
Alcoholic and non-alcoholic steatohepatitis

Manuela G. Neumana,b,*, Samuel W. Frenchc, Barbara A. Frenchc, Helmut K. Seitzd, 
Lawrence B. Cohene, Sebastian Muellerd, Natalia A. Osnaf, Kusum K. Kharbandaf, 
Devanshi Sethg,h, Abraham Bautistai, Kyle J. Thompsonj, Iain H. McKillopj, Irina A. 
Kirpichk,l, Craig J. McClaink,l,m, Ramon Batallern,o, Radu M. Nanaua, Mihai Voiculescuq, 
Mihai Oprisa,r, Hong Shenc, Brittany Tillmanc, Jun Lic, Hui Liuc, Paul G. Thomasf, Murali 
Ganesanf, and Steve Malnickp

aIn Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, Ontario, Canada

bDepartment of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 
Toronto, Ontario, Canada

cHarbor-UCLA Medical Center, Torrance, CA, USA

dCentre of Alcohol Research, University of Heidelberg and Department of Medicine 
(Gastroenterology and Hepatology), Salem Medical Centre, Heidelberg, Germany

eDivision of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, 
Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada

fResearch Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal 
Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 
USA

gDrug Health Services, Royal Prince Alfred Hospital Centenary Institute of Cancer Medicine and 
Cell Biology, Camperdown, NSW 2050, Australia

hFaculty of Medicine, The University of Sydney, Sydney, NSW 2006, Australia

iOffice of Extramural Activities, National Institute on Alcohol Abuse and Alcoholism, National 
Institutes of Health, Rockville, MD, USA

jDepartment of Surgery, Carolinas Medical Center, Charlotte, NC, USA

kDivision of Gastroenterology, Hepatology, and Nutrition, Department of Medicine and 
Department of Pharmacology

lToxicology, University of Louisville School of Medicine, Louisville, KY, USA

mRobley Rex Veterans Medical Center, Louisville, KY, USA

*Corresponding author at: Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, In Vitro Drug 
Safety and Biotechnology, Banting Institute, 100 College Street, Lab 217, Toronto, Ontario M5G 0A3, Canada. 
manuela.neuman@utoronto.ca (M.G. Neuman). 

Conflict of interest statement: All the authors contributed actively to the review. All authors disclose that they have no actual or 
potential conflict of interest including any financial, personal or other relationships with other people or organizations that could 
inappropriately influence, or be perceived to influence their work.

HHS Public Access
Author manuscript
Exp Mol Pathol. Author manuscript; available in PMC 2015 December 30.

Published in final edited form as:
Exp Mol Pathol. 2014 December ; 97(3): 492–510. doi:10.1016/j.yexmp.2014.09.005.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nDivision of Gastroenterology and Hepatology, Department of Medicine, University of North 
Carolina at Chapel Hill, Chapel Hill, NC, USA

oDepartment of Nutrition, University of North Carolina at Chapel Hill Chapel Hill, NC, USA

pDepartment Internal Medicine, Kaplan Medical Centre and Hebrew University of Jerusalem, 
Rehovot, Israel

qDivision of Nephrology and Internal Medicine, Fundeni Clinical Institute and University of 
Medicine and Pharmacy, “Carol Davila”, Bucharest, Romania

rFamily Medicine Clinic CAR, Bucharest, Romania

Abstract

This paper is based upon the “Charles Lieber Satellite Symposia” organized by Manuela G. 

Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The 

present review includes pre-clinical, translational and clinical research that characterize alcoholic 

liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in 

the discussed area was performed. Strong clinical and experimental evidence lead to recognition 

of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the 

etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their 

organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, 

ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be 

associated with a number of cellular and histological changes, including the presence of Mallory's 

hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of 

ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the 

severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol 

in ASH, as well as the role of other risk factors such as its comorbidities with chronic viral 

hepatitis in the presence or absence of human deficiency virus are discussed. Dysregulation of 

hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus 

(HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine 

the contribution of malnutrition to the liver injury. Dietary interventions such as micro and 

macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, 

as part of metabolic syndrome in the aging population, are offered. The integrative symposia 

investigate different aspects of alcohol-induced liver damage and possible repair. We aim to (1) 

determine the immuno-pathology of alcohol-induced liver damage, (2) examine the role of 

genetics in the development of ASH, (3) propose diagnostic markers of ASH and NASH, (4) 

examine age differences, (5) develop common research tools to study alcohol-induced effects in 

clinical and pre-clinical studies, and (6) focus on factors that aggravate severity of organ-damage. 

The intention of these symposia is to advance the international profile of the biological research on 

alcoholism. We also wish to further our mission of leading the forum to progress the science and 

practice of translational research in alcoholism.

Neuman et al. Page 2

Exp Mol Pathol. Author manuscript; available in PMC 2015 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Alcoholic hepatitis; Nonalcoholic steatohepatitis; Alcoholic liver disease; CYP2E1; Hangover; 
Hepatocarcinogenesis; Immunohistochemistry; Laboratory markers; Mallory–Denk bodies; 
Methylation; Mitochondrion; Micronutrients; Viral hepatitis; Human immunodeficiency virus

1. Lieber's and his colleagues' legacy

Manuela G. Neuman, Abraham Bautista.

Dr. Lieber broke new ground of biological research on alcohol by discovering the 

cytochrome p450 (CYP) 2E1-dependent microsomal ethanol oxidizing system (MEOS) 

(Lieber and DeCarli, 1968, 1970). The clarification of MEOS has contributed to the 

recognition of mechanisms accountable for alcohol–drug interactions (Lieber, 1988a), 

alcohol–methylation pathways (Lieber et al., 1994), alcohol-mediated fibrinogenesis (Lieber 

et al., 2006), molecular basis of alcohol-induced injury to liver and other tissues (Lieber, 

1988b), alcohol-induced fatty liver, hepatitis and cirrhosis in sub-human primates (Lieber et 

al., 1975; Rubin and Lieber, 1974) and alcohol-related hepatotoxicity (Lieber, 1978, 1997; 

Lieber and DeCarli, 1991).

Alcohol-induced hepatic injury has been called as steatonecrosis (Harinasuta et al., 1967) 

and steatohepatitis (Ludwig et al., 1980). The injury has characteristic histologic, clinical, 

and biochemical features (Christoffersen and Nielsen, 1972; French, 1981; French et al., 

1993; Ishak et al., 1991; Maher and Friedman, 1995; Mendenhall, 1981; Rojkind, 1985).

The classical clinical syndrome of alcoholic steatohepatitis (ASH) consists of jaundice, 

varying degrees of hepatic failure, abdominal distress, fever, and leukocytosis, although 

patients with the histological features of the entity may be asymptomatic and anicteric 

(Birschbach et al., 1974; Green, 1965). The syndrome appears in patients who have been 

consuming excess amounts of alcohol for periods of 1–5 years or more (Boitnott and 

Maddrey, 1981; Edmonson et al., 1963; Gregory and Levi, 1972; Helman et al., 1971; 

Schaffner and Popper, 1970).

Factors that affect the development of liver injury include the dose, duration, and type of 

alcohol consumption, drinking patterns, sex, age, ethnicity, as well as associated risk factors 

such as obesity, iron overload, concomitant infections, and genetics (Bautista, 2001; Martini 

and Bode, 1970; Zimmerman, 1999). Recognition of hepatic injury due to alcohol in the 

presence of antimicrobial agents may result from the hepatic involvement of bacterial, viral, 

or parasitic infections (Benhamou, 1986).

The assumption that the malnutrition so commonly manifested in alcoholics was responsible 

for the cirrhosis was supported by the therapeutic benefits of dietary treatment (Schenker 

and Halff, 1993). Moreover, the protein malnutrition plays an important role in determining 

the outcome of patients with alcoholic liver disease (ALD) (Zimmerman, 1955). Mortality 

increases in proportion to malnutrition, achieving 80% in patients with severe malnutrition 

(Mendenhall et al., 1995). Also the role of micronutrients and unsaturated or saturated 

dietary fat influences the severity of the ALD (Leevy and Moroianu, 2005; Lieber, 1988a; 
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Mezey, 1998). Cirrhosis, including evidence of hepatic failure, as well as portal 

hypertension, should be treated with awareness to other organ damage associated with 

alcohol (Zimmerman, 1999). ALD may coexist with other organ damage related to alcohol 

misuse, including cardio-myopathy (Klatsky et al., 2005; Lazarević et al., 2000), muscle 

wasting (Preedy et al., 2001), and alcoholic neurotoxicity (Estruch et al., 1993). All of these 

concomitant organ dysfunctions should be considered in alcohol-induced injury (Anderson 

et al., 1993; Zimmerman, 1986).

Multiple laboratory markers establish alcohol as the etiology of liver disease. Furthermore, 

alcohol may be one of a number of factors causing liver injury, and the specific contributory 

role of alcohol alone may be difficult to assess in a patient with multiple causes of liver 

disease (O'Shea et al., 2010; Zimmerman, 1999).

Many researchers continue to work in this fascinating area of investigation. The purpose of 

the modern research is to use new technologies, innovative ideas, and integrative teams of 

basic and clinical researchers to elucidate different aspects of alcohol-induced liver damage. 

Since 2009, we meet each year before the Research of Alcoholism annual meeting to 

celebrate new achievements in understanding alcohol and non-alcohol liver damage.

We reviewed the “Alcohol and liver damage” symposia 2009–2012 in two publications 

(Neuman et al., 2013, 2014). The present review summarizes multi-factorial aspects of the 

pathological consequences of acute and chronic alcohol abuse exposed at the 2013 and 2014 

symposia. The symposia addressed clinical issues such as pathology, diagnosis and 

treatments for ASH and NASH as well as nutritional and life style interventions. 

Investigating the common and different mechanisms in ASH and NASH, the symposia also 

proposed in vivo and in vitro models for ASH, NASH, hepatocellular carcinoma (HCC) and 

co-morbidities. We also intended to elucidate polymorphisms of genes involved in ALD and 

the role of microbiota in regulating endotoxin-mediated release of cytokines that have been 

associated with ALD. In addition to the original data, we searched the literature (2013–

2014) for the latest publications on the described subjects. In order to obtain the updated 

data we used the usual engines (PubMed and Google Scholar).

2. The hallmarks of alcoholic hepatitis compared to non-alcoholic 

steatohepatitis

Samuel W. French, Barbara A. French, Hong Shen, Brittany Tillman, Jun Li, Hui Liu.

Alcoholic steatosis can occur after large alcohol consumption. It represents a direct effect of 

alcohol per se and can occur despite an adequate nutritional state. Early changes seen under 

the electron microscope include accumulation of membrane-bound fat droplets, proliferation 

of smooth endoplasmic reticulum, and gradual distortion of mitochondria. Lipid 

accumulation in ALD is macrovesicular and composed of neutral triglycerides. However, 

small droplets of such triglycerides may appear like microvesicular droplets. A liver biopsy 

is an important component of the diagnostic evaluation in patients with suspected ALD, 

because it can grade the severity and exclude other diagnoses. In addition, some histologic 

findings, such as perivenular fibrosis and the presence Mallory–Denk bodies (MDB) may be 
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associated with an unfavorable prognosis in patients who have steatosis but have not yet 

developed cirrhosis.

