mogayzel et al. 2014) and chronic (Mogayzel 

et al. 2013) P. aeruginosa infections in patients with CF. While inhaled tobramycin is 

effective at eradicating bacteria within biofilms, it fails to physically remove the structural 

remnants of the biofilm from the airways. Any bacteria that survive antibiotic treatment (e.g. 

persister cells) may initiate biofilm regrowth and the development of antibiotic-resistant 

infections (Döring et al. 2012, Schultz et al. 2010, Van Acker et al. 2014). As such, 

degradation of the biofilm and its removal from the airway are essential to preventing 

recolonization (Jones et al. 2011, Schultz et al. 2010). Physical disruption of the biofilm also 

increases the anti-biofilm efficacy of co-administered antibiotics, as antibiotic diffusion 

becomes enhanced in mechanically weakened biofilms (Alipour et al. 2009, Alkawash et al. 

2006, Hatch & Schiller 1998). Therefore, an ideal anti-biofilm therapeutic for CF would 

both eradicate bacteria and physically degrade the biofilm, facilitating clearance from the 

airway.

In light of the importance of the viscoelastic properties of biofilms, much recent research has 

focused on quantifying how chemical and antibiotic treatments alter the mechanical 

properties of biofilms. Lieleg et al. (2011) reported that neither gentamicin, colistin, 

ofloxacin, ethanol, nor bleach altered the elasticity of P. aeruginosa biofilms when 

measured via rheometry. In contrast, ciprofloxacin was shown to reduce the elasticity of P. 

aeruginosa biofilms to that of a viscous fluid (Jones et al. 2011). As each treatment elicits 

different effects, it is important to probe how antibacterial agents alter biofilm viscoelasticity 

for the development of any new therapies.

Nitric oxide (NO) is an endogenously produced diatomic free radical with significant 

antibacterial activity against P. aeruginosa biofilms (Lu et al. 2013, 2014). At sub-

bactericidal concentrations, NO has biofilm dispersing properties (Barraud et al. 2006, 

2009). The antibacterial efficacy of NO is derived from its ability to exert both nitrosative 

and oxidative stresses to bacterial membrane components (eg proteins, lipids, DNA) directly 

or via reactive byproducts including and dinitrogen trioxide and peroxynitrite (Fang 1997; 

Jones et al. 2010). As the P. aeruginosa biofilm matrix is composed of proteins, 

extracellular DNA, and polysaccharides, it is likely that NO would alter or disrupt the 

structural integrity of these biofilms (Flemming & Wingender 2010; Mann & Wozniak 

2012). Furthermore, atomic force microscopy has revealed that NO exposure causes 

structural damage to the membranes of planktonic Gram-negative bacteria, including P. 

aeruginosa (Deupree & Schoenfisch 2009). To determine the effects of NO on the 

viscoelastic properties of P. aeruginosa biofilms, macromolecular scaffolds capable of 

storing and controllably releasing NO were employed to locally deliver NO to bacterial 

biofilms (Carpenter & Schoenfisch 2012; Riccio & Schoenfisch 2012). Chitosan 

oligosaccharides represent an attractive scaffold for pulmonary NO delivery due to several 

Reighard et al. Page 2

Biofouling. Author manuscript; available in PMC 2015 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



attractive properties including biodegradability, tolerability to mammalian cells, and ease of 

NO donor functionalization (Kean & Thanou 2010, Lu et al. 2014). Herein, the utility of 

NO-releasing chitosan oligosaccharides to both eradicate and physically alter P. aeruginosa 

biofilms is evaluated, with comparison to tobramycin.

Materials and methods

Materials

Tobramycin, medium molecular weight chitosan, and 2-methylaziridine were purchased 

from Sigma Aldrich (St Louis, MO). Sodium methoxide was purchased from Acros 

Organics (Geel, Belgium). FluoSpheres carboxylate-modified microspheres (1 μm diameter) 

for use as tracer particles in microrheology experiments were purchased from Molecular 

Probes (Life Technologies, Carlsbad, CA). Nitric oxide gas was purchased from Praxair 

(Sanford, NC). Calibration standard NO gas (26.85 ppm, balance N2), nitrogen (N2), and 

argon were purchased from Airgas National Welders (Durham, NC). P. aeruginosa strain K 

(PAK) and each of the isogenic mutants (ie ΔflicA, ΔflicApilA, and ΔmucA22) were gifts 

from Prof. Matthew Wolfgang from the Department of Microbiology and Immunology, 

University of North Carolina at Chapel Hill. Phosphate buffered saline (PBS) was made 

with 10 mM sodium phosphate and adjusted to pH 6.5 to more closely resemble the CF 

airway (Yoon et al. 2006). Luria-Bertani (LB) broth and agar were purchased from Becton, 

Dickinson & Company (Franklin Lakes, NJ). Biofilm growth medium was prepared by 

diluting LB Broth 1:4 in water, after which the pH was adjusted to 6.5 using 10 mM sodium 

phosphate. Milli-Q water with a resistivity of <18.2 mΩ cm and a total organic content of < 

6 ppb was prepared by purifying distilled water using a Millipore Milli-Q UV Gradient A-10 

system (Bedford, MA). All common laboratory salts, solvents, and reagents were purchased 

from Fisher Scientific (Pittsburgh, PA). All materials were used without further purification.

