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Abstract

Malignant gliomas, including glioblastoma and anaplastic astrocytomas, are characterized by their 

propensity to invade surrounding brain parenchyma, making curative resection difficult. These 

tumors typically recur within two centimeters of the resection cavity even after gross total 

removal. As a result, there has been an emphasis on developing therapeutics aimed at achieving 

local disease control. In this review, we will summarize the current developments in the delivery 

of local therapeutics, namely direct injection, convection-enhanced delivery and implantation of 

drug-loaded polymers, as well as the application of these therapeutics in future methods including 

microchip drug delivery and local gene therapy.

Malignant gliomas, including glioblastoma (GBM) and anaplastic astrocytoma (AA), are the 

most common primary brain tumor in adults [1]. The median survival for patients with 

malignant gliomas is less than two years, and some argue that it has not really improved 

over the past several years despite advances in surgical and medical therapy [2]. This 

minimal improvement in outcomes for patients with these tumors is due to several factors: 

these tumors have a propensity to migrate and invade surrounding normal brain parenchyma, 

making current local therapeutic strategies including surgical resection and radiation 

ineffective [3–6]; these tumors reside in the brain that is protected by the blood–brain barrier 

(BBB), making it difficult for systemic therapies to exert their tumoricidal effects [7] and 

they have the ability to resist current therapies because of their genetic instability and 

cellular heterogeneity, making it difficult to target and successfully treat all cells [3–6]. 

These collective obstacles strongly suggest that an effective drug-delivering strategy would 

need to be able to target these invading cells, bypass the BBB and achieve high levels in the 

brain while minimizing systemic toxicity in order to overcome tumor resistance.

There have been advances in the delivery of local therapeutics to the brain for brain tumors 

[8–11]. In this review, we will summarize the current developments in the delivery of local 
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therapeutics, namely direct injection, convection-enhanced delivery (CED) and implantation 

of drug-impregnated polymers. These strategies may help improve future treatment 

modalities including drug-impregnated microchip implantation and local gene therapy 

[12,13]. These methods of delivering local therapeutics thus aim to overcome the barriers to 

effective brain tumor treatment.

Clinical outcomes & current therapies for patients with malignant gliomas

While different physicians have different philosophies, there are only three medical 

therapies specifically approved by the US FDA for use in treating GBM – temolzomide, 

carmustine wafers and bevacizumab. The median survival for patients with GBM ranges 

from 10 to 16 months [14–26], while the median progression free survival ranges from 6 to 

12 months [15–17,27]. The median survival for patients with AA ranges from 18 to 60 

months [22,23,28,29], while the median progression free survival ranges from 20 to 60 

months [22,23,28,29]. Thus, while the median overall and progression free survival times 

for patients with malignant gliomas are relatively poor, individual survival is heterogeneous 

with some patients having short survival times and others having relatively long survival 

times. The clinical factors that have been consistently associated with improved survival are 

younger age, improved neurological function, increased extent of resection, use of 

carmustine wafers, temozolomide chemotherapy and radiation therapy [15–17,19–

21,23,26,27,30–36]. More recently, tumor location near neurogenic niches has also been 

shown to be associated with survival, where tumors near the lateral ventricles are associated 

with worse survival [14,18,37]. Tumors with isocitrate dehydrogenase 1 and positive 

MGMT methylation are also associated with improved outcomes for patients with malignant 

gliomas [38,39].

Key terms

Malignant gliomas Most common primary brain tumors in adults, and are 

classified by the World Health Organization as Grade III or 

IV based on cellular proliferation, cellular atypia, necrosis 

and vascular proliferation

Convection-

enhanced delivery

Delivery method whereby continuous injection of an agent 

under positive pressure of a fluid enhances agent 

distribution

Drug-impregnated 

polymers

Polymers with drug impregnated into its construction. 

These polymers undergo sustained degradation with the 

continuous release of drugs

Temozolomide Orally administered alkylating agent that is most commonly 

used for malignant gliomas as well as melanoma, and works 

by interfering with DNA replication
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Drug-impregnated 

microchips

Microchips engineered to release drugs in a time dependent 

and/or external control mechanisms.

The majority of malignant gliomas recur in close proximity to the initial tumor bed [40,41]. 

In fact over 95% of tumor recurrences occur within 1–2 cm margin of the initial tumor bed, 

and, as a result, standard radiation treatment fields have shifted to treat the gross tumor 

volume and a 1–2 cm margin from the tumor bed [40,41]. Despite this concentration on the 

tumor margin for radiation therapy, malignant gliomas inevitably recur. This has placed an 

emphasis on developing local therapies aimed at targeting these tumor recurrences at the 

tumor margins.