Many years ago, Hans Popper speculated that, since ASH and NASH had a lot in common, 

their comparison would help us understand both disease processes. The differences and 

similarities are numerous. So how do we distinguish one from the other? We define them by 

their hallmarks, many of which we discuss here.

2.1. Clinical aspects

A constellation of abnormalities forms the background for NASH development including 

obesity, type 2 diabetes, hypertension, polycystic ovarian syndrome and acanthosis 

nigricans. ASH however develops as the consequence of alcohol abuse. Symptoms of 

NASH are absent or include upper quadrant abdominal pain in one-third to one half of 

patients. ASH may include fatigue and anorexia. Signs in NASH include hepatomegaly 

often missed because of obesity. ASH may include fever and jaundice. If cirrhosis has 

developed, muscle wasting, spider angiomata and encephalopathy occur.

A number of laboratory abnormalities, including elevated serum aminotransferases, have 

been reported in patients with alcoholic liver injury, and used to diagnose ALD. Serum 

aspartate aminotransferase (AST) is less than 500 IU/L in alcoholic hepatitis. Laboratory 

findings in NASH include alanine aminotransferase (ALT) normal to 300 U/L, ALT > AST 

(1.5:1 ratio) (Sorbi et al., 1999), and AST > ALT if there is cirrhotic. Alkaline phosphatase 

(ALP) is usually normal. Total bilirubin is normal, prothrombin time is normal, white blood 

count (WBC) is normal, and mean corpuscular volume (MCV) of erythrocytes is normal. 

Ferritin may be elevated (Kowdley et al., 2012). Laboratory findings in ASH differ from 

NASH as follows: AST > ALT often by more than a 2:1 ratio, ALP may be elevated, total 

bilirubin is elevated, prothrombin time may be elevated, WBC is elevated up to 

50,000/mm2, and the MCV may be elevated.

Carbohydrate-deficient transferrin (CDT) levels remain elevated for 1 to 2 weeks after 

alcohol abstinence in ASH. Therefore it is a powerful measurement that documents the 

exclusion of ASH from NASH (Delanghe et al., 2007; Ohtsuka et al., 2005). When CDT 

levels are combined with gamma glutamate transferase (γGT) levels (level of cholestasis) 

the ability to differentiate ASH from NASH is improved (Chen et al., 2003). Serum levels of 

cytokeratin (CK) 19 and CK18 are elevated in both ASH and NASH when MDBs are 

formed (Gonzalez-Quintela et al., 2006; Tsutsui et al., 2010). The sensitivity and specificity 

of the biomarkers AST, ALT, MCV, CDT, or the combination of CDT with γGT or CDT + 

γGT + MCV to distinguish between harmful or heavy alcohol consumption showed that 

CDT + γGT gave the best results i.e., sensitivity of 83–90% and specificity of 95–98%.

2.2. Adduct formation

4-Hydroxynonenal (4-HNE) adduct aggresomes form in hepatocytes and macrophages 

independent of MDBs in the livers of both ASH and NASH just as M30 [fragments of 

cytokeratin (CK18)] are found in MDBs (Amidi et al., 2007). M30 were found in 100% of 
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MBDs in both NASH and ASH. MDBs were found in 45% of ASH and 40% of NASH. 4-

HNE aggresomes were found in 55% of ASH and 73% of NASH patients.

Liver complement factors increase.C1Q, C3 and C4 accumulate in the NASH livers (Rensen 

et al., 2009). We have found that C1Q, C3 and C5 accumulate in the livers of ASH (Fig. 1). 

We measured the increase by measuring the fluorescent antibody intensity morphometrically 

(Fig. 2A and B). C1Q, C3 and C5 were significantly increased in ASH compared to normal 

controls.

2.3. Histopathology of NASH and ASH compared

Comparison of the different histologic changes seen in the livers of NASH and ASH have 

been published (Tannafel et al., 2011) as follows: ASH steatosis+, NASH++; ballooning 

ASH++, NASH++; lobular inflammation ASH++, NASH−/+; MDBs ASH+++, NASH+; 

satellitosis ASH+++, NASH−; acute cholestasis ASH+, NASH−; perisinusoidal fibrosis 

ASH+, NASH+; sclerosing hyaline necrosis ASH++, NASH−, venoocclusive disease ASH+

+, NASH−. Balloon degeneration should be required to make the diagnosis in both NASH 

and ASH (French et al., 1989, 1993).

2.4. Toll like receptor (TLR)3/4 signaling pathways in NASH compared with ASH

Liver biopsies from NASH and ASH patients subjected to PCR analysis of the expression of 

toll like receptors (TLRs) showed that TLR3 and 4 were up regulated in ASH, TLR4 more 

than TLR3. In contrast TLR3 and 4 were up regulated equally in NASH. MyD88 was 

greatly up regulated in NASH whereas MyD88 was up regulated less in ASH. IRF3 and 7 

were up regulated in NASH (Liu et al., 2014a). The chemokine expression end point of the 

TLR3/4 pathways also differed. CXCR4 was up regulated in NASH and CXCR7 was up 

regulated in NASH. NFκB was only up regulated in NASH. Thus the ASH TLR3/4 pathway 

differed from NASH. In ASH the TLR4-MyD88 dependent pathway and the TLR3 

independent pathway were up regulated (Fig. 2A) where as in NASH the TLR3, IRF3 and 7 

pathways were also increased (Fig. 2B). FAT10 was up regulated in ASH but not in NASH 

(Fig. 2A & B).

2.5. The role of FATylation and ubiquitylation pathways in protein quality control in ASH 
and NASH

Based on the down regulation of FATylation and ubiquitylation in the protein quality control 

in the DDC mouse model of MDB aggresome formation (Liu et al., 2014b), we assayed the 

expression of this system in the livers of patients who had ASH and NASH. UBLs and 

ligases 1 and 2 in the ubiquitylation and FATylation pathways of protein quality control 

were measured using quantitated real time PCR on formalin fixed and paraffin embedded 

liver biopsies. Ufc1, Ufm1, Uba5, Uba6 and FAT10 were measured. Biopsies from NASH, 

cirrhosis, ASH and normal controls were studied. Ufc1, Ufm1, Uba5 and 6 were down 

regulated. FAT10 was markedly up regulated in ASH and cirrhosis. Uba6 and Uba5 were 

down regulated in NASH. Uba6 is an Ubl protein essential for FATylation and Ub5 is 

involved in Ufmylation. Using morphometric quantitation of protein levels in the liver cell 

cytoplasm of liver biopsies from ASH, showed a selective loss of Uba6 in balloon 

degenerated MDB forming hepatocytes. From these changes it was concluded that the loss 
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of normal protein quality control due to deficiency of function of the FATylation and 

ubiquitylation pathways accounted for the accumulation of misfolded proteins and MDB 

formation in the cytoplasm of balloon cells in NASH and ASH (Fig. 3).

3. Induction of cytochrome P4502E1 in alcoholic liver disease and the role 

of iron overload

Helmut K. Seitz and Sebastian Mueller.

Centre of Alcohol Research, University of Heidelberg, Heidelberg, Germany.

The increase in CYP2E1 has been reported not only in liver, but also in extrahepatic tissues 

such as the mucosal cells of the gastrointestinal tract (Seitz et al., 1978, 1982). In addition 

age plays a significant role in modeling the liver damage (Seitz and Stickel, 2007a). 

Expression of CYP2E1 is increased by chronic ethanol consumption accounting for 

increased hepatic ethanol oxidation observed in this setting. In addition, a peroxisomal 

catalase also involved in ethanol oxidation may further contribute to liver injury. Non-

oxidative ethanol metabolism involves formation of fatty acid ethyl esters from free fatty 

acids and ethanol. Fatty acid ethyl esters can also contribute to the cell injury.

The induction of CYP2E1 by chronic alcohol consumption results in a variety of complex 

cellular effects with enormous clinical significance such as an increase of ethanol 

metabolism and increased production of reactive oxygen species (ROS) with increased 

cellular toxicity resulting in ALD and stimulating carcinogenesis. The effect of ROS on lipid 

peroxidation is leading to lipid peroxidation products such as 4-HNE and malondialdehyde. 

4-HNE by itself may bind to nucleotide bases such as cytosine and adenosine resulting in the 

generation of exocyclic etheno DNA adducts which are highly mutagenic and carcinogenic 

(Wang et al., 2009).

We performed liver biopsies in a group of 97 (31 women and 66 men) non-cirrhotic ALD 

patients that are drinking >60 g ethanol/day. Their age varied between 24 and 72 years. 

AST/ALT ratio was >1.5. γGT was 35–5760 U/L. Their histology showed steatohepatitis 

and fibrosis with various degree of severity (Kleiner et al., 2005). Immunohistochemistry 

staining identified CYP2E1 and exocyclic etheno-DNA adducts (Frank et al., 2004). The 

biopsies showed an increased induction of CYP2E1 associated with a similar increase not 

only in 4-HNE but also in the adducts such as N6-etheno-deoxyadenosine and N2,3-etheno-

deoxycytidine. We also found a significant correlation between etheno DNA adducts and 

CYP2E1. Moreover, a significant positive correlation exists between CYP2E1 and fibrosis. 

We therefore conclude that CYP2E1 activity plays an important role in the progression of 

ALD.

The use of non-invasive tests to determine the severity of the liver injury in ALD is in 

continuous search for innovative methods. Non-invasive tests for liver fibrosis are based on 

imaging techniques such as ultrasound, computed tomography and magnetic resonance 

imaging. For example, transient elastography uses ultrasound techniques with wave 

vibrations in order to measure liver stiffness, which reflects the extent of fibrosis (Foucher et 
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al., 2006; Ziol et al., 2005). These techniques are currently performed predominantly when a 

diagnosis of cirrhosis is suspected, as they can detect cirrhosis, but are unable to distinguish 

accurately between other stages (Seitz and Stickel, 2007a, 2007b).

Another factor contributing to the severity of ALD is iron overload. Alcohol drinking 

increases the body iron stores. Even moderate consumption leads to the elevation of the iron 

concentration, ferritin and transferrin saturation in serum and the hepatic iron content. Both 

iron and alcohol cause the oxidative stress and lipid peroxidation leading to the liver injury. 

The excessive iron accumulation can be one of the reasons involved in ALD. Body iron 

stores affect the indicators of liver function. In addition, there are two conditions that may 

accompany ALD: hemochromatosis and porphyria cutanea tarda (Zimmerman, 1999). There 

is an association between alcoholism and the two iron overload diseases. Twenty-five to 

50% of patients with hemochromatosis take alcohol in excess (Zimmerman and Ishak, 

1996), and ahigh proportion of patients with porphyria cutanea tarda also are heavy drinkers 

(Hift and Kirsch, 1995; Lefkowitch and Grossman, 1983).