Synthesis of water-soluble 2-methylaziridine- modified chitosan oligosaccharides (COS)

Water-soluble chitosan oligosaccharides were synthesized by degrading medium molecular 

weight chitosan (2.5 g) in 50 ml of hydrogen peroxide (15 wt. %) for 1 h at 85 °C. The 

resulting oligosaccharides were filtered to remove insoluble oligosaccharides, precipitated 

with acetone, collected via centrifugation (6,500 × g, 10 min), and dried in vacuo. The 

viscosity of the chitosan oligosaccharides was determined using a Ubbelohde viscometer in 

a solution of sodium chloride (0.20 M) and acetic acid (0.10 M) at 25 °C. The classic Mark-

Houwink equation (η = 1.81 × 10−3 M0.93) was used to determine the molecular weight 

(Maghami & Roberts 1988).

2-Methylaziridine was grafted to the chitosan oligosaccharides as previously described (Lu 

et al. 2014). Briefly, the water-soluble chitosan oligosaccharides (0.5 g) were dissolved in 

water (10 ml) after which a solution of concentrated hydrochloric acid (27.5 μl), water (250 

μl), and 2-methylaziridine (356 μl) was added drop wise at room temperature. The solution 

was stirred for 5 d at 25 °C followed by 24 h at 70 °C. The 2-methylaziridine-modified 

chitosan oligosaccharides (COS) were then collected via precipitation in acetone, washed 

copiously with ethanol, and dried in vacuo at room temperature. 1H NMR data of COS: (400 

MHz, D2O, δ): 0.8–1.1 (NH2CH(CH3)CH2NH), 1.9 (C7: CHNHCOCH3), 2.3–2.9 

Reighard et al. Page 3

Biofouling. Author manuscript; available in PMC 2015 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(NH2CH(CH3)CH2NHCH, C2: NH2CH(CH3)CH2NHCH), 3.3–4.0 (C3, C4, C5, C6: 

OHCH, OCHCH(OH)CH(NH2)CH, OHCH2CH, OHCH2CH), 4.4 (C1: OCH(CHNH2)O).

N-diazeniumdiolate modification of chitosan oligosaccharides (COS-NO)

N-diazeniumdiolate NO donors were formed on the secondary amines of COS via exposure 

to high pressures of NO gas (Lu et al. 2014). Briefly, 2-methylaziridine-modified chitosan 

oligosaccharides (45 mg) were dissolved in water (900 μl), methanol (2.10 ml), and sodium 

methoxide (5.4 M, 75 μl) in 1 dram glass vials. The vials containing the COS solution were 

placed in a stainless steel reactor. Oxygen was removed from the system by purging with 

argon via three short purges (15 s, 8 bar) followed by three long purges (10 min, 8 bar). 

After the final purge, the vessel was filled with NO gas (10 bar) that had been purified in a 

potassium hydroxide chamber. The solutions were stirred at room temperature for 72 h. 

Following N-diazeniumdiolate formation, unreacted NO was removed from solution via the 

same argon purging procedure used to remove oxygen. The resulting solutions of NO-

releasing chitosan oligosaccharides (COS-NO) were centrifuged (6,500 × g, 15 min), 

precipitated with 3 ml of acetone, collected via centrifugation, and dried in vacuo overnight 

at room temperature. The solid COS-NO was stored in a vacuum-sealed bag at −20°C until 

use.

Characterization of nitric oxide release

Real-time NO-release kinetics from COS-NO were determined using at a Sievers Nitric 

Oxide Analyzer (Boulder, CO). Prior to analysis, the instrument was calibrated with air 

passed through a NO zero filter (0 ppm NO) and 25.87 ppm of NO standard gas (balance 

N2). Solid COS-NO (1 mg) was added to 30 ml of deoxygenated PBS (37 °C, pH 6.5). 

Nitric oxide released from COS-NO was carried to the analyzer using nitrogen gas flowing 

through the solution at rate of 80 ml min−1 Additional nitrogen was supplied to the reaction 

flask to achieve the required instrument collection rate of 200 ml min−1. Analysis was 

terminated when NO levels decreased below 10 ppb mg−1 of chitosan oligosaccharide.

Biofilm growth and eradication assays

Frozen cultures of P. aeruginosa were grown overnight in LB broth, diluted 1:100 in 50 ml 

of fresh LB broth, and grown to mid-log phase (OD600=0.25). Rapidly growing cultures 

were diluted to 106 CFU ml−1 (1:100 dilution) in biofilm growth medium. Viscous biofilms 

were grown in 12-well microtiter plates at 37°C for 72 h with gentle shaking (100 rpm). 