Patients who present with radiographic imaging consistent with a malignant glioma are 

generally treated with extensive surgical resection, chemotherapy implants, followed by 

concurrent radiation and temozolomide chemotherapy [25,42–45]. Antiangiogenesis and 

therapeutic protocols are also used whenever appropriate [46]. The benefit of surgical 

resection for patients with malignant gliomas is a relatively new concept. In the 1920s, 

Walter Dandy performed hemispherectomies for patients with presumed GBM, and found 

that these tumors would recur in the contra-lateral hemisphere [47]. This perceived notion of 

surgical futility led to the widespread advocacy of biopsy for diagnosis followed by adjuvant 

therapy [48]. However, Laws et al. in 2003 analyzed the outcomes for patients with newly 

diagnosed malignant gliomas from a multi-institutional cohort and found that patients who 

underwent surgical resection for both GBM and AA had independently longer survival than 

patients who underwent needle biopsy [22]. The median survival for GBM patients who 

underwent surgical resection was 45.3 versus 21.0 weeks for patients who underwent needle 

biopsy, while the median survival for AA patients who underwent surgical resection was 87 

versus 52.1 weeks for those who underwent needle biopsy [22]. More recently, we have 

shown that gross total resection (GTR) (>99%) is more beneficial than near total resection 

(NTR) (95–99%), and NTR is more beneficial than subtotal resection (STR) (<95%) for 

patients with both GBM and AA [23]. For patients with newly diagnosed GBM, the median 

survival times for patients with GTR, NTR and STR were 13, 11 and 8 months, respectively 

[23]. For patients with newly diagnosed AA, the median survival times for patients with 

GTR, NTR and STR were 58, 46 and 34 months, respectively [23]. Furthermore, Lacroix et 

al. in 2001 found that 98% resection was needed to achieve a meaningful difference for 

patients with GBM, regardless of being newly diagnosed or recurrent [20]. This threshold 

was updated to be 78% in 2007 by Sanai et al. [36], and more recently we found a lower 

threshold of 70% was needed to make a meaningful difference in patient outcomes [27]. The 

median survival for patients with >70% resection was 14.4 months as compared with 10.5 

months for patients with lesser nonbiopsy, surgical resections [27]. All of these studies, 

however, concluded that more percent resection is associated with improved survival and 

recurrence outcomes [17,20,27,36].

Following surgery, adjuvant therapies include radiation and temozolomide chemotherapy 

[25]. Radiation therapy with external brain radiation therapy (EBRT) has been shown to be 

effective for patients with newly diagnosed GBM [40,49]. The median survival for patients 

who received EBRT was 9 months as compared with 5 months for patients who did not 

Chaichana et al. Page 3

Ther Deliv. Author manuscript; available in PMC 2015 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



receive EBRT [40,49]. The standard radiation dose is 58 to 60 Gy, where previous studies 

have showed that 60 Gy was superior to 45 Gy, but there was no significant difference with 

70 Gy dosing [33,50]. As a result, the current radiotherapy regimen is to use EBRT for a 

total of 58 to 60 Gy, which is given in 1.8 to 2.0 Gy fractions for 5 days per week for 30 

total days [25]. In total, 40 Gy is administered to the tumor area and an additional boost of 

20 Gy is given to the enhancing tumor plus a 2 cm tumor margin [51].

In addition to radiation therapy, concomitant temozolomide chemotherapy is typically given 

following surgical resection [25]. Temozolomide is an orally administered, second 

generation alkylating agent that functions by alkylating the DNA of dividing cells and 

thereby inhibiting DNA repair [25]. Alkylating agents, unlike other types of 

chemotherapeutic drugs, have an ability to cross the BBB, and therefore able to achieve 

cytotoxic concentrations in the CNS [25]. Temozolomide is similar to or slightly less lipid 

soluble than ethanol, and thus probably crosses the BBB by passive diffusion at a slightly 

slower rate than ethanol [25]. In 2005, Stuppet al. performed a randomized control trial for 

patients with newly diagnosed GBM [25]. Following surgical resection, patients who 

underwent temozolomide and radiation therapy had a significantly longer median survival 

than patients who received only radiation therapy (14.6 vs 12.1 months) [25]. However, 

some tumors have the ability to resist alkylating agents by over expressing the O6-

methylguanine-DNA methyltransferase (MGMT) protein, which is a DNA repair protein 

that functions by removing the alkyl group from the O6 position of guanine [52]. Patients 

with promoter methylation have epigenetic silencing of the MGMT gene and therefore have 

longer progression free and overall survival times [38,53]. Among GBM patients who 

underwent temozolomide and radiation therapy, the median survival for patients with 

methylated tumors was 21.7 months as compared with 15.3 months for nonmethylated 

tumors [38].

