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Abstract

The initiation of DNA replication represents a committing step to cell proliferation. Appropriate 

replication onset depends on multiprotein complexes that help properly distinguish origin regions, 

generate nascent replication bubbles, and promote replisome formation. This review describes 

initiation systems employed by bacteria, archaea, and eukaryotes, with a focus on comparing and 

contrasting molecular mechanisms among organisms. Although commonalities can be found in the 

functional domains and strategies used to carry out and regulate initiation, many key participants 

have markedly different activities and appear to have evolved convergently. Despite significant 

advances in the field, major questions still persist in understanding how initiation programs are 

executed at the molecular level.
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INTRODUCTION

The initiation of DNA replication is a central event in the growth and division of all 

organisms. The assembly of replication machineries, or replisomes, is coordinated by 

dedicated initiation proteins, which ensure that DNA synthesis begins at the correct 

chromosomal locus in accordance with cell cycle cues. Faithful execution of initiation is 

crucial to viability; inappropriate replication onset is linked to changes in gene copy number, 

DNA damage, and genetic instability (1, 2).

Cellular initiation programs rely on proteinaceous, trans-acting factors that process 

chromosomal start sites (termed origins). The mechanics and control of these proteins are 

complex. Some factors and their activities are conserved across all three domains of life 
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(bacteria, archaea, and eukaryotes); for example, all proteins responsible for recognizing 

origins (initiators) possess a set of evolutionarily related ATPase domains fused to a helix-

turn-helix (HTH)-type DNA binding element (3-7). However, other aspects of initiation—

such as DNA-unwinding and strand-synthesis enzymes (e.g., helicases and primases)—are 

distinct between bacterial and archaeal/eukaryal lineages (3, 8, 9). Hence, although common 

themes exist in how initiation is executed and controlled, the specific pathways and players 

that promote this process can vary dramatically.

The goal of this review is to highlight the prevalent mechanisms used to initiate DNA 

replication in cells. Given that a PubMed search for “DNA replication initiation” turns up 

>8,000 papers, it is impossible to be comprehensive. We apologize to those colleagues 

whose work could not be accommodated.

REPLICATION ORIGINS

Bacterial oriC

Bacterial chromosomes, which are typically (though not always) circular, generally bear a 

single origin distinguished by two classes of sequence elements: conserved repeats that are 

important for initiator recognition and an AT-rich DNA-unwinding element (DUE) where 

the replication bubble originates (10-12). The ~260 base-pair (bp) origin of Escherichia coli, 

oriC, has been a long-standing model system for studying initiation. E. coli oriC bears a 

complex array of conserved sequence motifs. Most of these are recognized by the ATP-

dependent initiator, DnaA (13-15), whereas others are recognized by factors that modulate 

initiator/origin interactions (see Figure 1a). One prevalent motif is the DnaA box (sites R1–

R5) (15, 16). DnaA boxes are recognized equivalently by ATP-bound and ADP-bound 

DnaA (ATP-DnaA and ADP-DnaA, respectively), with regions R1, R2, and R4 bound most 

tightly (17-20). I-sites and τ-sites constitute two other classes of DnaA binding sites that 

associate more weakly with the initiator and are preferentially recognized by ATP-DnaA 

(13, 18, 21). The DnaA boxes, I-sites, and τ-sites in oriC together form an organizing center 

that is critical for promoting the higher-order assembly of DnaA and origin activation 

(discussed below). Interestingly, the spacing between high- and low-affinity sites is 

important, as even two-base insertions can abrogate origin function (22).

The DUE contains several copies of a fourth type of DnaA binding element termed an ATP-

DnaA box. These sites reside within three 13-bp AT-rich repeats historically designated as 

L, M, and R (10, 12). Similar to I-sites and τ-sites, ATP-DnaA boxes are bound 

preferentially by ATP-DnaA (14, 23). ATP-DnaA box recognition requires the cooperative 

assembly of multiple ATP-DnaA protomers and depends on initiator binding to the adjacent 

R1 element (23). As with the organizing center, the spacing between the DUE and other 

DnaA binding sites is critical for oriC function (24).

The direct, sequence-based readout of specific origin binding sites by DnaA appears 

preserved across bacteria (25-28). However, the replication origins of bacterial species 

display a unique number and arrangement of the consensus DnaA box sequence and its 

variants (Figure 1a) (29). DnaA orthologs also appear to differ in their relative affinity for 

DnaA box sequences (30). For example, Mycobacterium tuberculosis DnaA does not stably 
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associate with a single DnaA box; instead, binding requires that multiple repeats be present 

in target substrates (31). This variation, coupled with the distinct arrangement of DnaA 

boxes among different oriCs, suggests that DnaA orthologs are fine-tuned to act only on 

their cognate origin. Consistent with this notion, Escherichia coli DnaA cannot initiate 

replication on Bacillus subtilis oriC or vice versa (32). Why origins are so diverse among 

bacteria is unclear but could reflect a speciation mechanism for preventing the replication of 

foreign origins acquired through phage infection or DNA uptake.

Eukaryotic Origins

Eukaryotic origins exhibit several differences from their bacterial counterparts. First, 

eukaryotic chromosomes invariably contain multiple origins. Second, eukaryotic origins 

frequently appear to be defined more by local DNA structure and chromatin environment 

than by sequence conservation (33). An exception is budding yeast, whose genome is 

punctuated by related DNA segments called autonomous replicating sequences (ARSs) (34). 

ARSs serve as recruitment sites for the origin recognition complex (ORC), a multiprotein 

assembly that functions as the initiator of replication in eukaryotes (35, 36).

The binding of ORC protects specific regions within certain ARSs known as ARS consensus 

sequences (ACSs). ACSs typically contain two conserved regions bound by ORC termed A 

and B1 (Figure 1b) (35-37). Interestingly, although ACSs can define a replication start site, 

they are not always sufficient to do so (38, 39). Initiation in Schizosaccharomyces pombe 

echoes this paradigm: Fission yeast origins frequently contain an AT-rich segment 

recognized by the Orc4 subunit of ORC (40, 41), but removal of these AT stretches affects 

origin activation only marginally in vivo (42, 43).

