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INTRODUCTION

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, clonal, hematopoietic stem cell 

disorder that manifests with a hemolytic anemia from uncontrolled complement activation, 

bone marrow failure, and a propensity for thrombosis.1–3 It is the chronic hemolytic anemia 

in PNH, largely mediated by the alternative pathway of complement (AP), from which the 

disease derives its descriptive moniker.2 PNH is a unique disease whose clinical 

manifestations have been linked to the deficiency in glycosylphosphatidylinositol-anchored 

proteins (GPI-APs). These manifestations include a lack of the complement regulatory 

proteins CD55 and CD59.4 CD55 regulates the formation and stability of the C3 and C5 

convertases,1 whereas CD59 blocks the formation of the membrane attack complex 

(MAC).2,5

The bone marrow failure component of the disease is well-appreciated. The mechanism of 

the thrombophilia is less well-described. Historically, PNH is among the first diseases in 

which the role the complement cascade plays in the pathogenesis is well-elucidated. This 

review focuses on the dysregulation of the complement cascade, leading to the hemolytic 

anemia in PNH as well as its other clinical manifestations and the therapies available 

presently and possibly in the future for the disease.
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THE PATHOPHYSIOLOGY OF THE COMPLEMENT DYSREGULATION IN 

PAROXYSMAL NOCTURNAL HEMOGLOBINURIA

The complement system is our host defense system that protects the intravascular space 

through opsonizing and lysing bacteria. The complement system consists of plasma proteins 

that interact via 3 major pathways: the classical, alternative, and lectin binding.6,7 This 

system encompasses these distinct cascades with individual functions, which all converge 

into a common final effector mechanism—the MAC (Fig. 1). These 3 pathways 

independently lead to activation of C3 and C5 convertases.6 Although the classical and the 

lectin pathways require specific triggers to be activated—usually infection—it has been 

known for years that the AP exhibits low-grade continuous activation owing to spontaneous 

hydrolysis of C3 (called the “tick-over” phenomenon).8–10 In addition, some components of 

the AP constitute an amplification mechanism (the so-called AP amplification loop), which 

amplifies complement activation regardless of the specific pathway that initially generates 

the first C3b molecule (see Fig. 1). Multiple mechanisms have evolved to control the 

complement cascade, including membrane-bound proteins (complement receptor 1 [CR1], 

membrane cofactor protein, and the membrane proteins CD55 and CD59), as well as fluid-

phase components, including complement factor I and factor H (FH). Among these, CD55 

and CD59 are of pivotal importance in PNH, given that they are normally expressed on 

hematopoietic cells and attached by the GPI anchor proteins.11

With specific respect to the thrombosis seen in PNH, there are many direct and bidirectional 

interactions between the complement system and the coagulation cascade (see Fig. 1, which 

shows where thrombin interacts). Most notable to the clinical implications is that thrombin 

can cleave C5 into C5a, which occurs independent of C3 and therefore represents a bypass 

of the 3 traditional complement activation pathways (that is, the classical, lectin, and APs). 

Thrombin-activatable fibrinolysis inhibitor inactivates C3a and C5a in a negative feedback 

loop. The complement system also amplifies coagulation through the C5a-mediated 

induction of expression of tissue factor and plasminogen activator inhibitor 1 by leukocytes, 

the latter of which inhibits fibrinolysis.12 This activation of the complement through the 

generation of thrombin contributes to hypercoagulability in PNH and may explain why 

thrombosis in PNH often leads to an inexorable disease flare that is best interrupted by 

blocking terminal complement.

