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Abstract

Cardiac function is required for blood circulation and systemic oxygen delivery. However, the 

heart has intrinsic oxygen demands that must be met to maintain effective contractility. Hypoxia-

inducible factor 1 (HIF-1) is a transcription factor that functions as a master regulator of oxygen 

homeostasis in all metazoan species. HIF-1 controls oxygen delivery, by regulating angiogenesis 

and vascular remodeling, and oxygen utilization, by regulating glucose metabolism and redox 

homeostasis. Analysis of animal models suggests that by activation of these homeostatic 

mechanisms, HIF-1 plays a critical protective role in the pathophysiology of ischemic heart 

disease and pressure-overload heart failure.
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INTRODUCTION: OXYGEN HOMEOSTASIS AND HYPOXIA-INDUCIBLE 

FACTOR 1

The increase in body mass during vertebrate evolution was made possible by the coevolution 

of complex respiratory and circulatory systems designed to efficiently capture and distribute 

sufficient O2 and nutrients to each cell within the organism. The first physiological system 

to become functional during mammalian development is the circulatory system, which must 

be established once the embryo becomes too large for O2 to be delivered simply by diffusion 

from uterine vessels.

In all metazoan species, hypoxia-inducible factor 1 (HIF-1) functions as a master regulator 

of oxygen homeostasis by controlling both the delivery and utilization of O2. HIF-1 is a 

heterodimer that is composed of an O2-regulated HIF-1α subunit and a constitutively 

expressed HIF-1β subunit (1, 2). Mouse embryos that are homozygous for a knockout allele 

at the Hif1a locus, which encodes HIF-1α, arrest in their development at embryonic day 8.5 

and die by embryonic day 10.5 with cardiac and vascular defects as well as decreased red 
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blood cell production, indicating that all three components of the circulatory system are 

dependent upon HIF-1 for proper development (3–5). Recent data suggest that partial 

HIF-1α deficiency may be associated with congenital heart defects in humans as well (6).

HIF-1 activity is induced by hypoxia through changes in HIF-1α mRNA and protein levels 

in brain (7, 8), heart (9–11), kidney (7, 12), lung (7, 13), and skeletal muscle (14). The 

regulation of HIF-1α mRNA levels is not well understood because it is not observed in most 

cell lines, whereas O2-dependent prolyl hydroxylation and asparaginyl hydroxylation of 

HIF-1α negatively regulate its protein stability and transcriptional activity, respectively (15).

HIF-1 activates gene transcription by binding to the core DNA sequence 5′-RCGTG-3′ (R = 

A or G), which is embedded within a hypoxia response element (HRE) (16). The HRE is 

defined functionally as a cis-acting regulatory element that—when inserted into a reporter 

gene, such as luciferase coding sequences driven by a basal SV40 promoter—mediates 

hypoxia-inducible and HIF-dependent gene expression (17). In many HREs, the HIF-1-

binding site is followed after 0–8 nucleotides by the sequence 5′-CACA-3′ (Table 1). When 

either the 5′-RCGTG-3′ or the 5′-CACA-3′ sequence in the EPO gene HRE was mutated, 

the HRE no longer mediated hypoxia-inducible transcription (17). Whereas HIF-1 is known 

to bind to 5′-RCGTG-3′, the factor binding to 5′-CACA-3′ has not been determined.

Genome-wide chromatin immunoprecipitation (ChIP) assays have been employed to 

comprehensively identify all sites of hypoxia-inducible binding of HIF-1 to genes whose 

mRNA expression is induced by hypoxia (18–20). When all methods of analysis are taken 

into consideration, HIF-1 directly regulates the expression of more than 1,000 human genes. 

Whereas the expression of a subset of HIF-1 target genes is induced by hypoxia in most or 

all cell types, the vast majority of these genes are induced by hypoxia in a cell type–specific 

manner. Indeed, the analysis of just five genes, those encoding vascular endothelial growth 

factor (VEGF), angiopoietin 1 (ANGPT1), ANGPT2, placental growth factor (PGF), and 

platelet-derived growth factor B, in four primary cell types (cardiomyocytes, cardiac 

fibroblasts, vascular endothelial cells, and vascular smooth muscle cells) revealed that each 

cell type showed a different pattern of gene expression in response to hypoxia (Figure 1). 