Biofilms appeared as viscous bacterial aggregates (ie microcolonies) floating in the growth 

medium. These biofilms were mechanically robust (ie they could not be disrupted by 

vigorous pipetting), indicating the formation of a suitable experimental matrix (Sriramulu et 

al. 2005). Biofilms were extracted from the growth media via pipetting and then washed by 

ejection into PBS (pH 6.5). The biofilms were subsequently added to a solution of PBS (pH 

6.5) containing COS-NO, COS, or tobramycin and incubated for 18 h at 37 °C with gentle 

shaking (100 rpm). The biofilms were again washed in PBS (pH 6.5) to remove excess 

antibacterial agent prior to further analysis.

Following exposure to the test agents and washing, biofilms were plated and enumerated to 

determine the minimum biofilm eradication concentration (MBEC), defined herein as the 
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minimal concentration of drug required for a 5-log reduction in bacterial viability. Freshly 

washed biofilms were gently sonicated for 10 min and vortexed to disrupt the matrix. The 

resulting solutions were serially diluted in PBS, spiral plated on LB Agar, and incubated at 

37°C for 24 h. Bacterial colonies were quantified using a Flash & Go colony counter (IUL, 

Farmingdale, NY). This method has an inherent limit of detection of 2.5×103 CFU ml−1 

(Breed & Dotterrer 1916).

Multiple-particle tracking microrheology

Biofilms were grown as described above except with the incorporation of fluorescent tracer 

particles. Fluorescent tracer particles were diluted 1:1000 from their stock solution (2 wt. %) 

into the biofilm growth medium prior to the addition of planktonic bacteria. Biofilms were 

exposed to antibacterial agents (ie COS-NO, COS, or tobramycin) as in the MBEC assays. 

Following treatment, the biofilms were placed in a transparent sample holder. Specifically, 

the biofilms were sealed between a glass microscope slide and coverslip with two sheets of 

parafilm acting as a spacer. The sample holders were sealed on using parafilm to minimize 

sample evaporation. Tracer particle movement was recorded at 60 frames s−1 for 30 s with a 

Flea3 grey scale camera (Point Grey, Richmond, Canada) mounted on a Nikon Eclipse 

TE2000-E inverted microscope at a magnification of 40×. The tracer particle displacement 

as a function of time was quantified using Video Spot Tracker software (Center for 

Computer Integrated Systems for Microscopy and Manipulation, University of North 

Carolina at Chapel Hill).

The mean squared displacement (MSD) of each tracer particle was calculated from the 

displacement of individual particles as a function of time as previously described (Hill et al. 

2014). Briefly, the MSD was determined according to:

(1)

where τ represents time lag, ti is the time at the start of the video (0.00 s), and N is the total 

number of frames in a video (1,800 for all experiments).

Due to biofilm heterogeneity, the MSD of all tracer particles was ensemble averaged to 

achieve meaningful MSD curves (Hill et al. 2014). For each condition tested, tracer particle 

displacement was measured in 15 different viewing areas of three separate biofilms, 

resulting in ensemble averaging of at least 200 particles per treatment. The ensemble 

averaged MSD was calculated as previously reported (Hill et al. 2014). For clarity, MSD 

values were analyzed at a lag time (τ) of 0.83 s. At this time point (MSDτ=0.83s), the 

accuracy of the camera speed (ie small variations in the exact time each frame is collected) 

does not affect the measurement. Furthermore, this frequency positioned the measurements 

above the noise floor (1×104 μm2) and minimized the effects of drift. All MSD values are 

reported as the mean ± standard error of the mean (SEM). Due to the large sampling size, 

the error is often too small to be visible on the figures presented herein.
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Fluorescence microscopy

Following exposure to COS for 18 h (4 mg ml−1), COS-NO (4 mg ml−1), or tobramycin 

(200 μg ml−1), biofilms were washed and added to 1 ml of PBS (pH 6.5) containing 30 μM 

PI. The resulting solutions were incubated for 30 min at 37 °C in the dark. Following 

exposure, 30 μl of each biofilm sample were deposited on a glass slide for wide-field 

fluorescence imaging. An Olympus iX80 inverted microscope with a CARV light source 

(Nikon) and Photometrics Quant EM detector was used to image biofilms. Fluorescent PI 

images were obtained using BP 542 – 582 nm excitation and 604 – 644 nm emission filters. 

Images were rendered in Image J.

Measurement of distance between nearest neighbor particles

The average distance between nearest neighbor particles was determined to quantify 

contraction and expansion of the bacterial biofilms (Lu et al. 2006). Distances between 

nearest neighbor tracer particles were calculated according to the equation:

(2)

where R12 represents the distance between beads, x1 and y1 are the location of tracer particle 

1, and x2 and y2 are the location of tracer particle 2. The smallest R12 value for each bead 

was then selected as the distance between nearest neighbor particles.