The degree of CYP2E1 induction can be correlated with generation of ROS. Moreover, 

altered cell-mediated immunity increased postoperative infection rate in alcoholic patients 

(Sander et al., 2002; Spies et al., 2004). Seitz and Suter (2001) showed also the role of 

nutrition in alcohol-induced HCC. In addition to viral infections, there are cofactors by 

which alcohol may enhance the development of hepatocellular malignant transformation. 

These include environmental carcinogens, activation of pro-carcinogens via induction of 

CYP2E1, and iron-overload. It has become evident that excess body iron may complicate 

ALD and lead to HCC. Alcohol may contribute to inappropriately low secretion of hepcidin. 

Cirrhosis is almost always present when HCC is diagnosed. Iron loading of the liver results 

and may be complicated by malignant transformation of the liver.

In summary, a major impact of alcohol on CYP2E1 and formation of exocyclic etheno-DNA 

adducts associated with a increase in 4-HNE is undisputed. Dietary and environmental 

factors favor tumor development and expansion probably by a mechanism in which alcohol 

compromises antitumor immune surveillance.

4. Non-alcoholic steatohepatitis in octogenariens in Israel

Steve Malnick.

Non-alcoholic fatty liver disease (NAFLD) is one of the major causes of hepatic disease 

worldwide (Musso, 2012). It is a major cause of cirrhosis and its complications including 

HCC (Ascha et al., 2010). NAFLD is considered to be the hepatic manifestation of the 

metabolic syndrome (Chalasani et al., 2012). The metabolic syndrome is defined by the 

National Cholesterol Education Program (NCEP) criteria although other criteria are 

accepted for non-Caucasian populations (Eckel et al., 2005).

There have been three large population-based studies to determine the prevalence of 

NAFLD (Bellentani et al., 2010; Lazo et al., 2013). The prevalence of NAFLD is 

approximately 21% and the more severe and clinically important subtype of steatohepatitis 

is approximately 10% (Chalasani et al., 2012). The components of the metabolic syndrome 
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have increased concomitant with the increase in obesity in developed countries (Younossi et 

al., 2011).

NAFLD has a much higher prevalence in the aged population. Our group has reported a 

prevalence rate of 46% detected by ultrasound, in a cohort of healthy octogenerians admitted 

to the rehabilitation wards of a geriatric hospital (Kagansky et al., 2004). This rate was 

significantly higher than that found in a younger population. There was, however, no 

correlation between NAFLD and the metabolic syndrome, cardiovascular disease and 

cirrhosis. A study from Rotterdam of 2811 participants, with an average age of 76 years, 

found a prevalence of 35.1% based on ultrasound (Koehler et al., 2012). There were 265 

patients over the age of 85 years. The prevalence of NAFLD decreased with advancing age. 

The reason for this is unclear but may be due to selective mortality. Furthermore, the 

association between the number of components of the metabolic syndrome and fatty liver 

decreased with advancing age.

A study from Shanghai of 2201 participants aged 50–83 with a diagnosis of fatty liver based 

on ultrasound revealed a prevalence of 22.8% in females and 16.03% in males (Yang et al., 

2011). The prevalence of fatty liver was significantly higher in the group aged greater than 

70 years of age (20.22%) compared to the group aged 50–59 years of age (17%). In addition, 

serum adiponectin levels were significantly higher in the group aged more than 70 years of 

age compared to the group aged between 50–59 years. Adiponectin levels are linked to 

insulin sensitivity and hypoadiponectinemia is linked to insulin resistance. Aging is also a 

risk factor for NAFLD in premenopausal women. Thus there are differences between 

NAFLD in younger and aged populations.

The components of the metabolic syndrome also change with age (Hildrum et al., 2007). 

According to the International Diabetes Federation definition of obesity, the prevalence of 

the metabolic syndrome increased from 9.2% in women and 11% in men in those aged 20 to 

29 years of age, to 64.4% in women and 47.2% in men in those aged 80–89 years of age.

NAFLD encompasses a spectrum of histology ranging from steatosis through steatohepatitis 

to fibrosis. Liver-related morbidity and mortality are linked to the severity of the liver 

damage. NAFLD has a relatively benign prognosis but NAFLD-related cirrhosis may be 

complicated by portal hypertension, HCC and death from liver disease. Three easily 

assessed clinical parameters help us to identify individuals with cryptogenic hepatitis who 

are likely to have advanced fibrosis on liver biopsy. These are age older than 45–50 years, 

overweight or obese body mass index and type 2 diabetes (Angulo et al., 1999). The 

probability of having bridging fibrosis or cirrhosis on liver biopsy is approximately 66% in 

patients with cryptogenic cirrhosis who are older, overweight/obese and diabetic. This may 

reflect referral bias to hepatologists in tertiary referral centers.

Other groups have looked at obese and diabetic individuals who were not selected on the 

basis of elevated liver enzymes. Gastric bypass surgery is usually not offered to patients 

with significant liver disease. However, intra-operative liver biopsies demonstrate advanced 

bridging fibrosis (F3) or cirrhosis (F4) in 12% of these morbidly obese patients (Beymer et 

al., 2003). Similarly, when liver biopsy was offered to a group of middle-aged or older 
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diabetics who were noted incidentally to have fatty liver on ultrasound, the prevalence of 

F3-4 fibrosis was about 20% (Gupte et al., 2004).

The connection between NAFLD and mortality is unclear. Earlier studies have found that 

liver disease was the third leading cause of death (Adams et al., 2005; Söderberg et al., 

2010). However, a recent re-assessment of the NHANES archived videotapes of US 

performed on the gallbladders of 11,371 adults from 1988–1994 showed no increased risk of 

death from all causes, cardiovascular or liver disease, or cancer (Lazo et al., 2011).

Once again these differences may be related to referral bias between population-based 

studies and liver clinics in tertiary referral centers. Thus, together with the risk factors for 

the metabolic syndrome, the prevalence of NAFLD increases with age. Despite the 

comorbidity associated with these risk factors, there is no change in the mortality related to 

NAFLD. This is similar to the obesity paradox in heart failure (Chase et al., 2014).

The possible explanation for this is unclear. It is possible that changes in the fecal 

microbiome play a role. The intestinal microbiota play an important role in the maintenance 

of host health by providing energy, nutrients and immunological protection (Blaut et al., 

2002; Nicholson et al., 2012). The fecal microbiota composition changes from childhood to 

old age (Mariat et al., 2009). There are also differences across age and geography 

(Yatsunenko et al., 2012). There is an influence of the intestinal microbiome on liver disease 

including NAFLD. This has recently been reviewed (Schnabl and Brenner, 2014). 

Furthermore, the effect of metformin on insulin resistance may also be related to the effect 

on the fecal microbiome (Burcelin, 2014). The cohort of aged people were born and grew up 

either before or at the beginning of the antibiotic era and had a very different exposure to 

antibiotics than younger people.

In summary, although NAFLD is a common cause of cirrhosis and end-stage liver disease, it 

is more common in the population of aged people than in younger groups. The challenge is 

to understand this paradox and the natural history of patients with NAFLD.

5. Alcoholic hepatitis

Ramon Bataller.

Acute alcoholic hepatitis (AH) is a clinical syndrome characterized by new onset jaundice 

and/or ascites in the setting of ongoing alcohol abuse and underlying ALD (Lucey et al., 

2009). Population based studies estimate approximately 4.5 hospitalizations for AH per 

100,000 persons each year, with a slight male predominance (Sandahl et al., 2011). Patients 

typically present with rapidly progressive jaundice, which can be accompanied by fever, 

abdominal pain, anorexia, and weight loss. In severe cases, portal hypertension is severe, 

and the patient presents with ascites, encephalopathy, or variceal bleeding. There are no 

reliable non-invasive markers that estimate the presence of AH in patients with 

decompensated ALD. A cardinal featureof AH is anelevated ratio of AST to ALT, typically 

greater than 2:1, and both are usually <300 IU/L. The diagnosis of AH is made on clinical 

grounds, based on a history of excessive alcohol use with the typical physical exam and 

laboratory findings. Liver biopsy may be helpful in establishing the presence of ASH and 
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has been endorsed in recent clinical practice guidelines (Mathurin et al., 2012; Murray and 

Carithers, 2005).

Several models have been developed to help predict outcomes of patients with AH and to 

guide therapy. The most widely used is Maddrey's discriminant function (DF). Additional 

predictive models include the Model for End-Stage Liver Disease (MELD), the Glasgow 

AH score, the ABIC score, and the Lille model (Altamirano and Bataller, 2011; Dominguez 

et al., 2008). Clinical practice guidelines therefore recommend stopping corticosteroids after 

one week in those with an unfavorable Lille score, as the risks of continued therapy likely 

outweigh the benefits (Murray and Carithers, 2005; Mathurin et al., 2012). Recently, we 

performed a large multicentric study to develop a histological scoring system capable of 

predicting short-term survival in patients with AH. The resulting Alcoholic Hepatitis 

Histological Score (AHHS) comprises 4 parameters that are independently associated with 

patients' survival: fibrosis stage, polymorphonuclear infiltration, type of bilirubinostasis and 

presence of megamitochondria. By combining these parameters in a semiquantitative 

manner, we were able to stratify patients into low, intermediate, or high risk for death within 

90 days (Altamirano et al., 2014).

The management of patients with AH has not evolved much in the last decades. Besides 

general measures, patients with a high risk of death (DF ≥ 32, or poor prognosis based on 

other scoring systems) should be treated with specific therapy. Prednisolone and 

pentoxifylline are considered the two first-line therapies for severe AH. In most centers, 

pentoxifylline is typically reserved as a second-line agent for patients with contraindications 

to corticosteroid therapy (1). Moreover, promising results were recently obtained with N-

acetylcysteine, a powerful antioxidant substance that potentiates the beneficial effects of 

prednisolone. However, many patients do not respond to medical therapy and novel targeted 

therapies are urgently needed. Recently, salvage liver transplantation in highly selected 

patients has been shown to improve survival significantly, but is not available in the vast 

majority of transplant centers (Mathurin et al., 2011).

In the last years, translational studies have identified several potential cellular and molecular 

targets to treat patients with advanced ALD including AH (Gao and Bataller, 2011). An 

incomplete maturation of hepatic progenitor cells is associated with bad prognosis, 

suggesting a role for maneuvers aimed at promoting the differentiation of these cells 

(Sancho-Bru et al., 2012). Molecular targets include the CXC chemokine family, tumor 

necrosis factor receptor superfamily member 12A (Fn14), osteopontin (OPN), CCl20, 

members of the inflammasome, interleukin-22, the Hedgehog signaling pathway and 

macrophage migration inhibitory factor (MIF) (Altamirano and Bataller, 2011). The 

development of animal models of true AH is urgently needed to translate these recent 

studies into the clinical practice.