Metazoan replication start sites are more loosely encoded than those of yeast but exhibit 

some general similarities. For example, metazoan chromosomal regions occupied by ORC 

often (although not always) correlate with certain skewed patterns of DNA sequence bearing 

either AT- or GC-rich stretches (44-46). Nonreplicative proteins, such as transcription 

factors (47), can associate with ORC to help define particular origin loci. However, despite 

these generalities, a growing body of evidence points to contextual cues—e.g., proximity to 

promoter elements, DNA accessibility, nucleosome occupancy, and local structure—as 

major factors in specifying metazoan replication start sites (48-51). Indeed, in Xenopus egg 

extracts, replication can initiate at any nucleotide sequence in an exogenously introduced 

piece of DNA (52). Overall, the molecular logic that eukaryotic cells use to decide which 

region serves as a replication start site has yet to be fully defined (see Supplemental Material 

for more detail; follow the Supplemental Material link from the Annual Reviews home page 

at http://www.annualreviews.org).

Archaeal Origins

Archaeal origins exhibit a mix of bacterial and eukaryotic features (53). As in eukaryotes, 

archaeal chromosomes frequently bear more than one origin (54-56). However, archaeal 

origins, similar to their bacterial counterparts, also contain conserved elements that function 

as sequence-specific binding sites for initiators (54).
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Sulfolobus solfataricus, whose genome bears three loci termed oriC1, oriC2, and oriC3, 

exemplifies many of the attributes of archaeal origins (Figure 1c) (54). oriC1 contains three 

conserved sequence motifs: the origin recognition box (ORB) and the C2 and C3 loci. oriC2 

contains similar elements, although its ORB repeats are smaller. Each type of site is bound 

by one of three distinct initiator paralogs (the Orc1-1, Orc1-2, and Orc1-3 proteins, 

respectively). Binding sites for archaeal Orc1 paralogs can overlap partially or fully (Figure 

1c) (54), suggesting that cooperative or competitive interactions may occur among different 

initiator subfamilies.

As with different bacterial origins, the number, type, and order of Orc1 binding sites are not 

preserved among the three Sulfolobus origins. Nonetheless, the ORB-type sites within oriC1 

and oriC2 are both arranged as inverted repeats separated by an AT-rich region of varying 

length that contains a DUE (54, 55). Surprisingly, oriC3 has no discernable Orc1 binding 

site and is instead protected by a winged-helix initiator protein (WhiP) that is unrelated to 

Orc1 and does not appear to bind ATP (55). These features suggest that origin multiplication 

in Sulfolobus likely occurred by the acquisition of extrachromosomal elements rather than 

by gene duplication (55).

Additional aspects of Sulfolobus replication origins are echoed in other archaeal species. 

One is origin multiplicity (55, 57). Others are GC sequence skew (58) and the existence of 

DUEs flanked by inverted ORB repeats (for review, see Reference 59). Whether contextual 

cues contribute to archaeal origin discrimination is still unclear.

INITIATORS AND ORIGIN PROCESSING/PRIMING/REMODELING

Bacterial DnaA

The DnaA initiator not only recognizes bacterial replication origins but also melts DNA to 

promote replication onset (12, 15). DnaA is modular, composed of four distinct domains 

(Figure 2a) (60, 61). The first (domain I) is a small, globular K-homology (KH)-type fold 

(62-64) that both homodimerizes and associates with many diverse regulatory proteins (for 

review, see References 65, 66). The second (domain II) is a variable and likely flexible 

linker element of unclear function (65). Domain III consists of an AAA+ (ATPases 

associated with various cellular activities) fold (3, 5, 6, 67, 68) that can form large homo-

oligomeric arrays (61, 68-71), bind single-stranded (ss)DNA (Figure 2b) (72, 73), and 

promote oriC melting (71, 73, 74). The fourth region (domain IV) comprises a C-terminal 

HTH element (5, 75) that recognizes specific sites within the oriC organizing center (26, 28, 

76). Domain III is the only functional fold conserved with eukaryotic and archaeal initiators 

(3, 5), indicating that this region was extant in an ancient initiator protein before bacteria and 

archaea split into different lineages.

Prior to replication onset, strong DnaA boxes in oriC are bound by domain IV of ATP-

DnaA or ADP-DnaA (77, 78). As initiation commences, additional copies of ATP-DnaA 

localize to oriC (78), filling weaker DnaA binding sites and coassociating into a large 

nucleoprotein complex (13, 22, 69, 79, 80). Domain III is the primary mediator of 

oligomerization (7, 21, 71, 72), although domains I and IV also participate in assembly (71, 

74, 81). DnaA forms a helical oligomer that reconstitutes a hydrolysis-competent ATPase 
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site through the joint action of several signature amino acid motifs (7, 70), including the 

Walker A, Walker B, Sensor I, and Sensor II elements from one DnaA subunit and a trans-

acting arginine finger from a partner protomer (reviewed in Reference 65). Upon assembly, 

the DnaA helix appears to wrap duplex DNA around itself, stabilizing one or more positive 

DNA supercoils (Figure 2c) (7, 82).

The complex formed between DnaA and the organizing center of oriC serves as an essential 

prerequisite to DUE melting (10, 12, 23). Negative supercoiling is required for melting (12), 

suggesting that DNA opening might be aided by torsional strain (7). However, ATP-DnaA 

also associates directly with the DUE (23, 73) and can actively melt short DNA duplexes in 

an ATP-dependent manner by binding and stretching ssDNA along the helical axis of the 

DnaA oligomer (Figure 2b) (72). Although the precise mechanism is not fully understood, 

the available evidence indicates that either concomitant with or following DnaA self-

assembly, the ATPase domains of the initiator deform and open the DUE directly (72). At 

least two models account for how DnaA organizes both ssDNA and double-stranded 

(ds)DNA to promote melting (Figure 2c,d), although the precise architecture of the 

nucleoprotein complex is not firmly established.

Eukaryotic Origin Recognition Complex

The eukaryotic initiator, ORC, was first discovered from biochemical studies using budding 

yeast (35, 36). Unlike the single-subunit DnaA protein, ORC comprises six protomers that 

transiently associate with a seventh factor known as Cdc6 (Cdc18 in fission yeast) (36, 

83-85). Together, ORC and Cdc6 identify and mark chromosomal origins (35, 36) and 

promote the loading of the replicative eukaryotic helicase onto DNA (86-88).