Results

Water soluble chitosan oligosaccharides were synthesized from chitosan via oxidative 

degradation (Chang et al. 2001). The molecular weight of the chitosan oligosaccharides was 

determined to be 4.410 ± 0.037 kDa by the classic Mark-Houwink Equation (Maghami & 

Roberts 1988). To impart NO-release capabilities, 2-methylaziridine-modified chitosan 

oligosaccharide scaffolds (COS) were reacted with NO gas at high pressure. The resulting 

N-diazeniumdiolate-modified chitosan oligosaccharides (COS-NO) released a total of 0.78 ± 

0.09 μmol NO mg−1 over a duration of 10.7 ± 1.1 h in PBS (pH 6.5, 37 °C). The half-life of 

NO release was 0.62 ± 0.08 h (Supplemental material Figure S1, Table S1).

Viscoelastic properties of P. aeruginosa biofilms

Fluorescent tracer particles were incorporated into P. aeruginosa biofilms during biofilm 

formation to determine the viscoelastic properties of bacterial biofilms. Tracer particles 

within the biofilms exhibited decreased diffusion compared to tracer particles in solutions of 

planktonic bacteria (Figure 1A). The diffusive exponent (α) was derived to approximate 

viscoelasticity according to MSD ∝ tα. Through this relationship, purely viscous solutions 

are defined as having diffusive exponents of one, while purely elastic solids exhibit diffusive 

exponents of zero. Therefore, diffusive exponents of viscoelastic materials range from zero 

to one (Mason 2000). The displacement of tracer particles in solutions of planktonic bacteria 

increased linearly with time (α = 1.05 ± 0.13), indicating that they were moving in a purely 

viscous solution. In contrast, the measured slope for tracer particles within P. aeruginosa 

biofilms was significantly lower (α = 0.62 ± 0.14), indicating that the medium surrounding 
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the particles was both viscous and elastic. P. aeruginosa biofilms were thus determined to 

be viscoelastic materials with properties distinct from solutions of planktonic bacteria.

Histograms were used to visualize the distribution of the MSDτ=0.83s and to analyze biofilm 

heterogeneity. The MSDτ=0.83s of tracer particles within P. aeruginosa biofilms was highly 

heterogeneous, as indicated by the non-Gaussian distribution of MSDτ=0.83s (Figure 1B). 

The average MSDτ=0.83s was heavily influenced by fast moving particles with the mean 

(0.24 ± 0.01 μm2) substantially greater than the mode (0.00 – 0.02 μm2). This specific type 

of heterogeneity indicates that some tracer particle were moving inside large pores or water 

channels within the biofilms (Melo 2005). Tracer particles in solutions of planktonic 

bacteria exhibited a Gaussian distribution of MSDτ=0.83s with a mean (1.53 ± 0.04 μm2) and 

mode (1.40 – 1.68 μm2) approximately equal (Figure 1C). The heterogeneity of the biofilms 

is further quantified by the non-Gaussian parameter (NGP) (Vorselaars et al. 2007). For 

mucoid biofilms, the NGP was 1.86 (Figure S2). When treated with increasing 

concentrations of COS-NO, the NGP decreased and approached zero, indicative of a 

homogeneous film. In contrast, treatment with COS in the absence of NO resulted in NGP 

ranging between 10 and 20, consistent with an increasingly heterogeneous biofilm.

Effect of bacterial mobility and EPS on biofilm rheology

Unlike traditional macro- and microrheology that solely measure the bulk viscoelastic 

properties of a material, multiple-particle tracking microrheology quantifies the movement 

of particles within the biofilms. In order to determine whether appendages that impart 

bacterial motility affected the rheological properties of the biofilms, multiple-particle 

tracking microrheology was performed using nonmucoid P. aeruginosa strains lacking 

flagella (ΔflicA) or both flagella and pili (ΔflicApilA). Of note, these strains were isogenic 

mutants of the wildtype strain used (strain K), and thus should form similar biofilm matrices 

as the wildtype strain. For the nonmucoid strains evaluated (wildtype, ΔflicA, ΔflicApilA), 

both the MSD at all time points (Figure 2A) and diffusive exponents were similar (Table 1). 

Therefore, these appendages neither influence tracer particle movement nor the rheological 

properties of the biofilm.

Mucoid P. aeruginosa biofilms were examined next to confirm that changes in the biofilm 

matrix altered the biofilm rheological properties. Such bacteria excrete a thicker 

exopolysaccharide matrix with a greater concentration of alginate than nonmucoid P. 

aeruginosa (Hentzer et al. 2001, Martin et al. 1993). Compared to the nonmucoid strains, the 

mucoid P. aeruginosa biofilms exhibited decreased MSD values at all time points (Figure 

2A). The MSDτ=0.83s of mucoid biofilms was 0.16 ± 0.01, approximately two-thirds that of 

nonmucoid biofilms (Figure 2B). However, the diffusive exponents of the mucoid strain 

were unchanged compared to the nonmucoid wildtype (0.58 ± 0.05 and 0.62 ± 0.14, 

respectively) (Table 1).