6. Dysregulation of hepatic methylation reaction impact on alcohol and 

HCV

Natalia A. Osna, Paul G. Thomas, Murali Ganesan, Kusum K. Kharbanda.
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Findings in our laboratory have demonstrated that ethanol feeding lowers the hepatocellular 

S-adenosylmethionine to S-adenosylhomocysteine ratio. This decrease causes serious 

functional consequences including reductions in essential methylation reactions and 

impaired interferon signaling in the context of hepatitis C virus (HCV) infection. Further, 

increasing methylation demand by an exogenously supplied methyl-group consuming 

compound in combination with ethanol generates more pronounced liver injury than either 

agent alone. Thus, chronic alcohol consuming patients should be advised against increased 

dietary intake of methyl-consuming compounds even for a short period of time.

ALD is caused by excessive intake of alcohol (Gao and Bataller, 2011; Orman et al., 2013). 

A majority of alcoholics (>90%) develop hepatic steatosis, an early stage of ALD, but 

progression to steatohepatitis occurs only in 20% of the patients. Further, only a fraction of 

patients (20 to 50%) with ASH develop cirrhosis. These observations and subsequent animal 

studies have led to the conclusions that excessive intake of alcohol is the first hit to induce 

hepatic steatosis, and the second hit is required for the development of steatohepatitis and of 

cirrhosis. Second hits have been categorically divided into nutritional, agonistic/ xenobiotic/

pharmacologic, hemodynamic, HCV and genetic groups (Tsukamoto et al., 2009).

In our ongoing investigation, we have reported that chronic ethanol intake causes defects in 

methionine metabolism that ultimately lower the hepatocellular S-adenosylmethionine 

(SAM) to S-adenosylhomocysteine (SAH) ratio. The reduced ratio decreases the cellular 

methylation potential and significantly impairs many liver methylation reactions catalyzed 

by specific SAM-dependent methyltransferases (Kharbanda, 2009, 2013; Kharbanda et al., 

2007). One such methyltransferase, guanidinoacetate methyltransferase (GAMT) that 

catalyzes the last step in creatine synthesis is considerably impaired after chronic alcohol 

consumption (Kharbanda et al., 2014a). GAMT is a major consumer of methyl groups and 

utilizes as much as 40% of the SAM-derived groups to convert guanidinoacetate (GAA) to 

creatine (Mudd et al., 2007).

Over the past decade, exposure to methyl-group consuming compounds has substantially 

increased, introducing additional stresses on the cellular methylation potential (Zhou et al., 

2011). Thus, we sought to investigate whether increased ingestion of a methyl-group 

consumer, GAA, could be a second hit that could exacerbate the progression of alcoholic 

liver injury. Adult male Wistar rats were pair-fed the Lieber DeCarli control or ethanol diet 

in the presence or absence of GAA for 2 weeks. At the end of the feeding regimen, 

biochemical and histological analyses were conducted. We observed that 2 weeks of GAA – 

or ethanol – alone treatment increases hepatic triglyceride accumulation by 4.5 and 7-fold, 

respectively as compared with the pair-fed controls. However, supplementing GAA in the 

ethanol diet produced panlobular macro- and micro-vesicular steatosis, a marked decrease in 

the methylation potential and a 28-fold increased triglyceride accumulation. These GAA-

supplemented ethanol diet-fed rats displayed inflammatory changes and significantly 

increased liver toxicity compared to the other groups (Kharbanda et al., 2014b). In 

conclusion, increased methylation demand superimposed on chronic ethanol consumption 

causes more pronounced liver injury. Thus, alcoholic patients should be cautioned for 

increased dietary intake of methyl-group consuming compounds even for a short period of 

time.
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Another “second hit” that drives ALD progression is the persistence of HCV infection that 

occurs due to compromised IFNα signaling (Gale and Foy, 2005). Interferon signaling is 

crucial for induction of antiviral activity through the activation of interferon-sensitive genes 

(ISGs). One of the requirements for successful transduction of IFN signal through the Jak–

STAT1 pathway is STAT1 methylation (Duong et al., 2004, 2006). Previously, we have 

shown that IFN signaling in liver cells is altered by ethanol metabolism (Osna et al., 2005, 

2007). We hypothesize that ethanol-induced impairments of IFN signaling in HCV-infected 

cells are due to dysregulation of methylation reactions. To test the hypothesis, we treated 

HCV (JFH1)-infected and non-infected Huh 7.5 cells with acetaldehyde-generating system 

(AGS), using ethanol, yeast alcohol dehydrogenase (ADH) and NAD, which produces ∼200 

μM acetaldehyde (Ach). These levels are comparable to those generated by alcohol 

dehydrogenase-transfected hepatoma cells exposed to ethanol (Donohue et al., 2006). We 

observed that exposure to AGS lowered the hepatocellular SAM:SAH ratio, reduced the 

cellular methylation potential as well as suppressed STAT1 phosphorylation on both 

tyrosine and serine residues. In addition, Ach decreased accumulation of pSTAT1 in the 

nuclear fraction. Furthermore, as a result of Ach-induced hypomethylation, STAT1 formed 

complexes with protein inhibitor of activated STAT1 (PIAS1), thereby preventing the 

attachment of STAT1 to DNA and decreasing ISG activation. All these Ach-induced defects 

were more pronounced in HCV-infected cells compared with non-infected cells. The effects 

of Ach on STAT-1 phosphorylation, PIASI-STAT-1 complex formation, and attachment of 

STAT1 to DNA were all reversed by betaine treatment indicating that these events are 

methylation-dependent. Further evidence linking Ach-induced hypomethylation and 

impaired IFN signaling was provided by treatment with a pan-methylation inhibitor, 

tubercidin and the specific inhibitors of arginine- and lysine methylation. These methylation 

inhibitors mimicked all of the above-mentioned effects of Ach treatment on IFN signaling 

and lowered the expression of 2′,5′-oligoadenylate synthetase-like (OASL), an anti-viral 

protein that is encoded by ISGs. In conclusion, Ach, via impairing methylation reactions, 

suppresses IFN signaling at multiple levels in both non-infected and HCV-infected cells. 

However, the suppression is more pronounced in HCV-infected cells. Betaine treatment 

prevents all investigated Ach-induced changes in the IFN-induced Jak-STAT1 pathway, 

demonstrating the importance of normal methylation status in the promotion of anti-viral 

response.

7. Laboratory diagnosis of alcohol drinking

Radu M. Nanau and Manuela G. Neuman.

In order to monitor the patient's alcohol-related damages, numerous biochemical and 

psychological tests and devices have been developed and suggested to uncover alcohol 

consumption. Biological tests can provide direct measurements to clinicians and 

toxicologists.

The quantitative, measurable detection of drinking is important for the successful treatment 

of alcohol misuse. Also detection is imperative in liver transplantation of patients with 

alcohol disorders, people living with human deficiency virus that need to adhere to 

medication, as well as, special occupational hazard offenders, many of whom continually 
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deny drinking (Allen et al., 2013; Maenhout et al., 2013). The accurate identification of 

alcohol consumption via biochemical tests contributes significantly to the monitoring of 

drinking behavior.

In 8708 adult participants in the third U.S. National Health and Nutrition Examination 

Survey Liangpunsakul et al., (2010) analyzed the relationship between the amount of 

alcohol drinking and γGT, AST:ALT ratio, MCV of erythrocytes, and apolipoprotein A1 

and B. When tested alone or in combination, and adjusted for potential liver injury risk 

factors, the sensitivity and positive predictive values for these blood tests were too low to be 

clinically useful in identifying the subjects in the heavier drinking category (Liangpunsakul 

et al., 2010).

Alcohol ingestion may directly be measure using blood alcohol concentrations and a breath 

test (Roiu et al., 2013). Because alcohol is rapidly eliminated from the circulation, the time 

for detection by this analysis is in the range of hours. Alcohol consumption can alternatively 

be detected by direct measurement of ethanol concentration in blood or urine. A ratio of 

2100:1 between the blood alcohol concentration and the breath alcohol concentration, which 

is the standard ratio used in law enforcement, was achieved after 30 min in a sample of 

healthy volunteers, and this remained relatively stable through almost 3 h post-ingestion 

(Grubb et al., 2012). Several markers have been proposed to extend the detection interval 

and sensitivities, including ethyl glucuronide and ethyl sulfate in urine, phosphatidyl-ethanol 

in blood, and ethyl glucuronide and fatty acid ethyl esters in hair, among others (Lahmek et 

al., 2012). Moreover, CDT, which reflects longer lasting consumption of higher amounts of 

alcohol, should be better standardized (Anton et al., 2002; Daves et al., 2011; Jeppsson et 

al., 2007). There is a need to correlate CDT, with serum γGT, another long term indirect bio-

markers that is routinely used in monitoring alcohol-induced liver damage and is 

standardized in laboratory medicine.

This work describes the laboratory methods that are used to determine alcohol levels in 

different matrices (breath, blood, urine, hair, saliva). The laboratory standardization is 

needed to ensure the large use of different methods. Moreover, since some tests are 

influenced by ethnicity, gender or the presence of other co-morbidities, the laboratory 

medicine specialist and the clinician should communicate in order to ensure that the 

diagnosis is correct.

Single serum biomarkers that are involved in fibrosis physiopathology of the ECM can be 

used as indicators of fibrosis (Castera et al., 2000; Neuman et al., 2012a). However, most of 

these markers are not liver-specific, and can be affected by other clinical conditions, such as 

inflammation. They are often used in combination in order to generate a score according to 

an algorithm, which is then used to give a fibrosis prediction.

Most indirect markers used in the algorithms of scores are simple parameters, readily 

available in the current clinical chemistry such as AST, ALT, cholesterol, γGT, bilirubin, 

gamma globulin and platelet counts. Other tests may use α2-macroglobulin, haptoglobin and 

apolipoprotein A1. Platelet counts decrease as liver fibrosis extends because of the low level 

of thrombopoietin produced by the liver. Neopterin and interleukin 8 are predictors for 
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alcohol induced cirrhosis (Homann et al., 2000). α2-Macroglobulin is an inhibitor of 

endoproteases synthesized in the liver. Its serum levels increase with the degree of liver 

fibrosis (Rossi et al., 2007). Haptoglobin is an acute phase protein whose concentration 

increases in inflammatory conditions. Its level decreases with increasing stages of fibrosis 

(Lee et al., 2010). Apolipoprotein A1 is the major protein component of high-density 

lipoproteins. Its levels decrease as the fibrosis progresses.

Direct biochemical markers include cytokines involved in the fibrogenetic process such as 

TGF-β1, components of the ECM such as collagen, glycoproteins, proteoglycans and 

glycosaminoglycans, and molecules involved in the wound-healing process of the liver such 

as matrix metalloproteins (MMP) and tissue inhibitors of metalloproteinase (TIMP). 