The same transcriptional response was induced under nonhypoxic conditions by transfecting 

the cells with AdCA5, an adenovirus encoding a constitutively active form of HIF-1α (21). 

Thus, HIF-1 mediates transcriptional responses to hypoxia that are context dependent.

Among the HIF-1 target genes are those encoding secreted factors and cell surface receptors 

that control O2 delivery by regulating angiogenesis and vascular remodeling (Table 2). 

HIF-1 functions as a master regulator in this process because it coordinately regulates the 

expression of a large number of genes whose protein products play critical roles in 

mediating vascular responses to hypoxia and ischemia (Figure 2). In addition to promoting 

O2 delivery, HIF-1 also activates the transcription of genes encoding enzymes, transporters, 

and mitochondrial proteins that decrease O2 utilization, again functioning as a master 

regulator to switch cells from oxidative metabolism to glycolytic metabolism (Table 3). The 

protective role of these HIF-1-dependent homeostatic mechanisms in the pathophysiology of 

ischemic heart disease (IHD) and pressure-overload heart failure is described in greater 

detail below.
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ISCHEMIC HEART DISEASE

Clinical Overview: Coronary Artery Stenosis and Collateral Remodeling

IHD is the leading cause of mortality in the US population, accounting for one in every six 

deaths at a rate of one death every minute (22). IHD is an age-dependent phenotype, with a 

prevalence of 3.1% in those less than 50 years old versus 12.3% in those over the age of 50 

(23). The formation of an atherosclerotic plaque in the wall of a major coronary artery 

reduces the perfusion of myocardial tissue downstream of the stenosis (Figure 3a,b). 

Ischemia refers to the state in which perfusion is not adequate to supply adequate O2 and 

nutrients or to remove toxic metabolites. Ischemia is particularly likely to occur under 

conditions of increased heart work, such as that occurring in response to physical exertion or 

emotional stress, and the associated chest pain is referred to as stable (exertional) angina. 

Patients with severe stenosis that results in ischemia and chest pain at rest manifest unstable 

angina, which can lead to death of the ischemic tissue (myocardial infarction [MI]). 

Unstable angina and myocardial infarction are often precipitated by plaque rupture, which 

results in complete arterial occlusion (Figure 3c).

The normal physiological response to reduced tissue perfusion is that the resulting tissue 

hypoxia induces HIF-1 activity, which activates transcription of genes encoding angiogenic 

factors (Figure 2 and Table 2). These factors stimulate the remodeling of collateral blood 

vessels, leading to increased blood flow (Figure 3d). Among patients with IHD who have 

critical coronary artery stenosis (angiographic narrowing of at least 70% of luminal 

diameter), approximately two-thirds have a remodeled collateral vessel, and one-third do 

not; among patients with MI, those patients with collaterals have decreased infarct size 

(Figure 3e) and increased survival compared with patients without collaterals (Figure 3e) 

(24, 25). However, the factors that determine whether or when patients with critical 

coronary artery stenosis will develop collaterals have not been established.

Effects of Aging and HIF-1 on Ischemia-Induced Vascular Remodeling

Mice subjected to femoral artery ligation recover blood flow over the course of several 

weeks. The rate and extent of recovery are progressively impaired as the age of the mouse 

increases, leading to progressively more severe tissue damage (14, 26). Although Hif1a−/− 

mice were not viable, Hif1a+/− mice developed normally and were indistinguishable from 

their wild-type (WT) littermates (3). At every age, compared with their WT littermates, 

Hif1a+/− mice showed reduced recovery of blood flow and increased tissue damage after 

femoral artery ligation (14). Both aging and the Hif1a+/− genotype were associated with 

decreased expression of HIF-1α protein and of multiple mRNAs encoding angiogenic 

growth factors, including VEGF, ANGPT1, ANGPT2, PGF, stromal cell–derived factor 1 

(also known as CXCL12), and stem cell factor (also known as KIT ligand) (14). 