Tobramycin treatment of P. aeruginosa biofilms

As tobramycin is the current standard for the treatment of P. aeruginosa infections in CF 

patients (Mogayzel et al. 2013, 2014), the effects of tobramycin on the mechanical 

properties of P. aeruginosa biofilms were determined as a comparison to NO therapy. 
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Tobramycin was found to eradicate biofilms (ie to reduce bacteria viability by 5 logs over 18 

h) at a concentration of 200 μg ml−1 (Figure 3A.).

The MSD plots of biofilms treated with tobramycin appeared similar to untreated controls, 

indicating that tobramycin did not significantly alter the viscoelastic properties of the 

biofilm (Figure 3B). Over a timescale of 3 decades (0.017 – 3.33 s), no significant 

differences in the diffusive exponents (α) of untreated and tobramycin-treated biofilms were 

observed (Table 2). While the temporal dependency of particle diffusion was unchanged by 

tobramycin treatment, the magnitude of the MSD was reduced at all time points for treated 

biofilms (Figure 3B). The MSDτ=0.83 ranged from 0.154 ± 0.009 μm2 to 0.183 ± 0.009 μm2, 

compared to 0.241 ± 0.007 μm2 for untreated biofilms (Figure 3C). This decrease in the 

MSDτ=0.83 was independent of tobramycin concentration over the range of ¼ – 4x the 

MBEC (Figure 3C).

Treatment of P. aeruginosa biofilms with COS and COS-NO

At the largest concentration tested (16 mg ml−1), the COS scaffold decreased bacterial 

viability by three logs without fully eradicating the P. aeruginosa biofilm (Figure 4A). 

While chitosan in general is a known antimicrobial (Rabea et al. 2003), the anti-biofilm 

efficacy of the chitosan oligosaccharides was significantly reduced, as has previously been 

demonstrated (Jeon et al. 2001). Addition of NO to the COS scaffold improved the anti-

biofilm activity further, eradicating biofilms at 4 mg ml−1. This concentration corresponds to 

a bactericidal NO dose of 3.1 ± 0.4 μmol ml−1 (Figure 4A).

Despite low biofilm eradication capabilities, the COS scaffold significantly altered the 

viscoelasticity of P. aeruginosa biofilms. Treatment of biofilms with 2 mg ml−1 of COS 

decreased the magnitude of the MSDτ=0.83s by two logs (to 0.0031 ± 0.0002 μm2) compared 

to untreated controls (MSDτ=0.83s = 0.241 ± 0.007 μm2), with no further reduction in the 

MSDτ=0.83 when the concentration of COS was increased to 16 mg ml−1 (Figure 4B). While 

the MSD (at all τ) of untreated biofilms exhibited a temporal dependency (revealing partial 

viscosity), treatment with COS over the concentration range of 1 – 16 mg ml−1 eliminated 

this time dependence (Figure 4C). The diffusive exponents of COS treated biofilms ranged 

from 0.03 ± 0.02 to 0.14 ± 0.02, a significant reduction compared to untreated biofilms (0.62 

± 0.14) (Table 3). Treatment with COS clearly transformed P. aeruginosa biofilms into 

nearly elastic solids with almost no viscous component.

While the COS scaffold decreased both the MSDτ=0.83s and the slope of the MSD of tracer 

particles within P. aeruginosa biofilms at all concentrations, NO-releasing COS (COS-NO) 

induced a dose-dependent response in biofilm viscoelasticity. The MSDτ=0.83s decreased 

with increasing COS-NO at concentrations ≤ 8 mg ml−1 (Figure 4B, Table 3). Tracer 

particles in biofilms exposed to COS-NO exhibited a greater MSDτ=0.83s and diffusive 

exponents than those in biofilms exposed to the same concentrations of the COS scaffold 

(Figure 4B). At concentrations ≥ 12 mg ml−1 COS-NO, the MSDτ=0.83s was greater than 

that for the untreated biofilms (Figure 1B Table 3). The increase in MSDτ=0.83s indicates 

degradation of the viscoelastic properties of the biofilm. As biofilm degradation occurred 

above the MBEC of COS-NO (4 mg ml−1), destruction of the physical properties of the 
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biofilm required a larger dose of NO (9.4 ± 1.1 μmol ml−1) than biofilm eradication (3.1 ± 

0.4 μmol ml−1).

Heterogeneity of treated P. aeruginosa biofilms

Sample heterogeneity has been correlated with increased viscoelasticity for complex 

biological materials such as sputum (Dawson et al. 2003, Hill et al. 2014). The effect of 

antibacterial treatment on biofilm heterogeneity was thus evaluated at concentrations in 

excess of the MBEC. As expected, tobramycin had no observable effect on the heterogeneity 

of biofilms. While tobramycin treatment decreased the average MSDτ=0.83s, concentrations 

of tobramycin in excess of the MBEC did not alter the shape of the MSDτ=0.83s distributions 

(Figure 5A-C) compared to untreated biofilms (Figure 1B); both exhibited MSDτ=0.83s 

distributions skewed such that the modes were substantially lower than the mean.