THE COMPLEMENT PROTEINS IN PAROXYSMAL NOCTURNAL 

HEMOGLOBINURIA

PNH erythrocytes are highly vulnerable to complement-mediated lysis owing to a reduction, 

or absence, of 2 important GPI-anchored complement regulatory membrane proteins (CD55 

and CD59). CD59 is a glycoprotein that directly prevents the MAC from perforating the cell 

membrane by blocking the aggregation of C9.5 CD55 accelerates the rate of destruction of 

membrane-bound C3 convertase.13 CD55 (also called decay accelerating factor) inhibits the 

formation and the stability of C3 convertase (both C3bBb and C4b2a).14 CD55 was the first 

complement regulator reported to be absent on PNH erythrocytes.9,15 CD59 was later 

identified as an additional complement regulatory protein on PNH erythrocytes.16 Distinct 
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from CD55, CD59 interferes with the terminal effector complement, blocking the 

incorporation of C9 onto the C5b–C8 complex, forming the MAC.17 CD59 is the more 

important molecule of the two—because, if it is absent, this leads to lysis,18 whereas an 

isolated deficiency of CD55 can be overcome. There are patients with a congenital isolated 

CD55 deficiency but normal CD59 expression who do not hemolyze (see Fig. 1).19

PAROXYSMAL NOCTURNAL HEMOGLOBINURIA AS A HEMOLYTIC 

ANEMIA

PNH erythrocytes’ in vitro susceptibility to hemolysis was initially described by Dr Ham in 

his pivotal studies in the 1930s.20 Dr Ham demonstrated that erythrocytes from patients who 

have PNH hemolyze in their own serum, especially when the AP is activated (by 

acidification). This hemolytic assay is called the Ham test or the acidified serum assay.21 

This feature of PNH erythrocytes was subsequently described further when it was 

demonstrated that a distinct phenotype of PNH erythrocytes may exist, according to their 

specific sensitivity to complement-mediated lysis in vitro.22,23 In fact, in PNH there are 

erythrocytes with only modest hypersensitivity (3–5 times normal values) or a more 

pronounced hypersensitivity to complement-mediated lysis (15–25 times the normal one). 

These phenotypes are now known as PNH type II and type III erythrocytes,23 which by flow 

cytometry correspond with a complete (type III) or partial (type II) deficiency of GPI-APs, 

respectively.24 Chronic hemolysis of PNH is likely owing to a continuous steady-state 

complement activation coming from the low-grade spontaneous C3 tick-over, with ongoing 

activation of the CAP, as described. Infections or inflammatory status usually result in 

hemolytic crises (the paroxysms that given the disease its name), eventually as a result of 

substantial complement activation.

PAROXYSMAL NOCTURNAL HEMOGLOBINURIA AS A DISEASE OF 

MARROW FAILURE

Patient with PNH obviously suffer from anemia, but often they also have other cytopenias in 

the setting of their marrow failure owing to impaired hematopoiesis. The marrow failure 

component of PNH can vary from subclinical disease to severe aplastic anemia (AA) and 

may be categorized as such.2 It has been demonstrated that PNH patients have a reduced 

number of hematopoietic progenitors assessed by cultures assays regardless of the 

categorization.25,26 There is considerable overlap between PNH and AA both in disease 

presentation; in addition, they have long been viewed as distinct presentations of the same 

disorder.27 The mechanism by which PNH clones expand has been an area of active 

research. Immunoselection is considered to be essential for the selective expansion of these 

clones.28 The expansion is not simply attributable to PIGA mutations alone.29 Also, PNH 

clonal populations can be detected frequently in patients with the other marrow failure 

syndromes, such as AA and myelodysplastic syndrome.30,31 This may suggest that GPI− 

cells survive immune-mediated bone marrow injury putatively caused by cytotoxic cells 

such as natural killer cells.32 Human leukemic K562 cells become relatively resistant to 

natural killer cell-mediated cytotoxicity after acquisition of PIGA mutations in vitro.33 This 

relative survival advantage may be owing to deficiency of stress-inducible GPI-linked 
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membrane proteins upregulation of UL16-binding protein (ULBP)1 and ULBP2 on PNH 

cells. ULBPs activate natural killer and T cells and are detected on GPI-expressing but not 