As with DnaA, ORC is composed of many functional elements (Figure 3a). Orc1, Orc4, and 

Orc5, along with Cdc6, contain AAA+ ATPase domains closely related to that found in the 

bacterial initiator (3). Orc2 and Orc3 also appear predicated on an AAA+ scaffold, albeit a 

highly diverged one (84, 89), whereas Orc6 (at least in metazoans) is structurally related to 

the transcription factor TFIIB (90-92). Many of the AAA+ domains within ORC and Cdc6 

are linked to other modules, in particular a predicted variant of an HTH fold termed a 

winged-helix domain (WHD), which may be involved in DNA binding (4, 84, 93). The N 

terminus of S. pombe Orc4 is further decorated with several AT-hook repeats that promote 

interactions between the initiator complex and origin DNA (40, 41, 94), whereas the N 

terminus of Orc1 universally bears a conserved bromo-adjacent homology (BAH) domain 

implicated in binding multiple factors (50, 95, 96), including transcriptional silencing factors 

such as Sir1 (in yeast) and HP1 (in human and Drosophila) (97-99). The Orc1 BAH domain 

binds to nucleosomes, specifically recognizing dimethylated histone H4 tails (100). BAH-

dependent association of ORC with nucleosomes assists with sequence-independent 

recognition of replication origins (50, 96) and may have a role in the demonstrated ability of 

ORC to reposition nucleosomes (44, 51, 101). Contacts between the Orc1 BAH domain and 

histones are important physiologically, as their ablation has been linked to primordial 

dwarfism (100, 102).

As expected from the high degree of interspecies sequence conservation among Orc 

proteins, 3D electron microscopy (EM) reconstructions have revealed similar (although not 
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identical) architectures for different Orc homologs. For example, Drosophila and 

Saccharomyces cerevisiae ORC form crescent-shaped particles (Figure 3b, c) (84, 89), both 

of which can accommodate five AAA+ initiator protomers (89, 103). The first five 

protomers of ORC appear to form the core of the crescent, associating in the order 

Orc1→Orc4→Orc5→Orc2→Orc3 (103-106). The location of Orc6 is less certain but likely 

maps near Orc2 or Orc3 (103, 105-107). Cdc6 binds directly to Orc1 and, in the yeast ORC 

model, contacts the open end of the crescent, converting ORC into a closed-ring-like particle 

(Figure 3c) (84).

Akin to DnaA, ORC relies on ATP to control several aspects of its activity. Some ATP-

dependent responses observed in different ORC orthologs are not universal; for example, 

ATP promotes the ordered assembly of human ORC subunits (104, 105), whereas ORC 

from budding yeast and Drosophila can be purified as hexameric complexes even when 

nucleotide is not added (36, 108). Nonetheless, ATP frequently appears to control how ORC 

interacts with specific types of DNA substrates and certain classes of binding sites (109, 

110). In S. cerevisiae, ATP also promotes the association of ORC with Cdc6 (111, 112), 

extending the footprint of the initiator on origins such as ARS1 (84, 103, 113). The ability of 

ATP to elicit specific structural and functional responses likely involves the pairwise 

coordination of AAA+ ATPase domains from adjoining subunits. Consistent with this idea, 

Orc4 of budding yeast bears a conserved arginine that maps to a secondary structure position 

typically occupied by AAA+ arginine fingers and that is critical for stimulating the ATPase 

activity of Orc1 in trans (111, 114, 115).

The action of ORC on DNA is not fully established. Although ORC binds readily to DNA 

(36) and is capable of altering local DNA structure and writhe (59), research has yet to show 

that the eukaryotic initiator can actively melt duplexes. Why ORC might have lost an 

ancestral ability to unwind replication origins (or why DnaA gained such a function) is 

unclear. The AAA+ domains of cellular initiators form a distinct subgroup (3) and possess a 

distinguishing α-helical appendage termed an initiator specific motif (ISM) (116). However, 

the specific architecture of the DnaA ISM differs from that of archaeal and eukaryotic 

initiators, as it forms a wedge-shaped structure that pushes adjoining subunits out of plane 

and into a helical oligomer (7). Differences in ISM configuration may cause adjoining 

subunits in ORC to adopt a less extreme helical organization, which in DnaA is necessary to 

support DNA stretching and melting (72, 74). Additional studies are needed to clarify how 

evolutionary divergence of the AAA+ scaffolds used by ORC and DnaA has led to distinct 

functions on DNA.

Archaeal Orc1

Archaea lack a DnaA ortholog, instead containing proteins more closely related to 

eukaryotic Orc1 and Cdc6. Archaeal Orc1 is the most streamlined of the cellular initiators, 

consisting only of an N-terminal AAA+ ATPase domain and a C-terminal WHD (4, 5, 

116-118). Archaeal Orc1 proteins bind to origins (54, 119, 120), and the WHD contributes 

to both sequence-specific origin recognition and DNA affinity (121-123). Interestingly, the 

AAA+ domains of archaeal Orc1 proteins also bind to DNA, using their ISM to contact the 

phospho-diester backbone of target duplexes through either the major or the minor groove 
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(116, 118). Although origin recognition relies on very few base-specific contacts (only one 

in Sulfolobus Orc1-1), the joint action of the Orc1 WHD and AAA+ domain creates an 

extended footprint that bends and underwinds the target DNA substrates (28, 116, 118). 

Biochemical data suggest that, as with eukaryotic replication start sites, local DNA structure 

is an important determinant for origin discrimination by the archaeal initiator (122).

Although many archaeal Orc1 proteins both possess hallmark AAA+ ATPase motifs and 

hydrolyze ATP (3, 4, 117, 124), the role of nucleotide in controlling initiator function is 

poorly understood. As with the HTH domain of DnaA (5, 7), the Orc1 WHD can adopt 

different orientations with respect to its adjoining AAA+ core in a manner influenced by 

both nucleotide and substrate DNA (Figure 3d) (4, 116-118). However, ATP has not been 

observed to foster the formation of higher-order Orc1 assemblies seen with DnaA. 

Moreover, although the binding of archaeal Orc1 to origin regions can alter the superhelical 

state of the DNA and promote melting in vitro, this effect is not nucleotide dependent and 

does not always result in duplex opening within the DUE (59, 120, 125). How Orc1 

initiators respond to ATP binding/hydrolysis remains to be determined.

HELICASE LOADING AND ACTIVATION

Helicase Loading in Bacteria

The marking and processing of origins by initiator proteins facilitate the next phase of 

initiation, namely, the loading of replicative helicases onto DNA (reviewed in Reference 

126). In bacteria, a single helicase—termed DnaB in E. coli—serves as the front end of the 

newly emerging replication fork. DnaB forms a twin-tiered, ring-shaped hexamer (Figure 

4a) (127-129), in which a conserved N-terminal domain (NTD) structurally homologous to 

the helicase interaction domain of the DnaG primase forms one tier and the C-terminal 

ATPase domain (CTD) forms the other (128, 130-132). Adjoining NTDs in the DnaB 

hexamer self-assemble into a trimer-of-dimers configuration (127-129, 133), creating a 

collar that binds ssDNA (127). The CTD tier also interacts with nucleic acid substrates but 

serves as the site for DNA translocation (134-137). During replication, DnaB encircles the 

lagging template DNA strand (138), moving 5′→3′ with the ATPase domains oriented 

toward the duplex side of the fork (138-141). DNA unwinding likely occurs by a steric 

mechanism that excludes the leading template strand from the helicase interior during 

translocation (139, 142).