Treatment with COS and COS-NO resulted in opposing effects on the MSDτ=0.83s 

distributions of P. aeruginosa biofilms. The COS scaffold constrained tracer particle 

movement, decreasing the width of the MSDτ=0.83s distribution and reducing biofilm 

heterogeneity (Figure 5D-F). Alternatively, treatment with COS-NO at concentrations above 

the MBEC resulted in degradation of the biofilm and increased heterogeneity. Treatment 

with 8 mg ml−1 COS-NO showed little alteration in the MSDτ=0.83s distribution (Figure 5G) 

compared to the untreated controls (Figure 1B). However, exposure to 12 mg ml−1 COS-NO 

resulted in a bimodal MSDτ=0.83s distribution (Figure 5H). When treated with 16 mg ml−1 

COS-NO, the MSDτ=0.83s distribution was Gaussian and centered around 1 μm2 (Figure 5I).

Fluorescence microscopy of treated P. aeruginosa biofilms

P. aeruginosa biofilms were stained with PI following treatment (ie exposure to 200 μg ml−1 

tobramycin, 4 mg ml−1 COS, or 4 mg ml−1 COS-NO) to visualize the effects of each on the 

extracellular DNA (eDNA) matrix. As a membrane impenetrable dye, PI will only stain 

DNA that has been secreted from the bacteria (ie not intracellular DNA). For the untreated 

biofilms, eDNA was found in large concentrations throughout the entire biofilm (Figure 

6A). As reported previously for mature P. aeruginosa biofilms (Yang et al. 2007), the 

eDNA was generally localized in large multicellular structures. While tobramycin has been 

shown to bind to eDNA (Chiang et al. 2013, Mulcahy et al. 2008), this binding did not 

appear to alter the structure of the eDNA matrix within the biofilm (Figure 6B).

In contrast to tobramycin, the COS and COS-NO treatments visibly altered the eDNA 

network of the P. aeruginosa biofilms. Biofilms treated with COS appeared to be highly 

aggregated. Indeed, highly fluorescent eDNA features dominated the biofilm morphology 

(Figure 6C). Biofilms treated with COS-NO exhibited almost no fluorescence, indicating 

that the DNA was damaged to the extent that PI could no longer intercalate into the DNA 

strands (Figure 6D) (Olive et al. 1994).

Quantification of biofilm contraction

The average distance between nearest neighbor particles was determined to quantify biofilm 

expansion and contraction after treatment. For untreated biofilms, the average distance 

between nearest neighbor particles was 21.7 ± 0.8 μm (indicated by the horizontal line in 
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Figure 6). At concentrations ranging from ½ to 4-times the MBEC, tobramycin exposure did 

not alter the average distance between nearest neighbor particles compared to the untreated 

biofilm (Figure 6A), indicating that tobramycin treatment had little effect on the contraction 

or expansion of the biofilm.

In contrast, COS and COS-NO treatment resulted in significant alterations in the biofilm 

structure. The COS scaffold reduced the average distance between nearest neighbor tracer 

particles compared to untreated biofilms with ~50% biofilm contraction that was 

independent of COS concentration from 1 – 16 mg ml−1 (Figure 6B). Treatment with COS-

NO exhibited a dose-dependent response on tracer particle separation (Figure 6B). At 

concentrations below 8 mg ml−1, treatment with COS-NO had no effect on the distance 

between nearest neighbor tracer particles. At larger concentrations (ie ≥ 12 mg ml−1), the 

average particle separation increased significantly. As expected, tracer particle separation 

increased as the biofilm degraded. The concentration of COS-NO resulting in increased 

separation of nearest neighbor particles correlated with the concentration required for partial 

destruction of the viscoelastic properties of the biofilm (12 mg ml−1).

Discussion

An ideal treatment for P. aeruginosa biofilms in CF patients would reduce bacterial viability 

while physically disrupting the biofilm in order to ease biofilm removal and prevent 

regrowth. As such, it is important to characterize the effects of antibacterial therapeutics on 

the viscoelastic properties of P. aeruginosa biofilms. While highly effective at eradicating 

bacteria, tobramycin does not alter the biophysical properties of P. aeruginosa biofilms. 

Indeed, the results indicate that treatment with tobramycin neither alters the distance 

between nearest neighbor tracer particles (Figure 6) nor the diffusive exponents of tracer 

particles within biofilms (Table 2). Of relevance, a decrease in particle diffusion (ie the 

MSD at all τ) was observed with tobramycin treatment (Figure 3). While the exact cause is 

unknown, particle diffusion in biofilms grown with nonmotile (lacking flagella and pili) 

bacteria did not exhibit such behavior. As such, the loss of bacterial motility upon cell death 

is not the culprit. As reported previously, the cationic nature of tobramycin results in an 

association with the negatively charged biofilm matrix (Nichols et al. 1988, Tseng et al. 