on GPI-deficient K562 cells. Thus, in the setting of an immune attack on the bone marrow, 

the lack of ULBPs may contribute to immunoselection of the PNH clone over normal 

cells.34 There also is the view that the patients with PNH clones and the autoimmune 

phenomenon of AA have an attack against the hematopoiesis at the level of the stem cell, 

and this allows the clonal expansion for the clinical PNH phenotype.35 More recently, it has 

been suggested that the GPI-AP could be the target of the immune attack and thus the PNH 

cells are spared naturally, again allowing their clonal outgrowth over the normal 

hematopoiesis.36 The PNH clone is often considered a marker of an immune form of 

marrow failure because it may predict response to immunosuppressive therapy in AA and 

patients with inherited forms of AA lack the PNH clone.37 The size of the PNH clone may 

vary over time and this is the best determinant of the hemolytic component of the 

disease.38–41 Therapies directed at this hemolysis will not improve the patients’ marrow 

failure.

PAROXYSMAL NOCTURNAL HEMOGLOBINURIA AS A DISEASE OF 

THROMBOSIS

Thrombosis is another typical manifestation of PNH. It is the leading cause of death in the 

disease.42 Thrombosis may occur at any site in PNH: venous or arterial. Common sites 

include intraabdominal (hepatic, portal, splenic or mesenteric) and cerebral (cavernous or 

sagittal sinus) veins, with hepatic vein thrombosis (also known as Budd–Chiari syndrome) 

being the most common. Deep venous thrombosis, pulmonary emboli, and dermal 

thrombosis are also prevalent. In contrast with the mechanisms of the hemolysis or the 

marrow failure, less is definitively known about the pathophysiology and mechanism of the 

thrombophilia in PNH, especially in patients not treated with eculizumab. Clinically, the 

complication of thrombosis is more prevalent in patients as the PNH clone increases in 

size.42–44 Thrombosis may occur in any PNH patient, but those with a large percentage of 

PNH cells (>50% granulocytes) are at greatest risk.44,45 This may suggest that the ultimate 

etiology of the thrombophilia in PNH is related to the hemolysis with complement 

activation. As discussed, there are also clear interactions between the complement system 

and the coagulation cascade, namely thrombin and C3, which contribute to the thrombosis in 

PNH. There are currently several hypothesized mechanisms and ultimately the 

pathophysiology may be multifactorial. The thrombophilia may directly result from the 

hemolytic anemia as the free hemoglobin is released by the erythrocytes into the serum 

causing nitric oxide (NO) scavenging and thus preventing the inhibition by NO on platelet 

aggregation and adhesion to endothelium.46 Next, the uncontrolled complement regulation 

on platelet surface could be hypothesized to lead to platelet activation and aggregation, 

enhancing the formation of thrombi.47 Another known issue is that the absence of GPI-APs 

on PNH platelets leads to thrombotic microparticles.48 Another possible mechanism of 

thrombosis in PNH could be a disruption of the fibrinolytic system, owing to the lack of 

membrane-bound urokinase-type plasminogen activator receptor, another GPI-anchored 

protein, leaving excess of its soluble form.49,50 Complement activation also contributes to 

the prothrombotic tendency of PNH patients. Specifically, C5a may result in 
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proinflammatory and prothrombotic processes by generating inflammatory cytokines such as 

interleukin-6, interleukin-8, and tumor necrosis factor.51 It is unclear which of these 

mechanisms contribute most to thrombosis in PNH; however, complement inhibition with 

eculizumab is the most effective means to stop thrombosis in PNH.52,53 Anticoagulation and 

eculizumab are indication for acute thrombotic events; however, primary prophylactic 

anticoagulation has not been proven to be beneficial in PNH.42 Anticoagulation after the 

acute event in a PNH patient well-maintained on eculizumab may not be necessary.54