E. coli DnaB is loaded onto the single-stranded DUE regions of oriC by the concerted action 

of both DnaA and a dedicated loading factor, DnaC (64, 143-146). DnaC is an AAA+ 

ATPase and paralog of DnaA (67, 147), but it lacks the C-terminal, duplex-DNA binding 

domain of the initiator. DnaC, like DnaA, bears a DnaB binding domain at its N terminus 

(148, 149); however, the folds of these regions are unrelated between the two protein 

families (62, 150, 151). DnaC also binds ssDNA in a cooperative and ATP-dependent 

manner (147, 152) by using its AAA+ domains to form a right-handed helical oligomer 

(Figure 4b) that exhibits a bipartite ATPase site similar to that of DnaA (147). When bound 

to ATP or poorly hydrolyzable ATP analogs, DnaC represses DnaB activity (146, 153, 154). 

Although ATP binding is not required for DnaC to load DnaB onto a ssDNA circle, 

productive association with nucleotide is necessary for DnaC to support the DnaA-
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dependent initiation of DNA replication on an oriC substrate in vivo and in vitro (155). 

Overall, the role of nucleotide in DnaC function remains enigmatic.

How DnaB is placed onto a melted origin is a central question in the field. DnaC forms a 6:6 

complex with DnaB (156, 157) and has been proposed to crack open the helicase ring to 

allow ssDNA to engage the motor interior (126, 158, 159). Recruitment of DnaB to oriC is 

mediated, at least in part, by an interaction between domain I of DnaA and the helicase 

NTDs (63, 143). Coprecipitation studies using Aquifex aeolicus DnaC have further shown 

that the loader, whose N terminus binds to the C-terminal face of DnaB (149, 157), can use 

its ATPase domain to bind the AAA+ domain of DnaA in a nucleotide-dependent manner 

(147). Given that biochemical studies have shown that DnaA preferentially loads DnaB onto 

the bottom strand of the DUE in vitro (160) and that two DnaB hexamers are loaded onto 

opposite strands and in opposing orientations from one another at oriC (145), DnaA and 

DnaC may collaborate in orienting DnaB hexamers on the complementary strands of a 

melted DUE (Figure 4c). Recent studies have shown that the DnaG primase can bind to the 

DnaB · DnaC complex, stimulating ATP hydrolysis by the loader and causing DnaC to 

release the helicase (155).

Replicative helicase loading in other bacterial species exhibits both similarities to and 

differences from that of E. coli (126). For example, B. subtilis bears a DnaB helicase (named 

DnaC) as well as an AAA+-family loading protein (DnaI) that is an ortholog of E. coli 

DnaC. B. subtilis also utilizes two other proteins, DnaB (unrelated to E. coli DnaB) and 

DnaD, to aid helicase recruitment and deposition (161). During initiation, B. subtilis DnaB 

and DnaD, together with their cognate initiator DnaA, associate with oriC in the order 

DnaA→D→B (162, 163). DnaB and DnaD then interact with DNA, the DnaC helicase, and 

the DnaI · DnaC complex to facilitate helicase loading (161). As in E. coli, the DnaI loader 

can both bind ssDNA in an ATP-dependent manner and form a stable 6:6 complex with a 

replicative helicase target (148); however, data have also suggested that the B. subtilis 

helicase is assembled on the origin rather than loaded as a preformed hexamer (161).

The apparent lack of DnaC/DnaI loader orthologs in many species [e.g., Helicobacter pylori 

and M. tuberculosis (164, 165)] has confounded efforts to establish a general framework for 

helicase loading in bacteria. This absence raises the question of whether certain bacteria rely 

on as yet unrecognized loading factors, or whether their helicases are self-loading. In this 

respect, H. pylori DnaB has been observed to form a distinctive double hexamer, which 

appears predicated on a sixfold symmetric configuration of the N-terminal domains that 

differs from the trimer-of-dimers state seen in other DnaB orthologs (166). Moreover, 

expression of H. pylori DnaB in E. coli can complement a dnaC temperature-sensitive 

mutation (167). These data suggest that dedicated helicase-loading proteins may not be 

required in all bacterial species; DnaA may serve as the sole factor responsible for mediating 

the recruitment of the hexameric motor to replication origins in these instances (65). Overall, 

much remains to be discovered concerning the mechanisms by which initiation factors 

collaborate to facilitate helicase loading and the extent to which these strategies differ 

between species.
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Helicase Loading and Activation in Eukaryotes

The replicative helicase of eukaryotes comprises an assembly of six distinct but 

evolutionarily related minichromosome maintenance (MCM) subunits termed Mcm2–7 

(168). Mcm2–7 is superficially similar to DnaB, as it forms a hexameric ring composed of 

two tiers (169, 170)—one corresponding to an N-terminal oligomerization collar and the 

other to a set of C-terminal motor domains (6, 171)—that encircles and translocates along 

DNA (Figure 5a) (172-175). However, Mcm2–7 fundamentally differs from its bacterial 

counterpart in several ways. First, the NTDs of Mcm2–7 and DnaB are structurally unrelated 

(171, 176, 177). Second, the C-terminal motor domain of MCMs is an AAA+ protein (6, 

178) and hence is evolutionarily and organizationally distinct from RecA-type motors such 

as DnaB (179-181). Third, Mcm2–7 translocates 3′→5′ along the leading strand template of 

the replication fork (182, 183), opposite to DnaB (140). Finally, whereas DnaB-type 

helicases exhibit closed-ring architectures in the absence of DNA and appear to switch into a 

lock washer configuration during DNA unwinding (127-129, 184-187), Mcm2–7 appears 

capable of spontaneously forming open-ring states when free of substrate and converts into a 

closed-ring form when bound to ATP and specific activating factors (Figure 5b) (170, 188). 

These differences support the idea that certain replication fork components evolved 

independently at least twice (189).

Mcm2–7 subunits assemble in the order Mcm5→3→7→4→6→2(→5) (170, 190-192). 