Blood–brain barrier

The BBB, as well as the blood-cerebrospinal fluid (CSF) barrier, is a specialized structure 

that surrounds most of the CNS [54,55]. It consists of CNS blood vessels and capillary 

endothelial cells that form tight junctions, also known as zona occludens [54,55]. These 

junctions, in addition to the low endocytic activity of these endothelial cells, limit the 

transcellular transport of various molecules into the CNS [54,55]. This barrier is essentially 

impervious to hydrophobic molecules and molecules larger than 200 kilodaltons, which 

includes most chemotherapeutics [54,55]. In patients with primary brain tumors, the BBB is 

only marginally compromised by the tumor and typically remains intact at the tumor 

periphery [54,55]. Additionally, tumor cells can migrate within the brain parenchyma away 

from compromised BBB [54,55]. As a result, the relatively intact integrity of the BBB in 

tumor-infiltrated regions severely limits the efficacy of systemically-administered 

chemotherapeutic drugs [54,55]. In addition to the local delivery techniques that will be 

discussed in this review, there is growing interest in other techniques used to increase the 

permeability of the BBB and include high-intensity focused-ultrasound, osmotic drugs like 

mannitol, and biochemical molecules such as bradykinins, among others [56]. This review 

will focus primarily on local delivery techniques of direct injection, CED, implantable drug-

impregnated polymers, drug-impregnated microchips and local gene therapy.
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Direct injection of chemotherapeutics

Direct injection of chemotherapeutics is the earliest method of local drug delivery (Figure 1 

& Table 1). This method involves injection of chemotherapeutics into the tumor resection 

cavity, surrounding brain parenchyma, and/or the ventricle. This can be done via either 

repeated needle-based injections and/or catheter implants that are connected to a reservoir 

(i.e., Ommaya reservoir) for continued injection of chemotherapeutics including drugs, 

radioactive compounds, viruses, antibodies and lymphocytes, among others [57–66]. The 

distribution of chemotherapeutic drugs using this method relies on a concentration gradient 

and permeability of the agent into the tumor tissue and surrounding brain parenchyma.

The potential advantage of this approach is that it is simplistic and can be easily repeated 

(Table 1). A large volume of chemotherapeutics can be delivered with minimal systemic 

toxicity, and the reservoir can also be refilled for continued delivery of chemotherapeutics 

[67]. However, there are several limitations to the direct injection approach (Table 1). Direct 

injection into the ventricle and/or brain parenchyma requires repeated surgical procedures, 

which is associated with increased risk of intracranial hemorrhage, infection and 

malpositioned catheter, among others [58,62,68]. More importantly, this method is known to 

have poor drug distribution into the tumor tissue and the surrounding brain parenchyma 

[59,69]. Because it relies on a concentration gradient, the depth of distribution is often 

limited to approximately 3–5 mm, with an exponential decay in concentration from the 

injection site [59,69]. Thus, there is a high and often toxic concentration of drugs around the 

injection site and little drug presence in the surrounding areas [59]. Finally, this method is 

based on a bolus-based approach, making it difficult to predict drug concentration and 

distribution [59].

This method has been used to deliver intermittent bolus injections of both 

chemotherapeutic[67,70–74] and biological agents (Table 2) [57–66]. There are anecdotal 

case reports that have shown successful outcomes with this method, but to date there have 

been no successful large-scale clinical trials proving their efficacy [75–77]. Gasper et al. in 

1999 placed permanent catheters containing 125I seeds into 59 patients with recurrent 

malignant astrocytomas (37 GBM, 22 anaplastic gliomas) from 1989 to 1997, which 

allowed a radiation dose of 0.05 Gy/h to the periphery of the contrast-enhancing tumor [58]. 