PAROXYSMAL NOCTURNAL HEMOGLOBINURIA AND CONSEQUENCES 

OF NITRIC OXIDE

Many manifestations of PNH result from intravascular hemolysis and are explained by 

hemoglobin-mediated NO scavenging after free hemoglobin is released from hemolyzed 

cells.46 NO is a major regulator of vascular physiology. NO acts on the vascular wall to 

maintain normal tone and limit platelet activation. Free hemoglobin has enormous affinity 

for NO and can reduce the plasma level of NO to the point of causing symptoms. This 

reduction has been demonstrated in clinical trials where the administration of cell-free 

hemoglobin solutions to healthy people is associated with development of abdominal pain 

and esophageal spasm.55 Under normal conditions, hemoglobin is sequestered by the 

erythrocyte membrane, which minimizes the scavenging of NO. In PNH, the intravascular 

hemolysis results in release of large amounts of free hemoglobin into the plasma. This 

release leads to scavenging of NO and degradation of the substrate for NO synthesis.56,57 

This depletion of NO at the tissue level manifests clinically as fatigue, abdominal pain, 

esophageal spasm, erectile dysfunction, and possibly thrombosis. These clinical symptoms 

are more common in patients with PNH who have larger populations of PNH cells (>60% of 

granulocytes).44 Additionally, chronic kidney disease and pulmonary hypertension are 

complications that may go unrecognized, but also result from scavenging of NO. For 

example, in pulmonary arterial hypertension the symptoms are usually mild and are often 

nonspecific (eg, tiredness, breathlessness). Chronic kidney disease stages 1 through 3 are 

also described and can be quite common in PNH patients.58

DIAGNOSIS AND CLASSIFICATION OF PAROXYSMAL NOCTURNAL 

HEMOGLOBINURIA

The diagnosis of PNH is both a laboratory and a clinical diagnosis. The laboratory measures 

include a reticulocyte count, lactate dehydrogenase (LDH) levels, complete blood count 

indicative of hemolysis, and peripheral blood flow cytometry to detect the deficiency of the 

GPI (Box 1).59 This absence of GPI-APs is detected after staining cells with monoclonal 

antibodies and a reagent known as fluorescein-tagged proaerolysin variant that binds the 

glycan portion of the GPI anchor.60 The erythrocytes may be classified as types I, II, or III 

PNH cells, as noted. Type I cells have normal levels of CD55 and CD59, whereas type II 

have reduced levels and type III have complete absence.2 Hematopathologists have recently 

published guidelines for diagnosis of PNH using flow cytometry.61
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Box 1

Clinical care of PNH patients

Diagnosis

• PNH by FLAER assay

• LDH

• Reticulocyte count

• CBC

Therapy

• Eculizumab intravenously

– Loading: 600 mg weekly × 4 weeks

– Maintenance (followed 1 week later): 900 mg every 2 weeks thereafter

• Consideration of HSCT in suboptimal responders

Monitoring while on therapy

• At least monthly

– LDH, reticulocyte count, CBC, chemistries

• At least yearly

– PNH by FLAER assay

• If concern for extravascular hemolysis

– Direct antiglobulin test

Abbreviations: CBC, complete blood count; FLAER, fluorescein-tagged proaerolysin 

variant; HSCT, hematopoietic stem cell transplantation; LDH, lactate dehydrogenase; 

PNH, paroxysmal nocturnal hemoglobinuria.

Laboratory testing for diagnosis and monitoring during treatment. Standard therapy 

regimen with eculizumab.

The classification of PNH has been proposed by the International PNH Interest Group 

(IPIG)2 and includes 3 subtypes: classical PNH, which includes hemolytic and thrombotic 

patients who have evidence of PNH in the absence of another bone marrow failure disorder; 

PNH in the context of other primary bone marrow disorders, such as AA or myelodysplastic 

syndrome; and subclinical PNH, in which patients have small PNH clones but no clinical or 

laboratory evidence of hemolysis or thrombosis.2
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CURRENT THERAPIES FOR PAROXYSMAL NOCTURNAL 

HEMOGLOBINURIA DIRECTED AGAINST COMPLEMENT

Eculizumab is a humanized monoclonal antibody that binds to C5 and inhibits its further 

cleavage into C5a and C5b. The drug decreases intravascular hemolysis, reduces thrombosis 

risk, and improves quality of life in PNH52,62 by inhibiting the formation of the MAC (Fig. 