Collagen markers include pro-collagen peptides, as well as type I, III and IV collagen, and 

laminin. The most extensively studied collagen marker is the N-terminal peptide of 

procollagen type III (PIIINP), cleaved from procollagen III during its secretion from 

fibroblasts (Hayasaka et al., 1990; Neuman et al., 2012a; Nøjgaard et al., 2003; Schaefer et 

al., 2003). Hyaluronic acid is a structural glycosaminoglycan present in the ECM. It has 

been used on its own as a single fibrosis marker or, more recently, in combination with other 

markers. Liver fibrosis causes elevations in hyaluronic acid levels in serum. The specific 

importance of hyaluronic acid measurement was in correlation with other investigators' 

opinion. MMPs and TIMPs are proteins involved in the regulation of fibrogenesis and 

fibrolysis. The excess collagen deposition in the hepatic tissue, a characteristic of fibrosis, 

results from increased collagen synthesis and decreased collagen degradation, mediated by 

increased TIMPs. MMPs and TIMPs are not currently assessed in routine clinical 

laboratories (Neuman et al., 2012a).

8. Alcohol misuse and therapeutic-alcohol interactions

Manuela G. Neuman, Lawrence E. Cohen.

A variety of morphologic and functional changes reflect organ injury produced by alcohol. 

The present review describes several laboratory approaches in alcohol misuse, with a 

particular emphasis on the mechanisms by which alcohol interacts with therapeutics and 

leads to unwanted adverse effects. The main pathologies associated with alcohol-induced 

organ damage are severe steatosis, cirrhosis, chronic pancreatitis, cardiomyopathy and 

cerebellar atrophy (Neuman et al., 2012a, 2012b). The high rate of potentially lethal adverse 

drug reactions associated with alcohol misuse highlights the need of laboratory monitoring. 

Understanding the molecular mechanisms by which alcohol leads to adverse drug reactions 

can help tailor therapeutic interventions that will prevent patient mortality.

Possible factors that affect the development of injury include the dose, duration and type of 

alcohol consumption, drinking patterns, sex, and ethnicity (Wechsler and Austin, 1998). In 

addition, there are associated risk factors such as obesity, concomitant infections and the 

interaction between therapeutics with alcohol, and genetic factors (Neuman et al., 2012c).

The diagnosis of ALD may appear straightforward in the patient with a documented history 

of alcohol abuse and compatible clinical features. However, patients misusing alcohol can 

have concurrent forms of liver disease, or have liver disease unrelated to alcohol. A high 
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prevalence (25 to 65%) of HCV infection has been recognized in individuals that abuse 

alcohol. Accelerated fibrosis in ALD patients with In Wilson's disease, copper overload, is 

rarely seen. There are several characteristic laboratory abnormalities in patients with ALD 

but none is diagnostic. The most common pattern of biochemical abnormalities is a 

disproportionate elevation of serum AST compared to ALT. This ratio is usually greater 

than 2.0, a value that is rarely seen in other forms of liver disease. For example, the average 

AST/ALT ratio was 2.85 in patients with ALD versus 0.9 in those with NASH and a ratio 

below 1.0 in patients with chronic viral hepatitis (Cohen and Kaplan, 1979; Sorbi et al., 

1999; Williams and Hoofnagle, 1988).

Using World Health Organization-International Federation of Clinical Chemistry and 

Laboratory Medicine (WHO-IFCC) recommendation and methods our laboratory defines 

normal values in adults as follows: ALT 5–40 U/L for men and 5–32 U/L for women; AST 

5–38 U/L for men and 5–32 U/L for women; γGT 2–50 U/L for men and 2–35 U/L for 

women. Since γGT shows the function of cholangiocyte epithelia, if the value is higher the 

differential diagnosis of cholestasis (primary biliary cirrhosis, primary sclerosing 

cholangitis) should be ruled out. Higher concentrations of serum AST and ALT than 500 

U/L should raise the suspicion of concurrent liver injury due to viral or ischemic hepatitis, 

hypersensitivity syndrome to therapeutics taken concomitantly, even at therapeutic doses. In 

addition to the laboratory features common to all forms of ALD, alcoholic hepatitis is 

typically associated with elevations in serum ALP and γGT concentrations and with 

hyperbilirubinemia. These changes may persist for weeks after the aminotransferase 

concentrations have returned to normal. Alcoholic foamy degeneration, which is 

characterized by jaundice and hyperlipidemia, can elevate the aminotransferase with the 

AST > ALT (Uchida et al., 1983). Higher values of AST (>5000) can be observe in the 

combination of acetaminophen (APAP) and alcohol. Relevant to the hepatotoxic potential of 

APAP is its metabolic disposition of APAP. The hepatic injury is produced by accumulation 

of its toxic metabolite. Normally, a small fraction of APAP is converted to an active 

metabolite which binds with glutathione (GSH) and is then excreted as mercapturic acid. 

Large doses of APAP lead to increased formation of the active metabolite (Neuman et al., 

1994, 1998). Metabolite, in excess of the available GSH, binds covalently to cytoplasmic 

proteins and, as a consequence, leads to necrosis. Only when the amount of toxic metabolite 

exceeds the available GSH, toxicity occurs (Katz et al., 2001). Since alcohol competes with 

the same GST detoxification pathway and is metabolized by the same CYP isoenzyme, 

accordingly, susceptibility to the hepatotoxic effects of a dose of APAP depends on dose, 

rate of biotrans-formation of APAP and hepatic content of GSH. Toxicity is enhanced by 

agents that enhance activity of the CYP system or deplete stores of GSH. Alcohol and 

APAP synergistically induce CYP2E1, increasing the rate of metabolism of the drug and 

compete for GSH. Administration of acetylcysteine, which increase the GSH deposits, 

during the first 16 h after a toxic dose can prevent hepatic injury.

Seeff et al. (1986) described 25 ALD patients who developed mild to moderate jaundice, 

mild to severe coagulopathy, and highly abnormal aminotransferase levels after moderate 

doses of acetaminophen. Zimmerman and Maddrey (1995) described 67 heavy drinkers 

(alcohol 60–80 g/day) who developed liver damage after ingesting therapeutic doses of 
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acetaminophen (4–6 g/day). AST levels ranged from 3000–48,000 IU/L in more than 90% 

of cases, and almost 20% of the patients died (Zimmerman and Maddrey, 1995).

The alcohol-associated APAP syndrome in the patients with alcohol misuse has appeared 

after repetitive tolerable doses in a short period for headache or hangover. In APAP-alcohol 

interaction, the AST levels can be extremely high (40 to 1000 times normal). Levels of ALT 

are lower. The syndrome is frequently accompanied by metabolic acidosis (Zimmerman and 

Maddrey, 1995).

The interaction between alcohol and the anti-tuberculosis drug isoniazid also presents 

clinical importance, since the metabolism of this drug involves acetylation. Since acyl 

transferase, the enzyme that catalyzes this reaction, is polymorphic, individuals who possess 

an acyl transferase with low activity may accumulate an intermediate, which is then 

activated by CYP2E1 to hepatotoxins. Thus, only individuals with low acyltransferase and 

high CYP2E1 activity develop liver injury (Huang et al., 2003). Values for AST and ALT 

have been very high. ALP levels have been less than threefold elevation in 80% of recorded 

cases.

In addition to signs of hepatic injury, concurrent hematologic abnormalities are common in 

moderate to severe alcoholic hepatitis. Macrocytosis indicates a longstanding disease and 

may reflect poor nutritional status, cobalamin or folate deficiency, toxicity of alcohol, and/or 

MCV.

Alcohol consumption interacts with medication used in cardiology. For example reserpine, a 

beta adrenergic inhibitor is intensified by alcohol, while clonidine hypotensive effect is 

reversed by alcohol ingestion. Moreover, alcohol reduces the metabolism of warfarin and 

increases its blood levels and therefore its anticoagulant effect predisposing the patient to 

hemorrhage (Zimmerman, 1999). As a result, the prothrombin time of the patients who 

consume alcohol should be monitored. Nitroglycerine, a drug used to treat heart disease, 

could lead to elevations of aminotransferases and ALP levels up to three times in the 

presence of alcohol. Also, the vasodilator effect of nitroglycerin is enhanced by alcohol, 

such that it leads to a drop of blood pressure cardiovascular medication patients using 

alcohol. Amiodarone, an anti-arrhythmic medication per se, is known to induce 

hepatotoxicity.

In the presence of alcohol consumption, the medication is more hepatotoxic. Adderall 

(amphetamine, dextroamphetamine mixed salts) is a prescribed stimulant for the treatment 

of attention-deficit/ hyperactivity disorder in children and adolescents. Nonmedical use of 

Adderall is prevalent in high school and college students without intention to overdose. 

However, 3 cases have been reported in the pediatric literature of acute myocardial 

infarction in adolescents without cardiovascular risk factors, who took the total prescribed 

daily dose of Adderall one time while consuming alcohol (Cousins et al., 2014).

Tricyclic antidepressants should be administrated cautiously in alcohol withdraw since they 

can produce synergistic effects with alcohol leading to hypotension. The combination of 

morphine, codeine or heroin with alcohol dramatically increased the sedation profile of these 

agents (Zimmerman, 1999).

Neuman et al. Page 17

Exp Mol Pathol. Author manuscript; available in PMC 2015 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9. Hangover adventure and misadventure

Manuela G. Neuman, Mihai Voiculescu, Mihai Opris.

An additional aspect which can lead to acute hepatitis and needs specific laboratory tools is 

the “hangover” phenomenon that represents the post drinking effects of alcohol. Alcohol 

hangover develops when the blood alcohol concentration falls considerably and peaks when 

it returns to almost zero. It may last up to 36 h. Several symptoms characterize the hangover 

including nausea, cognitive impairment and mood changes. Some of the symptoms of the 

hangover are similar to those of alcohol withdrawal syndrome, but the term “hangover” is 

usually reserved for the after-effects of a single drinking episode and does not necessarily 

imply any other alcohol use disorder (Allen and Litten, 2001).

The processes by which alcohol is metabolized in the cells generate a variety of molecules 

that can be toxic to the brain and liver. For example, alcohol breakdown leads to the 

formation of toxic acetaldehyde and ROS. In addition, alcohol might add to dysregulation of 

gut microbiota, leading to increased gut permeability as well as increased endotoxin levels 

in the blood. Endotoxin produces nausea and detrimental cardiovascular outcomes. In 

addition, heavy drinking occasions lead to increase in traumatic injury. Drinking to 

intoxication is a form of acute heavy drinking. The impossibility to detoxify the breakdown 

products of alcohol results in “hangover” (Neuman, 2001).

The economic consequence of the hangover encompasses loss of work time and poor job 

performance. Wiese et al. (2000) reviewing the literature between 1966–1999 concluded that 

“in the United States, related absenteeism cost $148 billion annually (average annual cost 

per working adult, $2000)”. Individuals with a hangover may pose substantial risk to 

themselves and others despite having normal blood alcohol levels (Bennett et al., 2004). The 

knowledge of different aspects of this scenario could enable us to generate greater awareness 

around this issue for the general public, thus reducing this phenomenon all the while 

improving livelihood. This project might in turn create incentives for medicine to promote 

analysis of circulatory alcohol metabolites in irresponsible individuals that consider working 

during the hangover. Moreover, prevention and education should be designed to improve 

work climate and alcohol outcomes.