The median survival for the patients in this series was 1.34 years (0.9 years for GBM, 2.04 

years for anaplastic gliomas), and 40% of patients required more surgery for tumor 

progression, 5% had skull infections and 13% had radiation necrosis [58]. Similarly, Riva 

and colleagues performed a Phase I study where they directly injected 131I radio-conjugated 

antibodies against the GBM-stromal antigen, tenascin, into patients with malignant gliomas, 

and found only a 17.8% response rate for bulky tumors but a 66% response for small tumors 

[57]. Torres et al. in 2008 performed a Phase I study, whereby they placed intracavitary 

catheters attached to Ommaya reservoirs into 9 patients with recurrent malignant 

astrocytomas (8 GBM, 1 AA) loaded with different concentrations of the 188Re-labeled 

humanized monoclonal antibody nimouzumab against the epidermal growth factor receptor 

[59]. They found that 85% of the antibody was retained in the surgical cavity after injection, 

and no survival analyses were conducted [59]. Other studies have evaluated the efficacy of 

direct injection of viral agents [62] and autologous lymphocytes with monoclonal antibodies 

Chaichana et al. Page 5

Ther Deliv. Author manuscript; available in PMC 2015 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[64,65,78]. In 2003, Prados et al. evaluated the efficacy of direct injection of herpes simplex 

virus thymidine kinase gene vector-producer cells followed by intravenous ganciclovir 

administration on 30 patients and found adverse effects in 16 patients [62]. Moreover, these 

studies using biological agents found that gene expression in the injected tissue was only 

present at distances of only a few millimeters from the resection cavity [69,79]. While local 

delivery initially seemed to have promising results, its use in clinical trials has dramatically 

decreased.

Convection-enhanced delivery

CED uses an external source to create a pressure gradient to facilitate local drug distribution 

[67]. It was designed to attempt to overcome the inadequacy of the limited chemotherapeutic 

distribution associated with the direct injection method (Figure 2 & Table 1). Similar to the 

direct injection method, CED relies on a concentration gradient for diffusion [67], but also 

incorporates a pressure gradient to increase chemotherapeutic distribution by displacement 

of extracellular fluid with infused fluid. In CED, a microcatheter is inserted into the tumor 

cavity or tumor border, and the catheter is connected to a motor-driven pumping device. 

This device creates a pressure gradient from the motor source by infusing chemotherapeutics 

at an infusion rate that typically ranges from 0.5 to 10 μl/min. CED typically distributes 

chemotherapeutics in an elliptical to spherical distribution up to 3 cm from the catheter 

source, where there is a linear relationship between the infused volume and the volume of 

distribution [81,82]. Therefore, with CED, the chemotherapeutic distribution relies on the 

concentration, rate and duration of infusion.

The advantage of CED is that it has a wider distribution of chemotherapeutics than the direct 

injection method. In experimental models, radio-labeled albumin was injected into brain 

tissue via direct injection and CED (Table 1). Direct injection had a distribution distance of 

2 mm from the catheter site, while CED had a 1.5 cm or almost eightfold increase in the 

distribution of albumin [81,82]. A disadvantage of this modality is that the reservoir, as with 

direct injection, needs to be continually refilled, which is especially critical with CED 

because distribution varies with the injected volume (Table 1). Additionally, the 

chemotherapeutic distribution varies not only with the chemotherapeutic agent, but other 

features of the delivery device. The factors that affect distribution of the chemotherapeutic 

agent include molecular size, surface characteristics and half-life, where larger size, 

increased binding to extracellular matrix components or surface receptors and shorter half-

life are all independently associated with decreased distribution [10]. In addition, the CED 

device can also affect chemotherapeutic distribution, namely the infusion characteristics and 

the catheter dimensions. Lower infusion rate, decreased infused volume and larger bore 

catheter (as a result of increased back flow) are all independently associated with decreased 

distribution [10]. Backflow of infusate in the catheter is not trivial because backflow can 

cause the chemotherapeutic agent to egress along the catheter track, enter the subarachnoid 

space and widely distribute in the CNS, which not only decreases the ability to predict 

chemotherapeutic distribution but can lead to widespread neurotoxicity [83]. This leakage is 

inevitable and some studies have showed this leakage rate can be as high as 18.5% [84–86].
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CED has been used in clinical studies to deliver both chemotherapeutic[85,87–89] and 

biological agents, namely immunotoxins (Table 3) [10,83,90–95]. Patel and colleagues 

performed a Phase I/II trial with 131I-labeled monoclonal antibody on 51 patients with newly 

diagnosed and recurrent malignant gliomas [91]. Significant cerebral edema occurred in 