2).63 It is the only therapy approved by the US Food and Drug Administration for PNH.

Eculizumab was studied originally in a pilot trial published in the New England Journal of 

Medicine, which showed that it was safe and well-tolerated in PNH patients. This pilot study 

demonstrated also that LDH levels in these patients with transfusion-dependent anemia from 

their PNH decreased as intravascular hemolysis was blocked with the drug.64 These 

principles were demonstrated further in a larger, multicenter, randomized, placebo-

controlled, blinded study in 86 PNH patients. Eculizumab was administered intravenously at 

600 mg weekly for 4 weeks, followed 1 week later by 900 mg every 2 weeks thereafter (see 

Box 1).65 Again, therapy with eculizumab resulted decreased intravascular hemolysis, as 

measured by LDH, and transfusion independence in about one-half of the patients. There 

was also the disappearance of many of the clinical symptoms of intravascular hemolysis, 

including fatigue, esophageal spasm, and erectile dysfunction in the PNH patients on 

eculizumab arm in comparison with placebo. This second study again proved that 

eculizumab treatment was safe with few adverse events, even in comparison with the 

placebo. A third study of eculizumab (open-label phase III study SHEPHERD62) was 

conducted with broader inclusion criteria for the PNH patients, allowing for minimally 

transfused patients as well as those with more pronounced thrombocytopenia. In the 96 

patients enrolled in the study, treatment with eculizumab resulted again in intravascular 

hemolysis, regardless of the severity of disease before therapy. Transfusion independence 

was achieved in about one-half of the patients and improvement in fatigue and quality of life 

were demonstrated as well.62 The study of eculizumab continued in the final open-label 

extension study. This extension included 187 patients who have previously been treated on 

the parent clinical trials.52 The extension study confirmed the safety and efficacy of 

eculizumab as well. More recently, additional follow-up data has been published, again with 

same findings.66

Patients require close monitoring while on eculizumab treatment (see Box 1). Standardly, 

peripheral blood work should include a reticulocyte count, LDH, complete blood count, and 

chemistries (including bilirubin) weekly during induction therapy. Thereafter, the same 

laboratory tests should be checked every 4 weeks. Also a direct antiglobulin test (Coombs’ 

test) should be obtained in patients with evidence of persistent hemolysis while on therapy. 

This may alert the clinician to ongoing extravascular hemolysis that the eculizumab and its 

downstream C3 deposition are causing. PNH flow cytometry should be obtained at least 

every 6 to 12 months because the clone size may vary over time. The measure of hemolysis 

(LDH) in a therapy responder usually fall within the normal range within days to weeks after 

starting eculizumab; however, the reticulocyte count usually remains elevated and the 

hemoglobin response can vary by patient and time.
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PREDICTORS OF RESPONSE TO ECULIZUMAB THERAPY

The majority of classical PNH patients respond to eculizumab; however, the hemoglobin 

response is highly variable and may depend on underlying bone marrow failure, concurrent 

inflammatory conditions, genetic factors, and the size of the PNH red cell clone after 

therapy.39 However, there are limitations to this therapy and not all patients have their 

disease-specific needs met by eculizumab.39 There have been observed clinical scenarios 

that seem to predict for either breakthrough hemolysis or a poor response to eculizumab. As 

previously reported, eculizumab does not improve underlying bone marrow failure.67 There 

are also reports of patients who have a coexistent autoimmune disease (2 with Crohn’s 

disease, 1 with Graves’ disease, and 1 with rheumatoid arthritis) with ongoing activation of 