The link between alcohol and infectious diseases, such as tuberculosis and human deficiency 

virus was reviewed recently by Neuman et al. (2012d). Emerging evidence of links between 

harmful alcohol consumption levels and some infectious diseases is noted in the WHO 

Global Status Report on Alcohol (Rehm et al., 2004). Neuman et al. (2006) show a link 

between alcohol misuse and other drugs use for HIV. Moreover, there is an increase 

mortality due to drinking problems in specific regions (Leon et al., 2009; Neuman et al., 

2012d; Nicholson et al., 2005).

Changes in cognition are not prominent in the early phases of alcoholic intoxication. 

However, these changes become important during the hangover. Clinical-pathological data 

suggest at least three subtypes of intoxication: disinhibited, apathetic, and stereotypic. The 

disinhibited subtype is characterized by purposeless over-activity, unconcern, profound 

social breakdown, and a behavioral disorder that is more prominent than the cognitive 
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problems (Bobak et al., 2004). The apathetic subtype is characterized by unconcern 

(Goodglass and Kaplan, 1983). The stereotypic subtype is characterized by pronounced 

compulsive traits. However, there is substantial overlap in symptomatology among subtypes, 

especially with progression of the hangover. Marked changes in personality are prominent in 

individuals during hangovers and include altered mood, decreased concern for human life, 

exuberance, euphoria, lack of judgment, and poor judgment (Bobak et al., 2004).

The hangover is a post-intoxication state comprising the immediate after-effects of drinking 

alcoholic beverages in excess (Neuman, 2001). Non-ethanol components of alcoholic 

beverages may be involved in the etiology. The additional substances such as amines, 

amides, polyphenols, histamines, esters, furfural, and tannins can be hepatotoxic (Neuman, 

2001). Such congeners may worsen alcohol hangover severity. Also, there are differences 

between several types of alcoholic beverages. Vodka and whisky are both spirits but differ 

in their composition and in their effect on the drinkers. Moreover, diverse types of whisky 

(brandy, Scotch, American or Canadian) vary significantly in composition. Bourbon whisky 

has more than 3 times as much congeners as Canadian whisky. Therefore, differences in 

types of spirits may have different effects on the way in which they contribute to hangover 

severity. In addition, preparation techniques for distilled spirits and the manner of their 

preservation in wood, glass or copper may introduce new toxic elements into the equation 

(Neuman, 2001). Becker et al. (2002) found lower risk for alcohol-induced cirrhosis in wine 

drinkers, therefore showing that an alcohol from grapes might not present the same toxicity 

as the distilled alcohol. In addition dietary iron overload has been described in rural Black 

Africans in at least 15 sub-Saharan African countries. The condition may affect as many as 

15% of the adult male population. It results from the consumption, over time, of large 

volumes of homemade beer, which has a high iron content as a consequence of it being 

homebrewed in iron devices (Kew and Asare, 2007).

Clinical features of hangover may include headache, vertigo, gastric disorder, insomnia, 

tremors of the hands and raised or lowered blood pressure. Psychological symptoms include 

acute anxiety, depression, or irritability. The amount of alcohol needed to produce a 

hangover varies with the mental and physical conditions of the individual, though generally 

the higher the blood alcohol level during the period of intoxication, the more intense the 

subsequent symptoms will be. The symptoms vary also with social attitude versus the 

women (Morojele et al., 2006; Seedat et al., 2009). An additional factor is genetic 

background; Caucasians are less affected by hangovers when compared with Asians 

(Neuman et al., 2014).

9.1. Hangover and work-related impediment

Frone (2006) found that 9.23% of U.S. workers reported to work with a hangover in the past 

year, making it the most common form of alcohol-related workplace impairment in the 

survey. Additionally, there is a significant relationship between alcohol consumption and 

next-day workplace absenteeism. A survey among 280 employees revealed a two-fold 

increased likelihood of absenteeism the day after alcohol consumption (McFarlin and Fals-

Stewart, 2002). An alcohol screening program used to detect chronic alcohol misuse should 

employ a combination of biomarkers including CDT, MCV, γGT and AST/ALT).
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9.1.1. Professional drivers—Verster et al. (2014a) showed that more than half of the 

professional drivers who consume alcohol, and who reported occasionally having a 

hangover (56.4%), acknowledge that they have driven while in a hangover state during the 

past year: 26.5% only when driving privately, 2.6% only when driving professionally, and 

27.4% both privately and professionally. During an alcohol hangover, professional drivers 

rated their driving style as significantly less relaxed, less safe, less responsible and less 

responsive. Driving with a hangover is a common phenomenon, and professional drivers 

acknowledge that their driving is impaired. The purpose of another study by Verster et al. 

(2014b) was to examine the effects of alcohol hangover on driving performance of forty-two 

social drinkers. The participants were tested on simulated highway driving in the morning, 

following an evening of exaggerated consumption of alcohol (on average 10.2 alcoholic 

drinks – SD = 4.2). This situation represented an alcohol hangover. Participants were also 

tested on a control day, when no alcohol was previously consumed. Subjects performed a 

standardized 100-km highway driving test in the STISIM driving simulator. Self-reported 

driving quality and driving style were scored, as well as mental effort to perform the test, 

sleepiness before and after driving, and hangover severity. The study shows that driving 

performance was impaired during alcohol hangover. Participants reported their driving 

quality to be poorer and less safe. They noted being more tense while driving and extra 

effort was needed to perform the driving test. Additionally, there was an important 

interaction with total sleep time and hangover effects on sleep disorders.

From the laboratory point of view, the evidence that the alcohol metabolites contribute 

actively to hangover is shown by Høiseth et al. (in press). The group investigated the 

prevalence and concentrations of the two ethanol metabolites, namely ethyl glucuronide 

(EtG) and ethyl sulfate (EtS), in blood during hangovers. The study was performed among 

146 apprehended drivers, in which no psychoactive substances, including alcohol, were 

detected. Among the “impaired drivers,” EtG and EtS were detected in 18%, while among 

“not impaired drivers;” they were detected in 5% of the cases. Also the concentrations of 

both EtG and EtS were significantly higher in the group of impaired drivers compared with 

the not-impaired drivers. There was a statistically significant positive correlation between 

the concentrations of EtG and EtS and the degree of impairment. The results indicate that 

hangover symptoms are relevant for traffic safety.

9.1.2. Health professionals—Edvardsen et al. (2014) analyzed the prevalence of alcohol 

among a sample of 916 (81.1% women) health professionals and pharmacists in Norway. In 

addition to a self-reported absence from or impairment at work due to alcohol and/or drug 

use, this study analyzed samples of oral fluid. Alcohol was not detected in any of the 

samples. EtG was found in 0.3% of the collected samples. Illicit drugs and medicinal drugs 

were identified in 0.6% and 7.3% of the samples, respectively. Both analytical results and 

self-reported use of alcohol were analyzed for 12 months. Reduced efficiency at work due to 

alcohol use during the 12 month period was reported by 12.2% of the participants. Hangover 

related to the use of alcohol appeared to be an important issue in this population.

9.1.3. Does a hangover episode make a difference in overall drinking 
behavior?—The term “delayed alcohol-induced headache” is often used synonymously 
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with alcohol hangover as a cluster. The objective of Zlotnik et al. (2014) was to compare 

alcohol hangover symptoms in students suffering from migraines as a hangover symptom 

and the ones who do not usually have migraines during hangover. In this cross-sectional 

study, university students were asked to fill structured questionnaires assessing headache 

history, alcoholic consumption, and hangover symptoms using the Hangover Symptom 

Scale. Subjects were classified as suffering from migraine with or without aura and non-

sufferers from headache according to the International Classification of Headache Disorders. 

The students vulnerable to migraine-like hangover symptoms consume less alcohol, 

especially beer and liquors than the students that are not. The findings demonstrate that the 

tendency to develop migraine attacks affects post hangover behavior.

In another study, Epler et al. (2014) recruited 385 frequent drinkers. Each individual carried 

electronic diaries for 21 days and reported on their drinking behaviors. Analysis from 2276 

drinking episodes was performed. There were 463 episodes of self-reported hangovers in the 

morning diary entries. Apart from stress after the drinking episode, the hangover was the 

only predictor of typical drinking frequency. The findings suggest that the hangover has a 

modest but inconsistent influence on the timing of subsequent alcohol use among frequent 

drinkers.

9.1.4. Adolescents—The impact of an alcohol hangover on daily activities can be 

profound. A survey among Dutch university students showed that more than half of them 

reported being unable to study when experiencing an alcohol hangover often or always. 

Noteworthy is that the average hangover frequency in this case is 2.7 days/month. Several 

experimental studies confirmed that memory functioning is impaired during an alcohol 

hangover. Hernandez et al. (2014) examined the psychometric properties of the original 

version of the Drinking Index in a sample of 740 adolescents (mean age = 15.26; 58.5% 

males) during an emergency department visit. Results demonstrated that there was a 

correlation between four-factor interpersonal, social, psychological, and physical indicators. 

This was also associated with outcomes such as hangover, alcohol withdrawal, and 

substance use.

9.2. Mechanism After

The hangover mechanism remains to be identified. The role of acetaldehyde, formic acid, 

alcohol dehydrogenase and acetaldehyde dehydrogenase polymorphism and intoxication is 

described. The deficiency of the active classes of these isoenzymes, frequent among 

Orientals, accounts for increased concentration of acetaldehyde and accounts for the 

decreased tolerance for alcohol (Neuman et al., 2014).

Additionally, mitochondrial dysfunction is a recognized cause of alcohol-induced damage. 

Mitochondrial malfunctioning may depend on the direct toxicity of the reactive metabolite 

itself or by generating a bio-activation process which inhibits mitochondrial beta oxidation 

and depletes cellular GSH. Peripheral blood monocytes of patients with alcohol-induced 

liver damage has been reported to generate cytokines such as TNF-α, IL-1β and IL-6 at rates 

that are three to six times those of monocytes from controls (Neuman et al., 2012a). 

Moreover, studies in several laboratories have focused on the identification, involvement 
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and mode of action of TNF-α in regulating hepatic acute phase reaction similar with the 

acute episodes of intoxication from binge drinking.

9.3. Further Research

Serum concentrations of cytokines correlate with prognostic factors in AH and with 

increases in C-reactive protein levels (Neuman et al., 2012a).

Researchers should aim to (1) further determine the clinical pathology of the alcohol 

hangover, (2) examine the role of immunogenetics in susceptible individuals, (3) monitor 

metabolic components of alcohol in blood that characterize the alcohol hangover, (4) 

examine sex and age differences on molecular and clinical pathology aspects of the 

phenomenon, (5) develop common laboratory measurements, methodologies and cut-off 

levels, (6) focus on toxic substances that aggravate hangover severity (e.g. congeners, 

concomitant use of drugs), and (7) show the possible toxic effects of false hangover 

remedies that may lead to additional clinical toxicity.