Interactions between Mcm2 and Mcm5 are weak (190, 191) and appear to constitute a 

natural break point in the ring (170, 183). This discontinuity likely disrupts the processive 

coordination of ATPase activity among subunits and may explain why DNA unwinding by 

Mcm2–7 occurs in a narrow window of experimental conditions (183, 193). The Mcm2/5 

gap may be a gate that topologically breaches the MCM motor domains (194). In S. 

cerevisiae, ATP binding appears capable of opening or closing the Mcm2/5 gate (174, 195); 

however, ATP does not exert such an effect with MCMs from Drosophila melanogaster 

(170) or the microsporidian parasite Encephalitozoon cuniculi (188). The functional 

implications of these differences on Mcm2–7 mechanism are unknown.

The loading of Mcm2–7 onto DNA [an event that marks the licensing of replication origins 

(196)] is accomplished by the joint action of ORC and Cdc6, together with a third protein 

called Cdt1 (reviewed in Reference 197). These factors form a distinct initiation 

intermediate known as the prereplicative complex (pre-RC) (198-200). As in bacteria, 

eukaryotes use an AAA+-type initiator to catalyze helicase deposition; however, the 

mechanics of Mcm2–7 loading differ from those used for DnaB. In budding yeast, Mcm2–7 

is bound first by Cdt1, in part through an interaction with a WHD at the C terminus of 

Mcm6 (201-203). ORC and Cdc6 then collaborate with Cdt1 to load Mcm2–7 complexes 

onto DNA (204-206). ATP is required for loading, with ATP hydrolysis by Cdc6 assisting 

Mcm2–7 recruitment and nucleotide turnover by Orc1 promoting the stable association of 

the helicase with DNA (114, 207). Mcm2–7 loading appears highly cooperative, with two 

helicase rings deposited onto duplex DNA in a head-to-head (collar-to-collar) double 

hexamer for every round of action by ORC · Cdc6 (Figure 5c) (175, 208). How the Mcm2–7 

double hexamer forms is not known, but the ability of Orc6 to bind two copies of Cdt1 may 

help ORC and Cdc6 count the number of MCMs to be used in each loading event (205, 
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206). Once loaded, Mcm2–7 complexes can passively slide along DNA in vitro but cannot 

unwind the duplex, suggesting that the double hexamer configuration corresponds to an 

inactive state (175).

The available structural and biochemical data on Mcm2–7 have several implications for how 

the helicase loads onto DNA. The break in the Mcm2/5 interface provides a way for DNA to 

enter the helicase interior (170, 183). Spontaneous adoption of a cracked-ring state suggests 

that the eukaryotic loading machinery may not use the energy of ATP to actively open the 

Mcm2–7 ring per se; instead, ATP may be involved in a switching mechanism that 

coordinates helicase recruitment with ring splitting and DNA entry (170). Because an open 

Mcm2–7 complex could in principle bind to any accessible DNA region in a chromosome, 

the initiation machinery, particularly Cdt1, may actually help prevent aberrant loading 

events as much as aid origin deposition. Curiously, multiple Mcm2–7 complexes can be 

loaded in vitro and during initiation in cells, even though only two are destined to become 

part of an active replication fork (209, 210). This so-called MCM paradox (211) differs from 

bacterial initiation, in which only two molecules of DnaB are deposited per round of origin 

firing (145, 212) and may have a role in helping to overcome replication fork stalling, for 

example, by the activation of dormant origins (212).

Although Mcm2–7 serves as the primary motor for unwinding DNA during replication, it 

lacks robust activity until two additional factors—Cdc45 and the heterotetrameric GINS 

assembly (comprising the Psf1, Psf2, Psf3, and Sld5 subunits)—associate with the helicase 

(193, 213-215). Both Cdc45 and GINS travel with Mcm2–7, forming a stable complex 

known as the CMG (216-219). The CMG exhibits dramatically higher ATPase and 3′→5′ 

DNA-unwinding activity than Mcm2–7 alone (193, 213). Activation of the CMG appears to 

occur through a conformational change in the helicase (193) promoted by GINS · Cdc45 

binding to one edge of the Mcm2–7 ring and the concomitant closure of the Mcm2/5 

interface (Figure 5e) (170). Several lines of evidence indicate that the CMG acts as a 

discrete, single particle during DNA unwinding and DNA replication (193, 210, 213, 214), 

implying that the Mcm2–7 double hexamers formed during loading separate once replication 

commences. How double hexamer separation occurs is not understood.

The observation that Mcm2–7 is initially loaded onto dsDNA fits with the apparent inability 

of ORC to melt DNA directly (see Eukaryotic Origin Replication Complex, above). 

However, this finding raises questions such as how origin DNA is melted and how Mcm2–7 

associates with DNA in the context of the CMG to promote duplex unwinding. Although 

multiple models have been advanced for DNA unwinding by MCM proteins (reviewed in 

Reference 220), recent data appear to support a steric exclusion model akin to that of DnaB. 

For example, the CMG unwinds forked DNA substrates but not blunt-ended duplexes (193, 

214). EM reconstructions of the CMG indicate that the GINS tetramer binds near the edge of 

the Mcm2–7 hexamer, precluding it from separating a DNA duplex that might emerge from 

the pore of the helicase ring (170). Perhaps most compellingly, functional replisomes 

formed in Xenopus egg extracts can bypass roadblocks on the lagging strand but not the 

leading strand, indicating that only one DNA strand enters and moves through the CMG 

during translocation (221).
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How Mcm2–7 might transition from a ds-DNA to a ssDNA binding mode is unclear. One 

possibility is that as eukaryotic MCMs are activated upon entry into S phase (discussed 

below), they undergo a conformational rearrangement—possibly linked to a second ring-

opening event—that couples the separation of the Mcm2–7 double hexamer with the 

concomitant melting of duplex DNA (222, 223). The disposition of DNA strands within the 

helicase once the CMG is formed is similarly unknown. Similar to the CMG, the GINS 

tetramer can bind to DNA substrates containing single-stranded regions but not to blunt-

ended duplexes (193, 224). Cdc45, which appears to be a catalytically inactive homolog of 

the bacterial/archaeal 5′→3′ RecJ exonuclease (225), also associates with ssDNA but not ds-

DNA (226). Within the CMG, two topologically segregated conduits exist, one formed by 

the Mcm2–7 ring and the other between the external face of Mcm2 · 5 · 3 and one side of 

GINS · Cdc45 (Figure 5e) (170). This configuration suggests that GINS and Cdc45 may 

help capture the lagging DNA strand as it is ejected from the Mcm2–7 complex during 

origin melting (170, 193, 223, 227). Alternatively, GINS and/or Cdc45 might prevent the 

leading strand from escaping the CMG during replication fork stalling or collapse; 

consistent with this idea, work in Xenopus egg extracts has shown that DNA damage causes 

part of the replisome (including GINS) to disassemble, whereas Cdc45 stays bound to 

Mcm2–7 at the fork (228). Overall, much remains to be discovered regarding how 

eukaryotic initiation machineries collaborate to open origin DNA and expand the resulting 

nascent replication bubble.