16%, hemiparesis in 14% and headaches in 14% [91]. In 11 patients with an evaluable 

radiographic response, 1 had a partial response, 6 had stable disease and 4 had disease 

progression [91]. Bruce et al. in 2011 performed a Phase I trial evaluating the safety profile 

of CED of topotecan in 16 patients with recurrent malignant gliomas [87]. Early response 

was seen in 4 (25%), pseudoprogression in 2 (44%) and progressive disease in 5 (31%), in 

addition to dose limiting toxicities in 2 (13%) [87]. Bogdahn and colleagues performed a 

Phase II trial with CED of a TGFB-2 inhibitor (trabedersen), whereby they randomized 

patients with recurrent malignant gliomas to low dose trabedersen, high dose trabedersen or 

standard chemotherapy consisting of temozolomide or procarbazine, lomustine, vincristine 

[92]. Despite some potentially promising findings with CED of trabedersen for patients with 

recurrent AA, there were no significant differences in overall and progression free survival 

for patients with recurrent GBM [92]. More recently, in a multi-institutional, Phase III trial 

(PRECISE study), 256 patients were randomized to either CED with Cintredekin besudotox 

(IL-13 pseudotoxin) or carmustine wafers for recurrent GBM [93]. There were no significant 

differences in survival between the groups, but the incidence of pulmonary embolism was 

higher in the CED group [93]. Thus, while CED offers promise, there has yet to be a clinical 

trial showing its superiority over current treatment methods.

Implantable drug-impregnated polymers

Implantable drug-impregnated polymers were designed to be implanted in the tumor 

resection cavity and deliver chemotherapeutic drugs to the surrounding brain tissue (Figure 

3 & Table 1) [42,96,97]. As the polymer degrades, it allows for sustained release of the 

chemotherapeutic drug at the tumor site and surrounding peripheral tissue [42,96,97]. Unlike 

catheter-based technologies including Ommaya reservoirs and CED, polymer technology 

relies on a polymer matrix being able to incorporate drug, be biocompatible and degrade in a 

dependable manner with the sustained release of active drug. The currently used polymer for 

brain tumor treatment is composed of polyanhydride poly[1,3-bis (carboxyphenoxy) 

propane-co-sebacic-acid], and is designed to incorporate only one type of chemotherapeutic 

drug, carmustine [42,96,97]. In the laboratory setting, there are other polymeric designs that 

have been tested in the animal setting, but have not yet been used in humans [98]. These 

include the fatty acid dimersebacic acid copolymer, which is another type of polyanydride 

that has been used to delivery hydrophilic drugs including platinum-based drugs such as 

carboplatin [98]; poly(lactide-co-glycolide) polymers or microspheres that are designed to 

carry larger molecules such a 5-fluorouracil [99] and poly(lactide-co-glycolide) nanospheres 

that are covalently linked to a polyethylene glycol coating to reduce immune system 

detection and elimination [100], among others [101,102]. Polymer technology has several 

advantages (Table 1). First, this technology does not rely on catheter placement as seen in 

local drug delivery and CED [9,96–98,103]. As a result, it is not subject to the physical 

restraints of catheters including location (intra vs peritumoral), backflow and clogging 

[9,96–98,103]. Second, polymers allow a sustained release of drug through degradation of 
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the polymer matrix, as opposed to a bolus or volume-dependent mechanism as seen in local 

delivery and CED [9,96–98,103]. Additionally, polymers can be manipulated at the time of 

surgery, which allows them to be placed on all edges of the tumor cavity as opposed to 

being dependent on catheter location [9,96–98,103]. Despite these advantages, there are 

some intrinsic disadvantages [9,96–98,103]. Sustained polymer drug release occurs until the 

polymer is degraded. The half-life of carmustine is <15 min, and carmustine polymer release 

at tumoricidal levels can be seen for at least 21 days in animal models [104]. Moreover, the 

use of an adequate number of polymers (preferably eight) requires a large surgical cavity, 

which is therefore not always possible with needle biopsies and eloquent tumor locations 

[9,96–98,103]. It also cannot be placed beyond the resection cavity, which limits its 

distribution in peritumoral areas [9,96–98,103]. Moreover, it is also a relative contra-

indication to place these wafers when the ventricle has been opened as drug can be released 

into the cerebrospinal fluid leading to diffuse neural toxicity [9,96–98,103].