complement from their underlying disease, which lead to suboptimal responses from 

eculizumab.39 Breakthrough hemolysis is a challenge in these patients. Although the 

mechanism for this potential association is unclear, it is conceivable that chronic 

inflammatory states lead to increased complement activation that requires high dosages of 

eculizumab because standard doses resulted in incomplete C5 blockade. It is also known that 

transient breakthrough intravascular hemolysis is observed after viral or bacterial 

infections.39

Another group of suboptimal responders to eculizumab has been described recently. A 

single missense C5 heterozygous mutation, c.2654G→A, prevents binding and blockade by 

eculizumab while retaining the functional capacity to cause hemolysis. The polymorphism 

accounts for the poor response to eculizumab in patients carrying the mutation. The c.

2654G→A mutation is present in 3.5% of the Japanese population and has not yet been 

described in other ethnic groups.68 Pharmacogenetics has also been shown to influence 

response to therapy. Polymorphisms in the CR1 gene are associated with response to 

eculizumab. CR1, through binding C3b and C4b, enhances the decay of the C3 and C5 

convertases. The density of CR1 on the surface of red cells modulates binding of C3 

fragments to the GPI-negative red cells when C5 is inhibited. PNH patients with 

polymorphisms in CR1 that lead to low CR1 levels (L/L genotype) are more likely to be 

suboptimal responders to eculizumab than patients with intermediate (H/L genotype) or high 

(H/H genotype) levels of CR1.69

Pregnancy can be another limitation on the efficacy of eculizumab. Pregnancy is a 

hypercoagulable state itself and there have been concerns both about the potential for 

increased maternal and fetal morbidity in a pregnant patient as well as the safety of 

eculizumab therapy in pregnancy. There are multiple case reports in the literature of 

successful pregnancies in female patients on eculizumab.70–73 However, what has been 

shown is that these pregnant patients tend to experience increased breakthrough hemolysis 

as they progress through the trimesters and often require reduced dosing interval (to 12 or 

even 7 days between doses) by the third trimester. This may be owing to increased 

activation of the complement cascade with increase terminal complex formation in the third 

trimester of pregnancy and/or increased volume of distribution of the drug during the latter 

stage of pregnancy.73
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CURE FOR PAROXYSMAL NOCTURNAL HEMOGLOBINURIA: 

HEMATOPOIETIC STEM CELL TRANSPLANTATION

Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for PNH. 

However, it is not recommended as initial therapy in the eculizumab era, given the risks of 

transplant-related morbidity and mortality. HSCT is a reasonable therapeutic option in 

patients who do not respond to therapy with eculizumab39,74 or those patients who have 

severe pancytopenia owing to underlying bone marrow failure. The transplant paradigm 

pursued is often with reduced intensity conditioning regimens, because myeloablation is not 

required to eradicate the PNH clone.75 The use of HSCT may be studied more in the future 

as patients and their health care providers determine that the cost–benefit ratio of HSCT 

outweighs a lifetime of eculizumab therapy.

FUTURE THERAPIES FOR PAROXYSMAL NOCTURNAL HEMOGLOBINURIA 

DIRECTED AGAINST COMPLEMENT

There continue to be challenges in therapies for PNH patients, both when eculizumab results 

in suboptimal response as well as with new drugs. The reasons for this are 2-fold. One is 

that, by blocking the terminal pathway of complement, an arm of immunity is 

simultaneously blocked, which prevents the formation of the MAC, which is needed to 

protect against infections, especially Neisseria. Therefore, patients who are on eculizumab 

therapy are usually more susceptible to infections caused by meningococcus or gonococcus. 