2013). Jones et al. (2011) noted with macrorheology that the introduction of cations alters 

the rheological properties of bacteria biofilms. It is thus likely that the small reduction in 

MSD upon treatment with tobramycin results from an alteration in the biofilm matrix and 

not decreased bacterial motility.

In comparison to tobramycin, NO released from the chitosan oligosaccharides both 

eradicated bacteria and degraded the physical properties of the biofilm (Figure 4). At 

concentrations above the MBEC (ie ≥ 12 mg ml−1), the COS-NO significantly compromised 

the structural integrity of the biofilms, as evidenced by increases in the MSDτ=0.83s and 

diffusive exponents of tracer particles within treated biofilms (Figure 4, Table 3). The 

increased tracer particle movement may be attributed to either an overall loosening of the 

biofilm or heterogeneous destruction of the biofilm matrix. In the case of uniform biofilm 

loosening, the diffusion of all particles would increase, shifting the MSDτ=0.83s distributions 

to larger values without changing the overall shape of the distribution. However, the 
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observed bimodal distribution is consistent with destruction of discrete segments of the 

biofilm, where some of the tracer particles remained constrained in the biofilm while a 

second population of tracer particles experienced increased diffusion outside of the biofilm 

(Figure 5H). Further increasing the concentration of COS-NO resulted a Gaussian 

MSDτ=0.83s distribution centered around 1 μm2, suggestive of complete biofilm destruction 

and free diffusion of the tracer particles in PBS (Figure 5I). These results indicate that NO 

does not cause a gradual loosening of the biofilm but rather destroys segments of the 

biofilms and is capable of complete biofilm destruction.

While the mechanism of NO-mediated destruction of the biofilm is likely complex and the 

result of multiple factors, NO has been shown to alter the biological macromolecules that 

constitute the majority of the biofilm matrix (Carpenter & Schoenfisch 2012, Fang 1997, 

Flemming & Wingender 2010, Mann & Wozniak 2012). For example, DNA is essential to 

the formation of P. aeruginosa biofilm (Whitchurch et al. 2002). Indeed, cleavage of DNA 

by DNase decreases the structural integrity of such biofilms (Tetz et al. 2009). Burney et al. 

(1999) and Tamir et al. (1996) have reported that exogenous NO both damages and cleaves 

DNA. It is likely that NO-mediated destruction of DNA would physically degrade P. 

aeruginosa biofilms. This hypothesis was confirmed using fluorescence microscopy, in 

which destruction of the eDNA matrix of the P. aeruginosa biofilms was observed at the 

MBEC (4 mg COS-NO ml−1). However, the viscoelasticity of the biofilm matrix (via 

multiple-particle tracking microrheology) did not change at this concentration of COS-NO. 

The discrepancy in these results indicates that other biofilm matrix components (eg 

exopolysaccharides) may influence the structural integrity of the biofilm matrix more than 

just eDNA. In fact, NO and its reactive intermediates are known to depolymerize 

polysaccharides (Duan & Kasper 2011), suggesting NO may reduce biofilm viscoelasticity 

via damage to alginate, Psl, and Pel structural biofilm polysaccharides (Chew et al. 2014).

While NO represents a promising therapeutic for the physical degradation of P. aeruginosa 

biofilms, it is currently limited by the effects of the COS scaffold as the chitosan treatment 

alone results in biofilm contraction regardless of concentration (0.5 – 16 mg ml−1). Such 

contraction (Figure 6) parallels increased biofilm elasticity and decreased particle diffusion 

(Table 3, Figure 4), which correlates to physical entanglement of polymers and effective 

cross-linking (eg covalent or hydrogen bonding, electrostatic interactions) in both ideal 

polymer and biological systems (Chew et al. 2014, Körstgens et al. 2001, Nielsen 1969). As 

the P. aeruginosa biofilm matrix is comprised predominantly of anionic macromolecules 

(Flemming & Wingender 2010), the introduction of cationic chitosan alters the electrostatics 

of the biofilm and potentially enhances cross-linking. To further improve the efficacy these 

NO-releasing therapeutics, scaffolds that do not increase the elasticity of bacterial biofilms 

should be investigated. As the cationic nature of chitosan likely contributes to biofilm 

cohesion, modifying the chitosan oligosaccharide scaffold with anionic moieties may reduce 

these effects. Furthermore, the biofilm disrupting capabilities of NO-releasing chitosan 

oligosaccharides may be improved by adjusting the NO payload. For example, increasing 

the NO storage should reduce the concentration of COS-NO required for biofilm 

degradation, thereby minimizing any underlying effects of the scaffold.
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Figure 1. 
Microrheology of wildtype P. aeruginosa biofilms. (A) Ensemble average MSD of tracer 

particles in solutions of planktonic bacteria and biofilms show incorporation of particles into 

the biofilm. Diffusion coefficients of viscous solutions (α = 1) and elastic solids (α = 0) are 

superimposed on MSD plots for reference. Distributions of MSDτ=0.83s for tracer particles in 