In comparison to local drug delivery and CED, the use of drug-impregnated polymers is the 

only local drug delivery technique to improve survival in a randomized control trial and has 

been FDA approved for both newly diagnosed and recurrent malignant gliomas (Table 4) 

[97]. The human use of carmustine wafers started in 1987 in a Phase I/II clinical trial to 

identify the best-tolerated carmustine or BCNU dose [96]. In this study of 21 patients, 

carmustine doses of 1.9, 3.8 and 6.4% per weight were given to 5, 5 and 11 patients with 

recurrent malignant gliomas, respectively [96]. There were no significant side effects in any 

of the dosing groups, and the median survival was 65, 64 and 32 week in the 1.9, 3.8 and 

6.4% groups, respectively [96]. Based on these findings, a carmustine dose of 3.8% was 

chosen for a Phase III study, and it is unknown why the 6.4% group had lesser survival [96]. 

In the Phase III study, 222 patients from 27 institutions were randomized to receive 

carmustine wafers impregnated with either 3.8% carmustine (n = 110) or no carmustine (n = 

112) [97]. The median survival for patients who received carmustine wafers was 31 weeks 

as compared with 23 weeks for the placebo group [97]. In addition to this survival benefit, 

there were no significant side effects attributable to carmustine wafers [97]. Following this 

study, carmustine wafers were FDA approved for recurrent malignant gliomas [46].

Carmustine wafers were also studied for patients with newly diagnosed malignant gliomas. 

In a Phase I study in 1995, the use of carmustine wafers followed by radiation therapy was 

considered safe, where 22 patients with newly diagnosed malignant gliomas underwent 

carmustine wafer placement, followed by standard external beam radiation therapy [42]. 

There was no increase in side effects compared with historical controls [42]. Valtonen et al. 

then performed a randomized control trial whereby 100 patients with newly diagnosed 

malignant gliomas were randomized to receive either carmustine wafers or placebo [43]. 

Because they were unable to obtain enough of the drug, the study was stopped prematurely 

at 32 patients (16 per group) [43]. Nonetheless, the median survival for the treatment group 

was significantly longer than the placebo group (58.1 vs 39.9 weeks) [43]. This led to a 

larger, Phase III clinical trial where 240 patients were randomized to receive either 

carmustine wafers or placebo for a newly diagnosed malignant glioma [44,45]. The median 

survival was significantly longer in the treatment group as compared with the placebo 

controls (13.9 vs 11.6 months) [44,45]. This led to the approval of carmustine wafers for 
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both recurrent and newly diagnosed malignant gliomas. Furthermore, this survival 

advantage was validated in retrospective, multi-institutional French and Japanese studies for 

both newly diagnosed and recurrent malignant gliomas [105–107].

The utility of carmustine wafers has also been evaluated in specialized settings [35,108,109]. 

In light of current typical adjuvant therapy (radiation and temozolomide chemotherapy), 

patients who received carmustine wafers in addition to typical adjuvant therapy had 

improved survival than patients only receiving standard adjuvant therapy (21.3 vs 12.4 

months) [35,108]. Noel et al., however, in a smaller retrospective study with no internal 

controls, did not find a significant survival advantage in 28 patients who received triple 

therapy (carmustine, temozolomide, radiation) as compared with patients who underwent 

only typical adjuvant therapy (temozolomide, radiation) [109]. More importantly, the use of 

wafers was not associated with increased complications in this setting [35,108,110–113], 

and has been validated in Phase I/II studies for administration with temozolomide and 

radiation therapy for both newly diagnosed and recurrent malignant gliomas [114,115]. 

Additionally, carmustine wafers have been tried with radiation iodine seeds and O6-

benzyguanine chemotherapy, without a significant increased risk of complications 

[116,117]. In a matched-pair analysis, the use of carmustine wafers is also effective in 

prolonging survival for older (age >65 years) patients with GBM (8.7 vs 5.5 months) [32]. 

Despite these studies, there is a concern that the use of carmustine wafers can lead to 

increased infection, cerebral edema and seizures, but large-scale studies do not confirm 

these findings [97]. Additionally, while 3.8% is the standard carmustine concentration, a 

dose-escalation clinical study showed that the maximum tolerated dose was 20% carmustine 

by weight (approximately five times the standard dose) without an increase in side effects 

[103]. At 28% carmustine concentration, three of four patients had severe brain edema and 

seizures [103]. Carmustine wafers are also being investigated for patients with anaplastic 

ependymomas and metastatic brain tumors [108]. Despite these promising results, newer 

technologies are being designed to overcome some of the limitations of drug-impregnated 

polymers including microchip drug delivery and local therapy.