Intramuscular injection of AdCA5 into the ischemic limb was sufficient to overcome the 

age-dependent impairment of ischemia-induced vascular remodeling in 8-month-old mice 

(14). In rabbits, AdCA5 therapy increased the luminal diameter of collateral vessels, as 

demonstrated by both angiography and immunohistochemistry (27)

Semenza Page 3

Annu Rev Physiol. Author manuscript; available in PMC 2015 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In contrast to the beneficial effects of AdCA5 in 8-month-old mice, the same gene therapy 

had no beneficial effect in 13-month-old mice (28). However, intramuscular injection of 

AdCA5 into the ischemic limb, followed 24 h later by intravenous injection of bone 

marrow–derived angiogenic cells (BMDACs) that had been cultured for 4 days in the 

presence of angiogenic factors and a chemical inducer of HIF-1 activity, led to dramatically 

increased recovery of blood flow and protection against tissue damage (28). The local 

injection of AdCA5 induced expression of angiogenic factors that served as a homing signal 

for the BMDACs. HIF-1 induction in the BMDACs had two major effects: It induced the 

cell surface expression of β2 integrins that promoted adherence of the BMDACs to 

endothelial cells in the ischemic tissue (28), and it mediated a switch from oxidative 

metabolism to glycolytic metabolism that promoted BMDAC survival in the ischemic limb 

(29). These mouse studies suggest that aging impairs ischemia-induced vascular remodeling 

by inhibiting the induction of HIF-1 and its downstream target genes, thereby blocking both 

the production of angiogenic signals and the ability of BMDACs to respond to them.

In a porcine model of coronary artery stenosis, pressure-regulated retroinfusion of the great 

cardiac vein with an adenovirus that encoded a fusion protein consisting of the amino-

terminal half of HIF-1α (which contains the dimerization and DNA-binding domains) fused 

to VP16 (a herpesvirus transactivator) was associated with an increased number of 

angiographically detectable collateral vessels and with increased myocardial function (30). 

However, a clinical trial failed to demonstrate increased myocardial perfusion in patients 

who were undergoing coronary artery bypass graft surgery and who received this gene 

therapy (31). Although the age of the pigs used in the animal study was not stated (30), it is 

likely that the researchers used young animals that did not appropriately model the age of 

the clinical population. Studies of combined AdCA5 and BMDAC therapy in aged animal 

models of myocardial ischemia are needed to inform the design of future clinical trials.

Genetic Data Implicate HIF-1 in Responses to Ischemic Heart Disease

Are the data from animal models of limb and myocardial ischemia relevant to IHD? Does 

genetic variation at the human HIF1A locus influence whether collateral vessels develop in 

response to coronary artery stenosis or whether patients present with stable angina or MI? In 

IHD patients undergoing coronary angiography, analysis of a single-nucleotide 

polymorphism (SNP) that changes the translated amino acid sequence of HIF-1α from 

proline to serine at codon 582 (P582S) revealed that the frequency of the variant allele was 

fivefold higher in patients who had collaterals compared with patients lacking collaterals 

(32), suggesting that IHD patients with the variant allele either have impaired collateral 

remodeling or present earlier in the disease process. A genome-wide SNP study to identify 

genetic markers that predicted presentation with stable angina versus MI revealed increased 

frequency of P582S and two other SNPs at the HIF1A locus in patients who presented with 

stable angina compared with patients who presented with MI (33). The interpretation of 

these results is unclear because the latter study did not include angiographic data regarding 

the severity of coronary artery stenosis in the patients. However, taken together, these two 

human studies and the mouse studies described above support the conclusion that genetic 

variation at the locus encoding HIF-1α influences the response to ischemic cardiovascular 

disease. Another angiographic study reported an association between the P582S allele and 
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reduced coronary artery branching (34), providing further evidence that HIF-1 regulates the 

coronary vasculature.

HIF-1 Mediates Cardioprotection Induced by Ischemic Preconditioning

Plaque rupture is a catastrophic event that results in complete arterial occlusion and, within 

~20 min, the onset of progressive death of cardiac cells (MI) due to O2 deprivation (35). 

Rapid reperfusion after ischemia (by thrombolytic therapy or percutaneous coronary 

intervention) is the single most important clinical factor that limits infarct size while at the 

same time reperfusion contributes to tissue injury by increasing intracellular reactive oxygen 

species and Ca2+ (36). Exposure of the heart to short (i.e., 5-min) episodes of ischemia and 

reperfusion protects the heart against injury caused by a subsequent prolonged (i.e., 30-min) 

episode of ischemia-reperfusion, a phenomenon known as ischemic preconditioning (IPC) 

(37). The protection afforded by IPC occurs in two phases: an early phase, which begins 

immediately after the IPC stimulus and lasts for several hours (37), and a late phase, which 

begins approximately 24 h after the IPC stimulus and lasts for several days (38, 39). Acute 

cardioprotection against ischemia-reperfusion injury can also be induced pharmacologically, 

e.g., by perfusing the heart with adenosine (40).