Helicase Loading in Archaea

Archaea do not utilize a bacterial DnaB-type helicase but rather retain one or more 

homologs of the eukaryotic MCM proteins (229-232). With the exception of certain MCM 

paralogs that appear catalytically defunct (233), archaeal MCMs typically form 

homohexameric rings that exhibit 3′ → 5′ helicase activity (230, 231, 234). Archaeal MCM 

protomers are composed of three elements: an N-terminal region that bears both a zinc 

binding domain and OB fold, a central AAA+ ATPase core, and a predicted C-terminal 

WHD of unknown function (reviewed in Reference 220). The NTD forms a singly or doubly 

hexameric collar with cyclic, sixfold symmetry that can bind ssDNA and dsDNA (171, 234, 

235). The AAA+ motor elements assemble into a second ring coaxial with the N-terminal 

collar and may constitute the advancing end of the replisome during translocation (169, 

234). A set of β-hairpin loops, present in both the NTD and AAA+ regions, forms a complex 

network that responds allosterically to ATP binding and hydrolysis to promote translocation 

and DNA unwinding (178, 234, 236, 237). A detailed understanding of the MCM-

unwinding mechanism has yet to emerge.

As with eukaryotic Mcm2–7, full-length archaeal MCMs can assemble into both individual 

hexamers and NTD-to-NTD dodecamers (Figure 5d) (169, 235). Although the roles of the 

two oligomeric forms are not known, they may (as with eukaryotic Mcm2–7) reflect 

different functional states, with the double hexamer corresponding to a loaded configuration 

and the single hexamer corresponding to an active unwindase. Unlike eukaryotic Mcm2–7, 

open hexameric rings have not been observed in archaeal MCM structures; nonetheless, 

archaeal MCMs are both polymorphic and dynamic. For example, S. solfataricus MCMs 

undergo rapid subunit exchange (236), whereas the Methanothermobacter 
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thermautotrophicus helicase forms heptameric assemblies that revert to hexamers upon 

binding duplex DNA (235). An open-end helical configuration, somewhat reminiscent of 

oligomerized DnaA, has even been observed by EM (238, 239). This latter observation 

suggests that archaeal MCMs might have a propensity to enter into a spiral state, possibly 

during helicase loading. Whether such a state engages ssDNA or aids in DNA melting is 

unresolved.

Although the establishment of an origin-dependent, archaeal MCM loading reaction has not 

been reported, the candidate helicase loader for archaea is Orc1. Interestingly, many 

archaeal origins contain inverted Orc1 binding sites (ORBs) separated by a distance 

sufficiently large to accommodate an MCM double hexamer (54, 118). The polar binding of 

Orc1 to these inverted ORBs is expected to orient the initiator’s C-terminal WHD toward 

this intervening region (116, 118), which often contains a DUE (59). In M. 

thermautotrophicus, the Orc1-1 C-terminal WHD associates with the MCM-NTD, whereas 

Orc1-2 destabilizes the helicase ring (240, 241). Together, these observations have led to a 

symmetrized model for the bidirectional loading of the archaeal replicative helicase, in 

which two Orc1 proteins chaperone an MCM double hexamer onto origin DNA (Figure 5f) 

(59). Future efforts are needed to establish whether helicase-loading factors exist in addition 

to Orc1.

The DNA-unwinding activity of the archaeal MCM is intrinsically more robust than that of 

the isolated eukaryotic Mcm2–7 (172, 183, 230, 234). Nevertheless, homologs of the 

eukaryotic helicase activators GINS and Cdc45 are present in archaea. Archaeal GINS is 

simpler than its eukaryotic counterpart, as it comprises a homotetramer of only one GINS 

subunit (GINS15) (242) or a heterotetramer of two subunits (GINS15 and GINS23) (243). 

Archaeal GINS interact with their respective MCM counterparts both in vitro and in vivo 

(243, 244), but a consistent effect of this interaction on helicase function has yet to emerge. 

GINS also forms a stable complex with archaeal RecJ-type proteins (243), although we do 

not know whether these prokaryotic Cdc45 homologs support MCM function.

REGULATION OF INITIATION FACTORS

Cellular organisms use an array of mechanisms for regulating initiation that are generally 

distinct among bacteria, archaea, and eukaryotes. Nonetheless, there exist common 

strategies that appear to have evolved convergently. One is the control of origin accessibility 

by DNA architecture factors [e.g., histones and nucleotide-associated proteins, which are 

discussed in the Supplemental Material and several recent reviews (18, 47, 245)]. Another 

strategy is the regulation of initiation proteins by posttranslational modifications and/or 

protein-protein interactions. In this section we compare and contrast a few of the many 

approaches used by cells to govern when and where initiation can occur.

Control of DnaA Function

A prevalent regulatory theme in bacteria is the control of DnaA’s nucleotide status and 

availability (Figure 6a). Although replication initiation depends on the binding of ATP to 

DnaA (see Bacterial oriC, above), once hydrolyzed, the initiator remains tightly bound to 

ADP, entering an inactive state that disfavors DnaA-oriC assembly (246). In E. coli, the 
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intracellular concentrations of ATP-bound DnaA vary with the bacterial cell cycle, peaking 

at initiation (247). A portion of this active material derives from newly synthesized DnaA, 

which rapidly binds ATP (19). However, ADP-DnaA can be reactivated, both by acidic 

phospholipids [e.g., cardiolipin (248)] and by specific DNA loci [DnaA-reactivating 

sequences (DARSs)] (249). E. coli DnaA pools can also be adjusted transcriptionally (250) 

and by titrating free ATP-DnaA molecules to chromosomal loci such as datA (251), which 

contain multiple DnaA binding sites. In organisms such as E. coli and Caulobacter 

crescentus, Hda, a DnaA paralog, can stimulate initiator ATPase activity (246, 252). Hda 

functions by associating with polymerase sliding clamps that are loaded onto DNA 

following initiation and providing a catalytic arginine finger that activates the nucleotide 

binding site of DnaA in trans (253, 254). B. subtilis and other gram-positive bacteria appear 

to lack Hda but possess a functional analog termed YabA. As with Hda, YabA binds to both 

DnaA and the sliding clamp to block further DnaA binding to oriC, thereby preventing 

inappropriate reinitiation (255-257).