The need for continual education and awareness cannot be understated. This phenomenon 

should be recognized not only by laboratory medicine but also by clinicians, as well as the 

legal system. Public transportation legislators should make mandatory the analysis of 

alcohol metabolites in the blood of professional drivers, pilots, flight attendants, as well as 

health professionals.

10. MicroRNA profiling to identify promoters of HCC progression in mice

Kyle J. Thompson, Ph.D. & Iain H. McKillop, Ph.D.

Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, USA.

HCC comprises approximately 80% of all primary tumors of the liver and represents the 

fifth most commonly diagnosed cancer in the world (McKillop and Schrum, 2009; Siegel et 

al., 2013). HCC is (primarily) attributed to exposure to known risk factors of which, 

hepatitis B and C infection, aflatoxin exposure, chronic high ethanol consumption, and 

obesity, are the most common (Mittal and El-Serag, 2013), and these risk factors act 

synergistically. Of increasing concern is the obesity epidemic in developed nations, where 

30–40% of the population are obese and a strong link to risk for HCC development has been 

established, particularly in men (Calle et al., 2003). Recent epidemiological findings confirm 

these links; a 7.19 relative risk in HCC development for ethanol use and obesity (BMI > 30) 

having been reported (Loomba et al., 2013). Given the prevalence of obesity in developed 

countries, concomitant with higher relative ethanol consumption in these countries, we may 

be on the verge of an HCC epidemic. Given the long latency periods for HCC to manifest it 

is highly desirable to identify both the obese patients most at risk for developing HCC, as 

well as accurate disease staging in this patient population.

MicroRNAs (miRNAs) are small (18–25 nucleotide), non-coding RNAs that are principally 

involved in gene expression, and can become dysregulated in a variety of pathological 

states, including liver disease and cancer (Bala et al., 2009). Additionally, miRNAs have the 

potential to be minimally invasive biomarkers, often expressed inversely with miRNA target 
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tissue levels (Lakner et al., 2012). We sought to test the relationship between obesity and 

ethanol consumption in a mouse model of HCC development, and to identify miRNAs as 

potential bio-markers for HCC in the setting of obesity and obesity with ethanol. To achieve 

this, we utilized male C57BL/6 mice, a strain noted for their relative susceptibility to diet-

induced obesity (DIO) and voluntary ethanol consumption, yet relatively resistant to HCC 

when compared with other mouse strains (Brandon-Warner et al., 2012a). Mice were 

injected at 21–24 days old with vehicle or 5 mg/kg DEN and placed with adlibitum access 

on control diet (CD; 10% kcal%/fat) or high fat diet (HFD; 60% kcal%/fat) at 5-weeks of 

age and maintained until 35-weeks old. At this point mice were placed on in voluntary 

ethanol in drinking water (EtOH-DW; 10%/20% alternating days) or drinking water alone 

(DW) for an additional 6-weeks (Thompson et al., 2013).

Mice on HFD alone had spontaneous tumor formation (30%), an effect exacerbated by DEN 

administration (89%). However, mice on CD with DEN formed tumors at a lesser rate 

(60%) and these tumors were smaller than HFD counterparts (9). Introduction and 

maintenance on EtOH-DW with the CD regimen resulted in reduced tumor formation (44%) 

and no significant difference for those on a HFD. This is in contrast to previous results from 

our group utilizing the same EtOH-DW regimen in B6C3F1 mice, supporting inter-strain 

differences in susceptibility to hepatic tumor formation and progression, despite similar 

blood alcohol content levels (12–15 mM/L) in the two strains (Brandon-Warneret al., 2012b; 

Thompson et al., 2013).

To identify potential biomarkers for HCC, a GeneChip miRNA 2.0 Array was performed on 

liver tissue excised following sacrifice. For mice on HFD–DEN (DW and EtOH-DW), the 

large tumor burden permitted analysis of miRs from paired tumor and non-tumor liver 

(NTL) tissue. Screening revealed numerous dysregulated miRs in HFD compared to CD 

alone; however, noteworthy were seven miRs consistently dysregulated in HFD–DEN and 

HFD–EtOH-DW–DEN tumors compared to non-tumor tissue (Table 1). These findings were 

confirmed by qRT-PCR using Exiqon miRCURY LNA assays.

Individual miR analysis confirmed array results for 6/7 miRs (miR-139-5p was down 

regulated in contrast to array data). MicroRNAs 182 (down regulated versus NTL), 27a (up 

regulated vs NTL) and 125a (up regulated vs NTL) had the most significant changes 

detected and may represent the best candidates for biomarker status in human patients. 

Further studies in patients comparing tumor, NTL and sera expression of miR-182, -27a and 

-125a will be conducted in healthy, obese, normal BMI with HCC and obese with HCC.

11. Macronutrients, micronutrients, and probiotics in ALD development and 

treatment

Irina A. Kirpich and Craig McClain.

Clinically important ALD develops only in a subset of people who drink heavily. Dietary 

factors likely play important roles in both ALD pathogenesis and treatment. This short 

review summarizes the effects of macronutrients (dietary fat), micronutrients (Zn), and 
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probiotics (specifically Lactobacillus rhamnosus GG (LGG)) in ALD development and 

treatment.

Dietary fat and alcohol both play important roles in the pathogenesis of ALD. Several 

studies have shown that dietary saturated fat protects against alcohol-induced liver disease in 

rodents, whereas dietary unsaturated fat, enriched in linoleic acid (LA) in particular, 

promotes alcohol-induced liver damage (Nanji and French, 1989; Nanji et al., 1989, 1995b, 

2001). The deleterious effects of dietary unsaturated fatty acids are thought to be mediated 

through induction of oxidative stress, potentiated by inducing CYP2E1 (Nanji et al., 1994b, 

1994c, 1995a), elevated endotoxin levels, and increased production of proinflammatory 

cytokines (Nanji, 2004). However, the exact mechanisms by which the combination of LA 

and alcohol promotes liver injury are not fully understood. This is particularly relevant 

because LA is a major unsaturated fatty acid in the Western diet (2005), and LA 

consumption has dramatically increased during the 20th century (Blasbalg et al., 2011). Our 

group has recently demonstrated that 8 weeks of EtOH feeding significantly increase liver 

injury, steatosis and inflammation in mice fed unsaturated fat (USF + EtOH, corn oil/LA 

enriched) compared to pair-fed mice (Kirpich et al., 2012). These effects of EtOH were 

blunted by a saturated fat (SF) diet containing medium chain triglycerides. Hepatic TLR 

(TLR 1, 2, 3, 4, 7, 8, 9) mRNA expression was significantly increased compared to control 

in the livers of USF + EtOH fed animals, but not in the livers of the SF + EtOH group. In 

parallel with liver injury, increased gut permeability and elevated endotoxemia were 

observed in response to USF + EtOH but not SF + EtOH. Intestinal inflammation was 

positively correlated with the EtOH + USF triggered disruption of the intestinal tight 

junctions (TJ). Importantly, USF diet alone resulted in down-regulation of intestinal TJ 

protein mRNA expression compared to SF. Alcohol further suppressed TJ proteins in USF + 

EtOH, but did not affect intestinal TJ in SF + EtOH group. Additionally, USF + EtOH, but 

not SF + EtOH, resulted in alterations of the intestinal mucus layer and intestinal 

antimicrobial defense (Kirpich et al., 2013). Therefore, unsaturated, but not saturated, fat 

was a significant contributing factor to EtOH-mediated intestinal pro-inflammatory 

response, dysregulated intestinal tight junctions, endotoxemia and consequent liver injury. 

The oxidized metabolites of LA may be possible metabolites underlying pathogenic effects 

of EtOH and unsaturated dietary fat on intestinal and liver injury. This hypothesis needs to 

be further investigated.

Zinc is an essential trace element required for a broad range of biological activities including 

the function of hundreds of zinc finger proteins. In the United States, the Recommended 

Dietary Allowance (RDA) is 8 mg/d for women and 11 mg/d for men. Zinc and dietary 

protein intake directly correlate with each other. Alcoholics, and especially those with ALD, 

have poor diets that are low in protein and low in zinc. Absorption of zinc is concentration 

dependent and occurs throughout the small intestine (mainly the jejunum). Absorption may 

be impaired in cirrhosis, and typically there is increased urinary excretion of zinc in cirrhosis 

(reviewed by Mohammad et al. (2012)). Zinc status and the serum zinc levels drop with low 

dietary zinc intake. There normally are multiple mechanisms in place to protect against zinc 

deficiency, including increased absorption and decreased excretion via modification of zinc 

transporters (Mohammad et al., 2012). Zinc status is typically assessed by plasma/serum 
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zinc concentration. However, inflammation/ stress hormones (e.g. LPS, TNF) may cause a 

decrease in serum zinc level, with an internal redistribution of the zinc and a potential loss of 

zinc from critical zinc finger proteins.

Recent animal and in vitro studies provide major new insights into the molecular 

mechanisms of altered zinc metabolism in the development and progression of experimental 

ALD. In both acute and chronic alcohol-induced hepatotoxicities, alcohol intake and 

oxidative stress disrupt tight junctions in the intestine, which leads to translocation of 

bacterial products, such as endotoxin (reviewed by Mohammad et al. (2012)). Endotoxin 

activates TLR-4 with subsequent TNF production, oxidative stress and liver injury. 

Endotoxin and TNF also play critical roles in liver fibrosis. Disruption of tight-junction 

proteins occurs not only in the intestine, but also in the lung and likely at the blood–brain 

barrier, thus potentially predisposing to lung injury and hepatic encephalopathy. Zinc 

treatment in experimental animals with ALD attenuated the increased gut permeability, 

endotoxemia, TNF production, oxidative stress, and liver injury, while improving activity of 

key zinc transcription factors (reviewed by Mohammad et al. (2012)). Thus, zinc 

supplementation targets most postulated mechanisms for the development of ALD (Fig. 4).

As highlighted above, zinc deficiency has been implicated in the development of ALD, and 

zinc mobilization and loss from zinc proteins due to oxidative stress are important putative 

etiologic factors in the development/progression of ALD. A mouse model of ALD showed a 

decrease in the hepatic zinc level even though a zinc-adequate diet was fed (Kang et al., 

2009; Zhou et al., 2005). Zinc participates in cell functions mainly through binding to 

thousands of zinc proteins including metalloenzymes and transcription factors (Maret, 

2005). Removal of zinc from zinc metalloenzymes has been shown to either inactivate (e.g. 

alcohol dehydrogenase) or activate (e.g. caspase-3) enzyme activities. It is well known that 

zinc is the key element in zinc finger structure that is required for DNA binding activity of 

zinc finger transcription factors. Oxidative stress can release zinc from zinc finger 

transcription factors, leading to loss of DNA binding activity. We found that chronic alcohol 

exposure inhibits hepatocyte nuclear factor-4α(HNF-4α) function without affecting its 

protein level, suggesting a zinc release from the protein which was then further validated by 

our group (Kang et al., 2008, 2009). Zinc deprivation also inactivated other zinc proteins, 

such as insulin-like growth factor-I (IGF-I) and IGF binding protein-1 (IGFBP-1) (Kang et 

al., 2008). These results support the concept that oxidative stress with inactivation of zinc 

finger proteins is an important molecular mechanism in the development of ALD, and yet 

another reason to provide zinc supplementation in ALD (recommended dose 220 mg zinc 

sulfate = 50 mg elemental zinc/day).