When hearts from WT mice were exposed to an IPC stimulus and were immediately 

subjected to prolonged ischemia-reperfusion, infarct size was dramatically decreased, 

whereas the IPC stimulus afforded no protection in hearts from Hif1a+/− mice (41). In 

contrast, adenosine perfusion induced acute cardioprotection in both WT and Hif1a+/− mice, 

indicating a specific defect in IPC (41). These results were surprising because early-phase 

cardioprotection was generally thought to involve posttranslational modification of existing 

proteins or metabolic alterations, whereas late-phase cardioprotection was thought to involve 

new protein synthesis.

Further studies revealed that conditional knockout of HIF-1α or HIF-1β expression in 

endothelial cells of the heart also resulted in a lack of acute cardioprotection following an 

IPC stimulus (42). This result was also surprising because IPC was generally thought to 

primarily involve responses in cardiomyocytes, leading some investigators to develop cell-

based models (43). The requirement for both HIF-1α and HIF-1β strongly suggested a 

requirement for HIF-1 transcriptional activity, despite the rapidity of the protective response. 

Furthermore, when WT hearts were infused immediately prior to the IPC stimulus with 

acriflavine, a drug that inhibits the dimerization of HIF-1α and HIF-1β, cardioprotection was 

also blocked (42), indicating that acute induction of HIF-1 activity was required and thus 

ruling out a more trivial role for HIF-1 in the baseline expression of a protein that was 

subsequently modified in response to the IPC stimulus.

ATP is metabolized to adenosine in response to an IPC stimulus, adenosine receptor 

antagonists block cardioprotection induced by an IPC stimulus, and adenosine infusion is 

sufficient to induce cardioprotection (40). ATP is metabolized to adenosine through the 

activity of two extracellular enzymes: CD39 (also known as ectonucleoside triphosphate 

diphosphohydrolase), which hydrolyzes ATP to ADP and then to AMP, and CD73 (also 

known as ecto-5′-nucleotidase), which hydrolyzes AMP to adenosine (Figure 4). Genetic 

ablation or pharmacological inhibition of CD39 or CD73 activity in the mouse heart results 
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in a loss of IPC-induced cardioprotection (44, 45). The increase in adenosine levels in the 

heart induced by IPC was blocked by pretreatment of the heart with short interfering RNA 

against HIF-1α (46). CD39 and CD73 are expressed in vascular endothelial cells (45, 47), 

and expression of both CD39 and CD73 mRNA was induced by an IPC stimulus in WT 

hearts, but not in Hif1a+/− hearts (42). IPC also induced cardiac expression of the adenosine 

A2B receptor in a HIF-1α-dependent manner (46). Taken together, the extensive body of 

data presented in this section indicates that IPC induces HIF-1-dependent CD39 and CD73 

expression in vascular endothelial cells, leading to increased levels of adenosine, which is an 

obligatory mediator of acute cardioprotection. Both endothelial cells and cardiomyocytes 

express adenosine receptors, and adenosine binding may activate AKT signaling—which is 

impaired in Hif1a+/− hearts (41)—and other pathways that mediate the protective effects of 

IPC.

HIF-1 induces the expression of hundreds of gene products in response to hypoxia or 

ischemia, and other pathways activated by HIF-1 may therefore play a role in IPC, 

particularly in late-phase cardioprotection. Treatment of rodents with cobalt chloride, 

desferrioxamine, or dimethyloxalylglycine, which are chemical inducers of HIF-1 

transcriptional activity (48), or exposure to cycles of ambient hypoxia and reoxygenation 

induced late-phase cardioprotection (49–51). The cardioprotective effect of cobalt chloride 

was lost in Nos2−/− mice lacking expression of inducible nitric oxide synthase, which is a 

known mediator of late-phase cardioprotection induced by IPC (50). Nos2 expression was 

induced in the hearts of rats exposed to hypoxia and in isolated cardiomyocytes in a HIF-1-

dependent manner (52).