However, this can be overcome by way of a vaccine against meningococci or prophylactic 

antibiotics such as a fluroquinolone. The other challenge is that the therapy only influences a 

certain part of complement activities. It allows the immunoprotection and immunoregulation 

functions mediated by C3b to be retained. This function can be beneficial for patients, 

because it allows them to maintain their immune defense.58 Eculizumab compensates for the 

CD59 deficiency on PNH erythrocytes, but not the CD55 deficiency. Thus, PNH patients on 

eculizumab accumulate C3 fragments on their CD55-deficient red cells, leading to 

extravascular hemolysis through the accumulation of opsonins that are recognized by the 

reticulo-endothelial system (see Fig. 2).76 Laboratory evidence of extravascular hemolysis in 

eculizumab-containing patients includes increased reticulocytes, persistent anemia, and 

often direct antiglobulin testing that is positive for C3 deposition. These patients may remain 

asymptomatic, but others have symptomatic anemia and remain dependent on 

transfusions.39 Thus, there is need for additional work toward a complement inhibitor that 

reduces C3 accumulation on PNH erythrocytes.

The evidence that C3 activation represents a potential target, unique from C5 blockade, for 

complement modulation is an ongoing area of research both in vitro and in vivo. However, 

there have been concerns that C3 inhibitor might be associated with increased infectious 

toxicity.77 Nonetheless, active research is ongoing to study this therapeutic possibility.

There is an antibody-based anti-C3 strategy that targets activated C3 (C3b/iC3b). This anti-

C3b/iC3b murine monoclonal antibody 3E7 and its chimeric-deimmunized derivative H17 

were shown to selectively inhibit the activity of C3 and C5 convertases of the CAP only, 
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providing the opportunity for a selective inhibition of different complement pathway.78 

These antibodies were tested in vitro on PNH erythrocytes, and were shown to be effective 

in preventing complement-mediated hemolysis of CD55/CD59 deficient erythrocytes.78 

This approach has yet to be translated into the clinic.

Targeted C3 complement inhibition has also included strategies based on small peptide 

inhibitors, which may be closer to clinical translation. The best example of this is 

compstatin, which selectively binds to C3 and its active fragment C3b.79,80 Compstatin 

prevents the conversion of C3 to C3b and thus it impairs all initiation, amplification, and 

terminal pathways of the complement cascade.81 Preliminary data show that compstatin 

analogs inhibit complement activation on PNH erythrocytes, preventing both hemolysis and 

C3 deposition.82 There are also ongoing investigations of peptidic C3 inhibitor, compstatin 

Cp40, and its long-acting form (polyethylene glycol–Cp40) in PNH in vitro models. Thus, 

peptide inhibitors of C3 activation effectively prevent hemolysis and C3 opsonization of 

PNH erythrocytes83 and are another potential therapeutic in this disease.

A similar but distinct path that could also inhibit complement in these PNH patients involves 

C1 esterase inhibitor (C1INH). This is an endogenous human plasma protein in the family of 

serine protease inhibitors (SERPINs) and it has broad inhibitory activity in the complement 

and coagulation pathways. C1INH inhibits the classical pathway of complement by binding 

C1r and C1s and inhibits the mannose-binding, lectin-associated serine proteases in the 

lectin pathway.84,85 It has already been shown in humans that the commercially available 

plasma derived C1INH (Cinryze) prevents PNH erythrocyte lysis induced by the AP.86 

Importantly, C1INH was able to block the accumulation of C3 degradation products on 

CD55-deficient erythrocytes from PNH patients on therapy with eculizumab in vitro.86 This 

is significant clinically in patients treated with eculizumab who fail to achieve transfusion 

independence.39,66,87 Patients who do not respond to eculizumab therapy could theoretically 

respond to a C1INH, either alone or in combination with C5 blockade. A clinical trial is 

anticipated to explore this hypothesis in vivo.