Additional aspects of DnaA function are also subject to direct control. For example, the 

DnaA-binding protein DiaA is a positive regulator of initiation that, in E. coli, enhances 

DnaA-oriC assembly and aids DUE unwinding (258). DiaA and its homologs appear to 

function by forming homotetramers that bind to the N terminus of DnaA (259, 260), 

facilitating cooperative interactions between initiator protomers to maintain replication 

synchrony (260). Other proteins also bind to the N-terminal domain of E. coli DnaA; 

however, some of these interactions (such as the L2 ribosomal subunit) interfere with DnaA 

assembly to negatively regulate initiator activity (261). For its part, B. subtilis utilizes a 

different set of factors that binds to and controls DnaA, in particular SirA and Soj, which 

govern how the initiator associates with both itself and oriC (70, 262-264). Overall, a 

diverse array of mechanisms for regulating DnaA appears to exist among bacterial species, 

indicating that many new factors and pathways await discovery.

Regulation of Eukaryotic Initiation Proteins

Eukaryotes regulate initiation through a complex strategy that predominantly targets the 

assembly and activation of Mcm2–7 helicases through posttranslational modifications (197, 

265). The cyclin-dependent kinases (CDKs) are a key set of players whose activities 

fluctuate in accordance with the phase of the cell cycle (1). In G1, CDKs are inactive, 

allowing ORC to recruit Mcm2–7 to replication origins and form the pre-RC. Upon entry 

into S phase, CDK activity increases, blocking pre-RC assembly but allowing for the 

recruitment of replisome components that activate Mcm2–7 and promote origin firing 

(Figure 6b) (266).

Mcm2–7 is activated by the action of two distinct cyclin-dependent kinases: CDK and a 

CDK variant termed the Dbf4-dependent kinase (DDK). DDK phosphorylates serine/

threonine-rich sites—found predominantly in the unstructured N-terminal tails of Mcm2, 4, 

and 6 (reviewed in Reference 267)—that have been prephosphorylated by other kinases 

(268). Interestingly, two alterations in the Mcm2–7 NTDs overcome the requirement for 

DDK phosphorylation and either prematurely drive cells into S phase or bypass S phase 

checkpoints (269, 270). Although it is not known how DDK action and N-terminal 
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mutations activate Mcm2–7, the available data suggest that these events may reshape the 

interface formed between newly loaded double hexamers (175), promoting the separation of 

the two helicase rings upon formation of the CMG.

Studies in budding yeast reveal that CDK also regulates Mcm2–7 function by controlling 

how two non-MCM factors, Sld2 and Sld3, chaperone CMG assembly. Modification of Sld2 

and Sld3 by CDK promotes their association with Dpb11, a scaffolding protein that binds 

phosphorylated targets using BRCT repeats (Figure 6b). Formation of the CMG is 

completed by the arrival of Cdc45 via a (CDK-independent) interaction with Sld3 and of 

GINS through an interaction with phospho-Sld2 (265, 271, 272). Following entry into S 

phase and the initiation of DNA replication, GINS and Cdc45 continue to travel with 

Mcm2–7 as part of the CMG (273), whereas Sld2, Sld3, and Dpb11 are lost (218). The 

mechanism by which specific proteins are linked to or removed from Mcm2–7 is unclear but 

requires the transient association of another origin activator, Mcm10 (274, 275). At least 

part, if not all, of the yeast Sld2 · Dbp11 · Sld3 system appears present in metazoans 

(276-278). In vertebrates, this system is further embellished by additional regulatory factors 

[e.g., GemC1 (279)].

Metazoans employ several additional layers of control to ensure that helicase loading is 

tightly coordinated with cell cycle cues. For example, proteolysis can degrade Cdt1 

following entry into S phase (280). In a strategy reminiscent of RIDA in bacteria (see 

Control of DnaA Function, above) (253, 254), proteolysis occurs only after Cdt1 binds to the 

PCNA sliding clamp and is ubiquitinated (280, 281). Mcm2–7 recruitment can also be 

prevented through Geminin, a Cdt1-sequestration factor that becomes active upon reaching a 

critical concentration threshold in the nucleus (282, 283). Structural and biochemical studies 

show that Geminin exerts this concentration-dependent effect by initially binding Cdt1 in a 

2:1 complex (284), which subsequently dimerizes as protein levels increase to mask Cdt1 

regions required for replication licensing (285).

Despite a focus on Mcm2–7, the helicase is not the sole nexus for regulating initiation in 

eukaryotes. For example, many organisms target Orc1 for ubiquitination and/or degradation 

to prevent re-replication (reviewed in Reference 1). CDK activity can stimulate the 

expression of Cdc6 and Mcm2–7 prior to origin firing (286, 287), as well as target pre-RC 

components to avoid aberrant secondary initiation events; interestingly, this latter activity 

can lead initiation factors to different destinies both within and between organisms. For 

instance, in budding yeast, phosphorylated Mcm2–7 and Cdt1 are routed out of the nucleus 

(288-290), whereas phosphorylated Cdc6 can be both sequestered and ubiquitinated for 

targeted proteolysis (291). Although the effect of CDK-dependent phosphorylation on yeast 

ORC is unclear, Cdk1 activity impairs the ability of ORC to bind DNA in Xenopus and 

mammalian systems (292, 293), precluding origin relicensing (294). Given the diverse 

actions seen in the regulation of eukaryotic initiator function, new investigations will likely 

reveal additional complexities.

Control of Initiation in Archaea

Compared with their bacterial and eukaryotic counterparts, the pathways and mechanisms 

by which archaea regulate initiation are far less well defined. Nonetheless, a growing body 
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of evidence suggests that archaea likely possess cell cycle–dependent initiation control 

systems. For example, a strong consensus Orc1-1 binding site immediately precedes the 

orc1-1 open reading frame, which itself lies just downstream of S. solfataricus oriC1 (54), 

suggesting that archaeal initiators (like DnaA) may autoregulate their own expression. The 

whiP gene, which is adjacent to S. solfataricus oriC3, similarly can achieve extensive self-

protection by the cooperative binding of WhiP protomers, at least in vitro (55). Genome-

wide mapping of Sulfolobus acidocaldarius transcripts even shows a cell cycle–specific 

induction pattern for certain serine-threonine protein kinases belonging to the same family 

of kinases as eukaryotic CDKs (295). Overall, uncovering and defining the approaches used 

by archaea for regulating initiation is still very much a frontier area.