Another mechanism by which HIF-1 may mediate cardioprotection is by altering the balance 

between glycolytic metabolism and oxidative metabolism (53). HIF-1 coordinately activates 

the transcription of genes encoding glucose transporters and glycolytic enzymes (Table 3). 

Increased glycolytic flux allows cells to maintain ATP levels under hypoxic conditions. 

HIF-1 also inhibits mitochondrial oxidative metabolism, thereby reducing the generation of 

reactive oxygen species under conditions of hypoxia or hypoxia-reoxygenation, by multiple 

strategies. Such strategies include the following (Figure 5): (a) a regulatory subunit switch 

in cytochrome c oxidase, in which COX4-1 is degraded by LON protease and replaced by 

COX4-2 (54); (b) induction of lactate dehydrogenase A, which converts pyruvate to lactate 

(16); (c) induction of pyruvate dehydrogenase kinase 1 (PDK1) or PDK3, which inactivates 

pyruvate dehydrogenase and thereby shunts pyruvate away from the mitochondria (55–57); 

(d ) induction of microRNA-210, which inhibits the expression of ISCU, an iron-sulfur 

cluster assembly factor that is required for activity of aconitase and electron transport 

complex I (58, 59); and (e) induction of BNIP3 and BNIP3L, which trigger mitochondria-

selective autophagy (60, 61). However, these responses to hypoxia have been studied 

primarily in tissue culture cells, and it is not known whether HIF-1 activates the expression 

of any of these genes in response to IPC and, if so, whether their protein products contribute 

to cardioprotection.
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HIF-1 Protects Against Pressure-Overload Heart Failure

Heart failure is a major cause of morbidity and mortality in the US population, with a 

prevalence of 5.8 million individuals (62). Hypertension, by increasing systemic resistance, 

leads to a compensatory left ventricular hypertrophy, which allows the ejection fraction to 

be maintained, but eventually progresses to an uncompensated state characterized by 

decreased ejection fraction, increased left ventricular end-diastolic volume, and the clinical 

signs and symptoms of heart failure (63, 64). As in the case of IHD described above, 

investigation of the molecular pathophysiology of heart failure has focused largely on the 

response of cardiomyocytes to pressure overload, which is experimentally induced by 

transaortic constriction (TAC) in mice. Conditional knockout of HIF-1α expression in 

cardiomyocytes was associated with a failure to maintain VEGF expression and 

neovascularization, which are required to increase O2 delivery to the rapidly increasing 

cardiac muscle mass associated with compensatory hypertrophy, leading to the accelerated 

onset of heart failure beginning 3 weeks after TAC (65). Thus, HIF-1 activity in 

cardiomyocytes is required to maintain O2 homeostasis during compensatory myocardial 

hypertrophy in response to pressure overload.

In contrast to the phenotype associated with cardiomyocyte-specific knockouts, 

Hif1af /f ;Tie2-cre mice with conditional knockout of HIF-1α in both cardiomyocytes and 

endothelial cells manifested a much more severe phenotype of cardiac decompensation, with 

profoundly decreased ejection fraction and increased end-systolic ventricular diameter 

within 1 week after TAC (66). The loss of cardiac function was due to myocardial hypoxia 

because of decreased myocardial capillary density, which resulted from markedly increased 

endothelial cell apoptosis. Analysis of signal transduction pathways revealed that, compared 

with Hif1af /f mice and Tie2-cre mice, Hif1af /f ;Tie2-cre mice subjected to TAC manifested 

increased transforming growth factor β (TGF-β) signaling through both the canonical 

pathway leading to activation of SMAD2/3 and the noncanonical pathway leading to 

activation of the MAP kinases ERK1 and ERK2. Treatment of Hif1af /f ;Tie2-cre mice with 

a neutralizing antibody against TGF-β or an inhibitor of MEK-ERK signaling prevented 

TAC-induced loss of myocardial capillary density and contractile dysfunction (66). This 

effect was likely due to the inhibition of ERK activation in endothelial cells because the 

neutralizing antibody is unable to penetrate into the myocardium (67) and mice with 

cardiomyocyte-specific knockout of HIF-1α did not manifest rapid cardiac decompensation 

after TAC.