Last, strategies of complement inhibition that deliver a selective inhibition of early phases 

(C3 activation) of the AP of the complement cascade are being developed. These strategies 

retain intact functioning of the other 2 complement pathways. This strategy uses FH, a 

complement inhibitor that modulates the initial AP activation in the fluid phase by 

preventing C3 convertase activity and by promoting C3b inactivation into iC3b.88 FH 

modulates the AP amplification loop and it has been demonstrated to inhibit lysis in vitro.89 

There are 2 FH-derived agents currently studied. The first is TT30, which is a recombinant 

fusion protein between complement FH and another complement-related protein, 

complement receptor 2, which delivers FH activity locally at the site of complement 

activation. This was investigated in an in vitro model, which showed that TT30 completely 

inhibited complement-mediated hemolysis of PNH erythrocytes and effectively prevents 

initial C3 activation and further C3 deposition on PNH erythrocytes.90 There was a phase I 

clinical trial for PNH patients to study the use of TT30 (clinicaltrials.gov) that was closed 

owing to inability to enroll. Mini-FH is the second analogous agent that results in selective 

inhibition of activation and amplification of the AP, without affecting the other 2 pathways. 

Mini-FH was found to be more effective than TT30, with full inhibition achieved at 
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concentrations about 1 log lower than TT30.91 This has yet to be translated into the clinic to 

date.

SUMMARY

PNH is caused by a somatic mutation in PIGA that leads to a marked deficiency or absence 

of the complement regulatory proteins CD55 and CD59. The disease manifests with 

intravascular hemolysis, bone marrow failure, and thrombosis. Complement inhibition 

through the C5 monoclonal antibody eculizumab has led to dramatic clinical improvement 

in PNH. Although this therapeutic approach is safe and effective, there is residual 

complement activity resulting from upstream complement components that account for 

suboptimal responses in patients. A novel era for complement regulation in PNH is upon us 

and the goal is to find targeted and specific treatments for PNH and other complement-

mediated diseases.
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KEY POINTS

• Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, clonal, hematopoietic 

stem cell disorder with 3 clinical features: hemolytic anemia from uncontrolled 

complement activation, thrombosis, and bone marrow failure.

• Eculizumab is a humanized monoclonal antibody that binds to C5 in 

complement system and decreases intravascular hemolysis, reduces thrombosis 

risk, and improves quality of life.

• Persistent extravascular hemolysis in PNH while on eculizumab remains a 

relevant clinical issue and multiple therapies are being examined to improve 

this.

DeZern and Brodsky Page 16

Hematol Oncol Clin North Am. Author manuscript; available in PMC 2015 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The complement cascade. The complement cascade is activated via the classical, lectin or 

alternative pathways. C3 is activated via C3 convertases. This step is regulated by the action 

of CD55, a glycosylphosphatidylinositol (GPI)-anchored protein. Subsequently, C5 is 

cleaved into C5a and C5b. C5a mediates a number of biological processes and C5b begins 

the terminal pathway of complement and the assembly of the membrane attack complex 

(MAC). The formation of the MAC is regulated by CD59, another GPI-anchored protein. 

Thrombin interacts with the complement cascade where it can directly cleave C3. Thrombin 

can also cleave C5 into C5a, which occurs independently of C3 and therefore represents a 

bypass of the 3 traditional complement activation pathways.
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Fig. 2. 
The complement cascade, paroxysmal nocturnal hemoglobinuria (PNH), and eculizumab. 

PNH cells have a deficiency in glycosylphosphatidylinositol-anchored proteins on their cell 

surface. Absence of CD55 and CD59 leads to uncontrolled complement activation on the 

surface of PNH cells. Deficiency of CD59 increases MAC formation and induces 

intravascular hemolysis, which is central to the pathophysiology of PNH. Deficiency of 

CD55 leads to increased C3 convertase activity and C3d-associated extravascular hemolysis. 

Eculizumab therapy for PNH is a humanized monoclonal antibody that targets C5. By 

preventing C5 activation, eculizumab prevents the formation of the MAC, leading to a 

significant reduction in intravascular hemolysis of PNH cells. Use of eculizumab can lead to 

increased extravascular hemolysis.
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