Drug-impregnated microchip delivery

As seen with carmustine wafers, the release of chemo-therapeutics drugs is dependent on the 

degradation of the polymer [42,96,97]. This release is sustained and therefore is not pulsatile 

and cannot be controlled in a time-dependent fashion [42,96,97]. Drug-impregnated micro-

chips can overcome some of the limitations of polymer technology (Table 1) 

[12,13,118,119]. Microchip technology for local chemotherapeutic delivery has existed 

since the 1990s [119]. Microchips are composed of pumps, valves and channels at the 

micrometer scale and are controlled by time-dependent biodegradation [118] or 

electrochemical dissolution [119]. Moreover, they can be remotely controlled [12] and can 

release single or multiple agents [118]. These chips have only been used in human patients 

to control release of parathyroid hormones, where eight females with postmenopausal 

osteoporosis had these chips implanted without any significant side effects and all had 

increased bone formation [12]. Scott et al. demonstrated that these micro-chips could also be 

used in a rodent gliosarcoma model to release temozolomide [13]. Additionally, they found 

that the temozolomide flow rates from the microchips were predictable and led to prolonged 
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survival in these rodents as compared with animals that underwent oral temozolomide 

therapy [13]. As a result, microchip technology may be advantageous over drug-

impregnated polymers as a mode of local therapy for patients with malignant gliomas. The 

potential disadvantages of this approach are the need for refilling these devices, possible 

electronic malfunction and conceivable alterations in magnetic fields. Clinical trials have yet 

to be done in patients with malignant gliomas.

Local gene therapy

Gene therapy involves the transfer of genetic material (i.e., DNA) to cells within the body 

[8,120]. This genetic material can be transferred to either somatic cells or germs cells, but 

only somatic cells have been approved for human therapy [8,120]. This is because somatic 

cells have an intrinsically lower risk because they are unable to transfer this genetic material 

to the next cell generation [8,120]. This genetic material is transferred to glioma cells by 

either biological (i.e., viral) or synthetic (i.e., nanoparticles) vectors [8,120,121]. The 

primary biological vector are viruses [8,120]. Viral vectors, including adenoviruses, 

retroviruses and herpes simplex viruses, are engineered to be nonreplicating and function by 

transferring genetic material with the ability to induce intracellular toxicity to tumor cells or 

destroy tumor cells while replicating [8,120]. Synthetic vectors, including nanoparticles and 

liposomes, carry and transfer genetic material to tumor cells that induce cell toxicity [120]. 

Regardless of the type of vector, they have relied on direct injection methods [8,120]. Direct 

injection involves either directly injecting the genetic material into the tumor cavity or 

ventricular system, while systemic injections involve systemic intravenous or intra-arterial 

injections [122]. As with chemotherapeutics, systemic injections still have difficulty in 

bypassing the BBB despite their smaller molecular size and, thus, direct injection has been 

the preferred injection method in the clinical setting [122].

The primary advantage of gene therapy is that it is more selective in tumor cell activity by 

targeting specific cell receptors and/or cellular mechanisms unique to tumor cells [8,120]. 

However, this theoretical advantage of local gene therapy has yet to be seen in clinical trials 

[8,120]. This has been attributable to several reasons. First, there has been an inability to 

have high gene expression among tumor cells [8,120]. This is believed to be due to the fact 

that the genetic material can only diffuse a few millimeters from the injection site, and many 

tumor cells can be several centimeters away [8,120]. Another reason for this lack of 

promising results is that the genetic transduction frequency is low [8,120]. This may also be 

due to the poor diffusion as well as the inability to target tumor cells efficiently [8,120]. 

There are currently clinical studies aimed at addressing these limitations including using 

CED and/or polymer based methods [8,120].

Future perspective

Local delivery appears to be a mainstay treatment option for patients with malignant 

gliomas. However, several barriers still remain. First, there needs to be a better 

understanding of the diffusion of macromolecules, namely chemotherapeutics, within the 

brain parenchyma. This is made difficult by the fact that the brain parenchyma is 

heterogeneous as a result of tumor invasion, gliosis associated with prior treatments 
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including surgery and radiation therapy and location to neural structures including the 

subarachnoid space and ventricles [4–6]. There is also a lack of imaging techniques to track 

chemotherapeutic molecules in vivo, making it difficult to quantify the distribution and 

calculate treatment efficacy [4–6]. Second, the preferred method would have to incorporate 

several different strategies of local therapeutic delivery. The best method would have to 

entail controlled release of chemotherapeutic drugs, delivery that is enhanced by an 

exogenous force to facilitate wider diffusion, and be able to be tracked in vivo [4–6]. 