Further studies are required to address several unanswered questions. What is the 

mechanism by which excessive TGF-β signaling is induced in cardiac endothelial cells when 

Hif1af /f ;Tie2-cre mice are subjected to TAC? Is the mechanism cell autonomous, or does it 

involve signaling from cardiomyocytes? What is the mechanism by which HIF-1 prevents 

excessive TGF-β signaling in cardiac endothelial cells when WT mice are subjected to 

TAC?

Taken together, these studies point to a protective role of endothelial cells in the contexts of 

both IPC (42) and pressure-overload heart failure (66). In both cases, further study is 

required to investigate whether the findings obtained in mouse models are relevant to human 

Semenza Page 7

Annu Rev Physiol. Author manuscript; available in PMC 2015 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cardiac physiology. In this regard, it was striking that treatment of WT mice with digoxin, 

which is a potent inhibitor of HIF-1 activity (68), also induced rapid cardiac decompensation 

after TAC (66), suggesting that the drug may have countertherapeutic effects. This may 

explain why, even though digoxin increases cardiac contractility, it does not increase 

survival in patients with heart failure (69).

In addition to the role of vascular physiology in the pathogenesis of heart failure, dramatic 

changes in glucose and lipid metabolism are also associated with heart failure. Whereas the 

healthy heart generates ATP by the oxidation of fatty acids, the failing heart shifts to the 

utilization of glucose as a substrate for glycolytic metabolism, and fatty acids are converted 

to lipids (70, 71). The outcome of this metabolic reprogramming is a failure to produce 

adequate ATP to maintain cardiac function. As discussed above, the switch from oxidative 

metabolism to glycolytic metabolism is one of the key intracellular adaptations to hypoxia 

that is mediated by HIF-1. In addition, HIF-1 also mediates the switch from fatty acid 

oxidation to lipid synthesis by activating the transcription of the peroxisome proliferator–

activated receptor PPAR-γ (72).

These results suggest that, whereas HIF-1 may play a protective, proangiogenic role during 

cardiac hypertrophy, it may play a pathogenic role during end-stage failure by mediating 

metabolic reprogramming that leads to energetic failure. Hif1a+/− mice were reported to 

have impaired (65, 73) or improved (72) cardiac function after TAC relative to WT mice. 

These conflicting results may be a reflection of the complexity of adaptive responses 

mediated by HIF-1. In this regard, HIF-2α is also induced by myocardial hypoxia, dimerizes 

with HIF-1β, and activates the transcription of some but not all HIF-1 target genes (11). For 

example, several of the genes encoding angiogenic factors, including VEGF, are regulated 

by HIF-2, whereas the genes encoding LDHA and PDK1, which are responsible for the 

reprogramming of glucose metabolism (Figure 5), are regulated only by HIF-1. Thus, if it 

were possible to selectively increase HIF-2 activity, this strategy might provide therapeutic 

benefit in the failing heart.

Glossary

HIF hypoxia-inducible factor

Hypoxia response element 
(HRE)

a DNA sequence containing a HIF-1-binding site that is 

required for hypoxia-induced gene expression

Chromatin 
immunoprecipitation 
(ChIP) assay

a technique for demonstrating the binding of transcription 

factors to gene sequences within living cells

VEGF vascular endothelial growth factor

ANGPT angiopoietin

PGF placental growth factor
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AdCA5 a recombinant, replication-defective adenovirus 

engineered to express a constitutively active form of 

HIF-1α for gene therapy

Ischemic heart disease 
(IHD)

heart disease due to atherosclerotic coronary artery 

stenosis

Myocardial infarction (MI) the death of heart tissue due to lack of perfusion

WT wild type

BMDAC bone marrow–derived angiogenic cell

SNP single-nucleotide polymorphism

Ischemic preconditioning 
(IPC)

a phenomenon in which exposure of the heart to short 

episodes of ischemia and reperfusion protects the heart 

against injury caused by a subsequent prolonged episode 

of ischemia-reperfusion

CD39 a cell surface protein that is also known as ectonucleoside 

triphosphate diphosphohydrolase and that hydrolyzes 

extracellular ATP to AMP

CD73 a cell surface protein that is also known as ecto-5′-

nucleotidase and that hydrolyzes extracellular AMP to 

adenosine

Transaortic constriction 
(TAC)

an experimental technique in which a ligature is placed 

around the aorta to narrow its lumen and thereby induce 

pressure overload of the heart

TGF transforming growth factor
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SUMMARY POINTS

1. HIF-1 functions as a master regulator of O2 homeostasis by controlling both O2 

delivery and utilization.