(B) biofilms compared to (C) solutions of planktonic bacteria. The mean of each distribution 

is marked with a vertical dotted line.
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Figure 2. 
Effects of P. aeruginosa motility and phenotype on biofilm rheology. (A) The MSD of P. 

aeruginosa biofilms grown with bacterial strains exhibiting different motility appendages 

and biofilm matrices. (B) MSDτ=0.83s of the same P. aeruginosa biofilms. All MSD were 

determined by tracking particles in 15 distinct areas of 3 separate biofilms and are plotted as 

ensemble average MSD ± SEM.
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Figure 3. 
Treatment of P. aeruginosa biofilms with tobramycin. (A) Biofilm viability after exposure 

to tobramycin for 18 h. The MBEC of tobramycin was 200 μg ml−1. (B) MSD values of 

tracer particles in biofilms grown with wildtype P. aeruginosa following exposure for 18 h 

to PBS and tobramycin (200 μg ml−1). (C) MSDτ=0.83s of wildtype P. aeruginosa biofilms 

exposed to tobramycin for 18 h. All MSD were determined by tracking particles in 15 

distinct areas of 3 separate biofilms and are plotted as ensemble average MSD ± SEM.
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Figure 4. 
Treatment of P. aeruginosa biofilms with COS and COS-NO. (A) Biofilm viability 

following exposure to COS or COS-NO for 18 h. While COS did not fully eradicate 

biofilms, the MBEC of COS-NO was 4 mg ml−1 (NO dose of 3.1 ± 0.4 μmol). (B) 

MSDτ=0.83s of biofilms treated with COS and COS-NO. The MSDτ=0.83s of untreated 

biofilms is indicated as a horizontal line. Note the logarithmic scale of the y-axis. (C) The 

MSD values of biofilms treated with COS and (D) COS-NO. All MSD were determined by 

tracking particles in 15 distinct areas of 3 separate biofilms and are plotted as ensemble 

average MSD ± SEM. Diffusion coefficients of viscous solutions (α = 1) and elastic solids 

(α = 0) are superimposed on MSD plots for reference.
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Figure 5. 
Histograms of biofilm heterogeneity after treatment. The distributions of MSDτ=0.83s of 

individual tracer particles in (A-C) biofilms treated with tobramycin, (D-F) COS, and (G-I) 

COS-NO at concentrations above the MBEC values. The mean of each distribution is 

marked with a vertical dotted line. The distribution of of MSDτ=0.83s of tracer particles in 

water is denoted in gray on each histogram.
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Figure 6. 
Fluorescence microscope images of P. aeruginosa biofilms. Biofilms were stained with 

propidium iodide in order to visualize the intra- and extra-cellular DNA matrix following 

exposure for 18 h to (A) PBS, (B) tobramycin (200 μg ml−1), (C) COS (4 mg ml−1), and (D) 

COS-NO (4 mg ml−1). Large extracellular DNA filaments are noted with white arrows.
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Figure 7. 
Average distance between nearest neighbor particles. Average distances between nearest 

neighbor particles following treatment with (A) tobramycin and (B) chitosan 

oligosaccharides. Average separation between tracer particles in untreated biofilms is 

indicated by a horizontal line. All separation distances were quantified in 15 distinct areas of 

3 separate biofilms and are plotted as ensemble average MSD ± SEM.
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Table 1

Diffusion exponents (α-values) of P. aeruginosa biofilms with differing phenotypes and motility appendages.

Strain Phenotype and characteristics α

Wildtype Nonmucoid 0.62 ± 0.14

Δ flicA Nonmucoid, lacking flagella 0.71 ± 0.04

Δ flicApilA Nonmucoid, lacking flagella and pili 0.66 ± 0.02

Mucoid (ΔmucA22) Mucoid, lacking flagella and pili 0.58 ± 0.05
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Table 2

Diffusion exponents (α-values) of P. aeruginosa biofilms treated with tobramycin.

Tobramycin (μg ml−1) A

0 0.62 ± 0.14

50 0.70 ± 0.12

100 0.56 ± 0.02

200 0.66 ± 0.08

400 0.68 ± 0.10

800 0.59 ± 0.06
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Table 3

Diffusion exponents (α) of P. aeruginosa biofilms treated with COS and COS-NO.

Dose (mg ml−1) COS α COS-NO α NO (μmol ml−1)

0 0.62 ± 0.14 0.62 ± 0.14 n/a

1 0.07 ± 0.04 0.68 ± 0.04 0.8 ± 0.1

2 0.10 ± 0.20 0.74 ± 0.14 1.6 ± 0.2

4 0.03 ± 0.02 0.64 ± 0.10 3.1 ± 0.4

8 0.07 ± 0.04 0.55 ± 0.13 6.2 ± 0.7

12 0.14 ± 0.02 0.91 ± 0.06 9.4 ± 1.1

16 0.11 ± 0.12 1.00 ± 0.11 12.5 ± 1.4

The total NO released from COS-NO at each concentration is also provided.
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