Furthermore, an ideal method would need to specifically target tumor cells and avoid 

collateral damage to nontumor cells [4–6]. Damage to nontumor cells can lead to memory 

impairment, functional decline and potentially poor quality of life [4–6]. As a result, there is 

an increased impetus to develop targeted tumor therapy based on cell surface markers, 

proliferation status and even stem cell based therapy, among others [4–6]. Moreover, further 

studies are needed to compare the rate of drug transfer in biological versus synthetic vectors.

Conclusion

Patients with malignant gliomas have tumors with individual tumor cells possessing the 

capability to migrate long distances within the brain. This ability to migrate from the tumor 

bulk explains the ineffectiveness of focal based therapies including surgical resection and 

radiation therapy. Moreover, the blood–brain barrier hinders the effectiveness of systemic 

therapies. The delivery of local therapeutics aims to overcome these limitations and is 

constantly evolving. Convection enhanced delivery and drug-impregnated polymers evolved 

from direct injection methods. Furthermore, new methods such as micro-chips and gene 

delivery are incorporating these delivery strategies in order to improve the outcomes for 

patients with malignant gliomas. While primarily still in the early clinical phases, these new 

technologies have the chance to improve the outcomes for patients who harbor these 

debilitating tumors, but should also be compared with emerging technologies in disrupting 

the BBB including focal ultrasound and biochemical systemic therapies.
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Executive summary

Clinical outcomes & current therapies for patients with malignant gliomas

• Current management of malignant gliomas includes extensive surgical resection, 

radiation therapy and chemotherapy.

Blood–brain barrier

• The use of local therapy aims to overcome the drawbacks of systemic medial 

therapies by bypassing the blood–brain barrier, achieving high drug levels at the 

tumor site and limit systemic side effects.

Direct injection

• Direct injection involves injection of chemotherapeutics directly into the 

surgical cavity, and is impeded by poor drug distribution, requires refilling and 

is dependent on catheter placement.

Convection-enhanced delivery

• Convection-enhanced delivery utilizes a pressure gradient to drive diffusion of 

chemotherapeutics into the brain parenchyma and has better distribution than 

direct injection, but is impeded by need for refilling, subject to reflux and 

sometimes associated with CNS toxicity.

Drug-impregnated polymers

• Drug-impregnated polymers are placed in the surgical cavity, undergo sustained 

degradation and release of chemotherapeutics, but are impeded by lack of refill 

ability, require large surgical cavities, limited distribution.
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Figure 1. Ommaya reservoir with a catheter placed in the intratumoral cavity following surgical 
resection, which is an example of local drug delivery
Chemotherapeutic drugs can be placed in the reservoir and the drug will diffuse through the 

catheter into the surrounding brain parenchyma based on a concentration gradient.
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Figure 2. Convection-enhanced delivery with a catheter placed in the intratumoral cavity 
following surgical resection
Chemotherapeutic drugs can be placed in the reservoir and the drug will move through the 

catheter into the surrounding brain parenchyma based on a pressure and, to a lesser extent, a 

concentration gradient.
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Figure 3. Drug-impregnated polymers placed in the intratumoral cavity following surgical 
resection
Chemotherapeutic drugs are impregnated into the biodegradable polymers, which, as a result 

of degradation, release the drugs in a sustained manner into the surrounding brain 

parenchyma.
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Table 1

Advantages and disadvantages of different local therapeutic delivery methods.

Delivery methods Advantages Disadvantages

Direct injection • Simplistic

• Repeatable

• Poor drug distribution (<3 mm)

• Intermitted bolus application

• Relies on catheter placement

• Requires refilling

Convection-enhanced delivery • Improved drug distribution (2–3 
cm)

• Continuous infusion

• Distribution varies with drug characteristics, 
infusion parameters, device design

• Relies on catheter placement

• Requires refilling

• Catheter backflow

• Risk of CNS toxicity

Drug-impregnated polymers • Does not rely on catheters

• Sustained-release

• Surgically manipulated

• Requires large surgical cavity

• Drug release polymer dependent

• Nonrefillable

• Drug release cannot be changed after 
implantation

Drug-impregnated microchips • Potentially controllable drug 
release

• Can release multiple agents

• Does not rely on catheters

• Surgically manipulated

• Nonrefillable

• Expensive

• Potential malfunction

• No human clinical trials as of date

Local gene therapy • Tumor-selective • Poor diffusion

• Low transfection rates

• Lack of clinical effectiveness
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