2. Tissue hypoxia or ischemia resulting from arterial stenosis induces HIF-1 

activity, which is required for the production of angiogenic growth factors that 

stimulate vascular remodeling to increase blood flow through collateral vessels. 

Aging and chronic disease impair this adaptive response.

3. HIF-1 is required for ischemic preconditioning, in which short episodes of 

ischemia and reperfusion protect the heart against injury following prolonged 

ischemia-reperfusion. HIF-1 is required for adenosine production in response to 

ischemic preconditioning, and increased adenosine levels in the heart are both 

necessary and sufficient for cardioprotection.

4. HIF-1 also mediates metabolic reprogramming that may protect the heart against 

injury following prolonged ischemia-reperfusion by reducing the production of 

reactive oxygen species.

5. HIF-1 plays a complex and multifactorial role in the pathophysiology of 

pressure-overload heart failure. It may be protective during the stage of 

compensatory hypertrophy by stimulating adaptive angiogenesis, whereas it 

may contribute to the pathology of end-stage failure by mediating maladaptive 

metabolic reprogramming.
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Figure 1. 
HIF-1 mediates cell type–specific responses to hypoxia. The relative expression levels of 

mRNAs encoding vascular endothelial growth factor (VEGF), placental growth factor 

(PGF), platelet-derived growth factor B (PDGFB), angiopoietin 1 (ANGPT1), and ANGPT2 

were determined in primary cultures of cardiac fibroblasts (CF), cardiomyocytes (CM), 

vascular smooth muscle cells (SM), and vascular endothelial cells (EC) exposed for 24 h 

either to (a) 1% versus 20% O2 or to (b) an adenoviral vector encoding a constitutively 

active form of HIF-1α(AdCA5) versus Escherichia coli β-galactosidase (AdLacZ) at 20% 

O2. Red, yellow, and green squares indicate values for the indicated ratios (1% O2:20% O2 

and AdCA5:AdLacZ) of >1, = 1, and < 1, respectively. HIF-1 target gene products are 

depicted as blue rectangles. Adapted from Reference 21.
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Figure 2. 
HIF-1 coordinately regulates vascular responses to hypoxia and ischemia. HIF-1 activates 

the transcription of multiple genes encoding angiogenic growth factors and cytokines (blue 

rectangles), which bind to cognate cell surface receptors (red rectangles) to mediate their 

biological effects on endothelial cells (ECs), vascular smooth muscle cells (SMCs), 

endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs), and other bone 

marrow–derived angiogenic cells (BMDACs). The blue outlines denote receptors whose 

expression is also regulated by HIF-1 in certain cell types.
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Figure 3. 
Remodeling of a collateral blood vessel in response to coronary artery stenosis. (a) Two 

major coronary arteries, which are connected by an undeveloped collateral vessel, are 

shown. (b) Atherosclerotic plaque formation (tan oval ) results in stenosis of one artery. (c) 

Plaque rupture results in complete arterial obstruction (brown oval ), leading to a large 

myocardial infarction (MI). (d ) Remodeling of the collateral vessel to increase luminal 

diameter results in increased blood flow. (e) When plaque rupture occurs, the reduction in 

blood flow is mitigated, resulting in a smaller area of infarction. Black arrows denote the 

direction and relative magnitude of blood flow.
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Figure 4. 
Adenosine production mediated by HIF-1 contributes to the cardioprotective effect of 

ischemic preconditioning. A2BAR denotes the adenosine A2B receptor.
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Figure 5. 
Metabolic adaptations that are mediated by HIF-1 and that may contribute to the 

cardioprotective effect of ischemic preconditioning. HIF-1 activates the transcription of 

genes whose protein products (LDHA, PDK1, PDK3, COX4I2, LON, BNIP3, BNIP3L, and 

miR210) play key roles in reducing mitochondrial oxidative metabolism and thereby in 

reducing the generation of reactive oxygen species (ROS). However, it is not known 