CONCLUDING REMARKS

All replicating systems must perform two fundamental tasks: (a) selecting the right time and 

place for initiating replication and (b) orchestrating DNA opening and replisome assembly. 

Cellular organisms have developed multiple strategies to overcome these challenges, often 

employing sets of proteins that appear to have evolved independently. The only common 

strategy universally adopted by cells is the use of an AAA+ ATPase to mark replication 

origins and to promote helicase recruitment; however, even these factors greatly differ in 

their specific molecular mechanisms. Future investigations will undoubtedly continue to 

reveal many unexpected surprises in this area.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

Origin chromosomal site for initiating DNA replication

Initiator an ATP-dependent protein or protein complex responsible for 

recognizing origins and recruiting replicative helicases to sites of 

replication

Helix-turn-helix 
(HTH)

a type of DNA binding domain that includes specialized folds such 

as winged-helix domains

Helicase an enzyme that unwinds DNA; cellular replicative helicases form 

hexameric rings

DUE DNA-unwinding element

ORC origin recognition complex

AAA+ ATPases associated with various cellular activities

ssDNA single-stranded DNA

dsDNA double-stranded DNA

WHD winged-helix domain

Loader a protein or set of proteins that assists with reorganizing replicative 

helicases to promote their association with DNA

MCM minichromosome maintenance

pre-RC prereplicative complex

CMG Cdc45·Mcm2–7·GINS

RIDA regulatory inactivation of DnaA
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SUMMARY POINTS

1. The initiation of DNA replication in cells involves the timely recognition and 

melting of chromosomal origins and the appropriate loading of replicative 

helicases.

2. Initiation in cellular organisms relies on evolutionarily related AAA+ ATPase 

initiators and ring-shaped, hexameric helicases.

3. Despite certain commonalities, the participants, mechanisms, and regulation of 

initiation differ greatly among bacterial and archaeal/eukaryal lineages.
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FUTURE ISSUES

1. How do replication initiators bind and remodel origin DNA?

2. How are replicative helicases loaded onto origins?

3. How do different regulatory systems ensure that initiation of protein function 

accords with cell cycle cues?
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Figure 1. 
Overview of origin organization. (a) Bacterial oriCs from three representative species 

(Escherichia coli, Bacillus subtilis, Streptomyces lividans). Sites bound by DnaA and other 

factors, as well as the DNA-unwinding element (DUE), are labeled. (b) Saccharomyces 

cerevisiae ARS1 (autonomous replicating sequence 1). ARS consensus sequence elements 

(A, B1, B2) and ORC · Cdc6 binding sites are shown. (c) The three origins of Sulfolobus 

solfataricus. DUEs and binding sites for replication initiators are labeled. Abbreviations: 

ORB, origin recognition box; ORC, origin recognition complex; WhiP, winged-helix 

initiator protein.
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Figure 2. 
Structure and mechanism of DnaA. (a) Domain architecture of DnaA. Protein Data Bank 

models for domain I and an ADP state of domains III/IV of DnaA are shown (7, 62, 151). 

Inset: structure of domain IV bound to duplex DNA (28). (b) Structure of an AMPPCP-

assembled DnaA helix (domains III and IV) bound to an extended single-stranded DNA 

substrate (magenta) (72). (c) Two-state model for IHF-assisted DnaA melting of oriC (7). 

This mechanism accounts for the existence of two different DnaA oligomers (12, 74), one of 

which wraps the organizing center of oriC and another that melts the DNA-unwinding 

element (DUE). (d) Loopback model for IHF-assisted melting, in which a single DnaA 

complex bound at the organizing center of oriC opens the DUE (296).
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Figure 3. 
Structure of origin recognition complex (ORC)-type initiators. (a) Schematic of domains in 

Orc proteins. (b) Three-dimensional electron microscopy (EM) model of the Drosophila 

ORC indicating where the AAA+ (ATPases associated with various cellular activities) 

domains of the complex reside (89). (c) Three-dimensional EM model of the budding yeast 

ORC · Cdc6 complex. The positions of AAA+ subunits are labeled (103). (d) Structures of 

archaeal Orc1 proteins show variability in AAA+/WHD (winged-helix domain) position 

[Pyrobaculum aerophilum (4); Sulfolobus solfataricus (116)]. (e) Structure of S. solfataricus 

Orc1-1 and Orc1-3 paralogs complexed with overlapping sites in Sso-oriC2 (116). 

Abbreviation: BAH, bromo-adjacent homology.
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Figure 4. 
DnaB structure and loading. (a) Closed-ring DnaB hexamer from Bacillus 

stearothermophilus (128). (b) Structure of a spiral DnaC oligomer [AAA+ (ATPases 

associated with various cellular activities) domains] bound to nucleotide (147). (c) Model 

for loading of DnaB onto oriC following the two-state mechanism shown in Figure 1c (147). 

Abbreviations: CTD, C-terminal domain; HTH, helix-turn-helix; NTD, N-terminal domain.
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Figure 5. 
Minichromosome maintenance (MCM) structure and loading. (a) A closed-ring MCM 

homohexamer from Sulfolobus solfataricus (178). (b) Three-dimensional electron 

microscopy (EM) model for an open Mcm2–7 heterohexamer from Drosophila 

melanogaster (170). (c) Model for the loading of an Mcm2–7 double hexamer onto DNA by 

ORC · Cdc6 and Cdt1 (84, 175, 206). (d) Three-dimensional EM model for the 

Methanothermobacter thermautotrophicus MCM (235) showing a crystallographic model 

for an N-terminal domain (NTD) dodecamer (171) docked into the central region. (e) Three-

dimensional EM model for the D. melanogaster CMG showing how GINS · Cdc45 latch 

onto and close an Mcm2–7 ring (170). (f) Model for the loading of archaeal MCMs onto 

DNA by Orc1 (54, 59).
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Figure 6. 
Overview of initiation factor regulation in cells. (a) Regulation of DnaA in bacteria, 

comparing and contrasting Escherichia coli and Bacillus subtilis systems. (b) Regulation of 

initiation proteins in eukaryotes. Arrows, activating interactions/events; inhibition lines, 

repressive interactions/events; hatched text, degradation. Abbreviations: CDK, cyclin-

dependent kinase; DARSs, DnaA-reactivating sequences; DDK, Dbf4-dependent kinase; 

ORC, origin recognition complex; RC, replication complex.
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