whether HIF-1 activates any of these genes in the heart in response to ischemic 

preconditioning.
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Table 1

Examples of bipartite sequence motifs within hypoxia response elements (HREs)a

Gene Nucleotide sequence Reference

EPO 17

ALDOA 16

PKM2 74

PDGFB 75

CXCR3 (HRE1)b 76

ANGPTL4 77

CP 78

COX4I2 (HRE2)b 54

CXCR3 (HRE2)b 76

BNIP3 79

ILK 80

MXI1 81

PGF (HRE2)b 76

PGF (HRE1)b 76

COX4I2 (HRE1)b 54

a
Blue font indicates the 5′-RCGTG-3′ sequence; HIF-1 binds to this site. Red font indicates the 5′-CACA-3′ sequence; the factor binding to this 

site has not been identified. Hyphens have been introduced to facilitate alignment of the sequences.

b
Genes may contain more than one HRE.
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Table 2

Examples of HIF-1 target genes encoding secreted factors (black text) and cell surface receptors (red text) 

involved in angiogenesis, vascular reactivity, and vascular remodeling

Gene Encoded protein References demonstrating regulation by HIF-1

ADM Adrenomedullin 82, 83

ADM2 Adrenomedullin 2 (intermedin) 84

ADORA2A Adenosine A2A receptor 83, 85

ADORA2B Adenosine A2B receptor 86

ADR1B α1B-Adrenergic receptor 87

ANGPTL4 Angiopoietin-like 4 77, 83

ANGPT1 Angiopoietin 1 14, 21

ANGPT2 Angiopoietin 2 21, 88

APLN Apelin 89

CCL2 Macrophage chemotactic protein 1 90

CTGF Connective tissue growth factor 91

CXCR4 CXC chemokine receptor 4 83, 92

EDN1 Endothelin 1 93, 94

EDNRB Endothelin receptor B 95

EFNA1 Ephrin A1 96, 97

EFNB2 Ephrin B2 96

ENG Endoglin (CD105) 98

EPHB4 Eph B4 96

EPO Erythropoietin 17

EPOR Erythropoietin receptor 5, 83

FLT1 VEGF receptor 1 99, 100

KITLG KIT ligand (stem cell factor) 14, 101

LEP Leptin 102

MDK Midkine 103

PDGFB Platelet-derived growth factor B 21, 75

PGF Placental growth factor 21, 76

PROK1 Prokineticin 1 104

CXCL12 Stromal cell–derived factor 1 105

VEGF Vascular endothelial growth factor 3, 106

Annu Rev Physiol. Author manuscript; available in PMC 2015 December 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Semenza Page 25

Table 3

Examples of HIF-1 target genes encoding metabolic enzymes (blue text), transporters (red text), and 

mitochondrial proteins (green text) involved in glucose metabolism

Gene Encoded protein References supporting regulation by HIF-1

ALDOA Aldolase A 3, 16, 107

ALDOC Aldolase C 3, 108

BNIP3 BNIP3 79, 83, 109

BNIP3L BNIP3-like (NIX) 83, 109

CAR9 Carbonic anhydrase 9 19, 29

COX4I2 Cytochrome oxidase subunit 4-2 54

ENO1 Enolase 1 3, 16

ENO2 Enolase 2 83

GAPDH Glyceraldehyde phosphate dehydrogenase 3, 107, 110

GPI Glucose phosphate isomerase 18, 19, 111

HK1 Hexokinase 1 3

HK2 Hexokinase 2 3, 18, 19

LDHA Lactate dehydrogenase A 3, 16, 112

miR210 MicroRNA-210 58, 59

PDK1 Pyruvate dehydrogenase kinase 1 55, 56

PDK3 Pyruvate dehydrogenase kinase 3 57

PFKFB3 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 113

PFKFB4 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 113

PFKL Phosphofructokinase, liver 3, 19

PGAM1 Phosphoglycerate mutase 1 19

PGK1 Phosphoglycerate kinase 1 3, 107, 114

PGM1 Phosphoglucomutase 1 3, 83

PGM3 Phosphoglucomutase 3 83

SLC2A1 Glucose transporter 1 3, 107, 115

SLC2A3 Glucose transporter 3 3, 83

SLC9A1 Sodium-hydrogen exchanger 1 116

SLC16A3 Monocarboxylate transporter 4 18, 29, 117

TKT Transketolase 118

TKTL2 Transketolase-like 2 118

TPI1 Triosephosphate isomerase 3, 119
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