The importance of the gut:liver axis in alcohol-mediated multi-organ pathology is well 

recognized (Keshavarzian et al., 2009; Parlesak et al., 2000). It is generally accepted that 

enteric dysbiosis plays an important role in the pathogenesis of ALD. Recent studies have 

demonstrated favorable effects of modulating gut microbiota by probiotics in clinical 

(Kirpich et al., 2008) and experimental ALD (Forsyth et al., 2009; Nanji et al., 1994a). 

Results from our recent study have demonstrated that in a mouse model of ALD, chronic 

alcohol feeding leads to a significant change in the intestinal bacterial community structure 

over time (Bull-Otterson et al., 2013). After 8 weeks of EtOH feeding, dietary USF and 
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EtOH caused a decline in the abundance of both Bacteriodetes and Firmicutes phyla, with a 

proportional increase in the gram negative Proteobacteria and gram positive Actinobacteria 

phyla; the bacterial genera that showed the biggest expansion were the gram negative 

alkaline tolerant Alcaligenes and gram positive Corynebacterium. In parallel with these 

changes in microbiome, EtOH caused an increase in plasma endotoxin, fecal pH, and 

hepatic inflammation and injury. The ethanol-induced pathogenic changes in the 

microbiome and the liver were prevented by 2 weeks of LGG treatment (Bull-Otterson et al., 

2013). Our recent mechanistic study has showed that LGG supplementation markedly 

decreased lived injury by significant reduction in TNF-α expression (Wang et al., 2013). We 

also have demonstrated that LGG supplementation prevents alcohol-induced decrease in the 

expression of intestinal trefoil factor (ITF) and its transcriptional regulator hypoxia-

inducible factor-2α (HIF-2α) attenuating intestinal TJ alterations and barrier dysfunction 

(Wang et al., 2011). Importantly, not only LGG live bacteria, but also LGG supernatant has 

demonstrated protective effects against alcohol-mediated intestinal and liver injury in an 

acute alcohol animal model (Huang et al., 2012).

12. Genetics of alcoholic liver disease

Devanshi Seth.

Evidence for a genetic component associated with the risk of ALD comes from earlier twin 

studies showing that the concordance rate for alcoholic cirrhosis was three times higher in 

monozygotic than in dizygotic twin pairs (Hrubec and Omenn, 1981). A subsequent study 

showed susceptibility genes for alcoholic cirrhosis independently affected their prevalence 

and provided evidence for a genetic predisposition to organ-specific complications of 

alcoholism (Reed et al., 1996). This study also showed that approximately 50% of 

phenotypic variation in ALD in heavy drinkers was due to genetic modifiers. Further 

indirect evidence comes from the wide inter-ethnic variation in ALD-related mortality that is 

not entirely explained by variations in the prevalence of alcohol abuse (Stinson et al., 2001). 

For example, in the USA, death rate from ALD was highest in Hispanic whites followed by 

African Americans, non-Hispanic whites and Hispanic African Americans (Said et al., 

2004). Mortality rates in Black and Asian men is 3.8 times greater compared to White 

British men (Fisher et al., 2002); and 8-fold higher in indigenous population compared to 

non-indigenous Australians (Liang et al., 2010).

A battery of genes known to impact pathogenic processes during ALD progression such as 

oxidative stress, inflammation, impairment of hepatic regeneration and fibrosis, has been 

tested for associations with ALD. Genetic studies investigating mutations in genes related to 

alcohol metabolism (ADH, ALDH, CYP2E1), oxidative stress (GST, superoxide dismutase 

[SOD]), endotoxin (TNF-a, CD14, TLR4), inflammatory cytokines/chemokines (IL-10, 

MCP-1), immune (cytotoxic T-lymphocyte antigen-4) and fibrosis (collagen, MMPs, 

osteopontin, TGF-β) have had limited success in providing evidence for association with 

ALD. Studies found allelic variability in alcohol and acetaldehyde-metabolizing genes 

ALDH2*2, ALDH2*1/1, ADH1B*2, ADH1B*1, ADH1C*2, ADH1C*2, and CYP2E1. The 

enzyme activity induces susceptibility of the host to liver damage (Zakhari and Li, 2007). 

Individuals with more active ADH1B*2 and ADH1C*1 alleles were at increased risk of 
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developing alcoholic liver injury due to a higher acetaldehyde exposure, but other studies 

were inconsistent due to ADH1B*2 being a rare allele in Caucasians, leading to ethnic 

variability in the populations studied.

There are several polymorphic loci within the human CYP2E1 gene with two mutations in 

linkage disequilibrium giving rise to c1 and c2 alleles. The CYP2E1*5 (c2) allele is 

associated with ∼10-fold higher mRNA, protein and enzyme activity than c1 allele 

potentially causing a higher exposure of the liver to acetaldehyde and ROS (Watanabe et al., 

1994). Both ADH and CYP2E1 are minor risk factors for ALD progression but there are 

reports of their significant contribution in individuals homozygous for the alleles CYP2E1 

c1 and ADH1C*1/ADH1C*1 to develop hepatoma (Homann et al., 2006). Manganese-

dependent SOD2 is a key player in ALD pathogenesis since it protects mitochondria from 

peroxidative damage. A single nucleotide polymorphism at position —9 in the precursor 

protein to alanine (Ala) or valine (Val) results in an enhanced translocation into 

mitochondria and higher concentration of active MnSOD for Ala genotype. In ALD patients 

stratified for the degree of liver damage, Ala/Ala was found to be associated with severe 

ALD with odds ratio of 9.6 although not confirmed in a larger study (Stewart et al., 2002). 

Partial deletions in the GSTT1 and GSTM1 result in the absence of enzyme activity and 

increase levels of toxic intermediates. Significant increase in the frequency of GSTM1 ‘null 

allele’ was observed in patients with advanced ALD and an increased risk for ALD in 

individuals with combined carriage of GSTM1 and GSTT1 ‘null’ genotype (Ladero et al., 

2005). CD14, a lipopolysaccharide (LPS) receptor on monocytes, macrophages and 

neutrophils enhances signaling through TLR4, another LPS receptor. A C/T polymorphism 

at position —159 in the CD14 promoter region, is associated with increased levels of soluble 

and membrane CD14 and the TT genotype is associated with advanced ALD (Järveläinen et 

al., 2001). However, this has not been confirmed in other studies. Polymorphism in IL-10 

promoter-region at position —627 from C → A has association with ALD (Grove et al., 

2000). An excess of the rare TNFα-A allele at position —238 was found in patients with 

ALD. The OR for this variant versus non-diseased individuals was 3.5 for cirrhosis and 4 for 

ASH (Grove et al., 1997). A few studies have found associations between the development 

of alcoholic cirrhosis and certain genotypes with poylmorphisms of IL-1β, T-lymphocyte 

antigen-4 gene (CTLA-4) associated with the titer of anti-CYP2E1 antibodies and genes 

involved in fibrogenesis (collagen α1, α2 chains) (Weiner et al., 1988). There are a number 

of obvious candidates such as, those encoding collagen I, matrix metalloprotein (MMP)-3, 

osteopontin and transforming growth factor (TGF)-β1, but so far remain unconfirmed 

(Stickel and Hampe, 2012; Stickel and Osterreicher, 2006).

To date, no significant associations with ALD for the polymorphisms chosen have been 

reported. A search for single nucleotide polymorphismsin a hypothesis-driven candidate 

gene approach has been largely disappointing in identifying risk factors for ALD due to 

inter-ethnic variability, small sample size and inappropriate study design, introducing type I 

and II errors. GWA in NAFLD identified locus rs738409 in PNPLA3 to be associated with 

hepatic fat, inflammation and ALT levels. The mutation in rs738409 from C to G changing a 

highly conserved isoleucine to methionine also shows a clear association with alcoholic 

steatosis, increased ALT and severity of cirrhosis (Childs Pugh) increasing the relative risk 
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by 1.79 per G allele. Subsequent studies by several independent groups have shown 

association of rs738409 variant in PNPLA3 with ALD (Seth et al., 2010; Stickel et al., 2011; 

Tian et al., 2010), and are testimony to a genetic basis for this disease. PNPLA3, also called 

adiponutrin, is a phospholipase suspected to have lipogenic transacetylase activity with 

involvement in energy metabolism and lipid storage. The mutation from C to G at residue 

148 in rs738409, changes a highly conserved isoleucine to methionine. This change from 

isoleucine to methionine is thought to be a gain of function enhancing lipid accumulation 

leading to hepatocyte injury and inflammation. A clear association with higher fat content 

and increased ALT. in homozygous carriers of G allele was observed in these studies. 

Recent functional data show PNPLA3 hydrolyses the triglicerides. The presence of 

homozygous GG reduces triglyceride hydrolysis in vitro thus increasing the fat content 

(Lake et al., 2005). In transgenic mice overexpressing GG allele there is higher hepatic lipid 

accumulation compared to wild type controls (He et al., 2010).

Most recently, polymorphism in the neurocan (NCAN) has been associated with NAFLD, 

and is a risk factor in ALD, related HCC. Association of genes in ALD and NAFLD 

presents increasing evidence of parallel mechanisms operating in alcoholic and non-ALD.

13. Concluding remarks

The symposia presented epidemiologic, experimental, and clinical evidence that clearly 

demonstrated once more that alcohol is toxic to the liver. The manner in which alcohol 

induces liver injury has become increasingly clear. The toxic role for ethanol in the 

pathogenesis of liver disease is evident. However, there is a contributory role for 

malnutrition. The possible interplay of these factors with environmental agents in producing 

the liver disease of alcoholism is demonstrated by clinical and experimental data. Chronic 

alcohol abuse remains an important risk factor for malignant transformation of hepatocytes, 

frequently in association with alcohol-induced cirrhosis.

The effect of alcohol on the adverse effects of therapeutics, secondary to ethanol induction 

of CYP2E1 is an important additional factor of alcohol induced-liver injury, and suggests an 

important additional pathway for alcohol-associated hepatic disease. Also relevant is the 

bioactivation of other toxic agents whose metabolism is enhanced by induction of CYP2E1 

by ethanol. An associated change is the reduction of hepatic GSH content, in part because of 

acetaldehyde binding to the molecule and inpart because alcohol intake interferes with GSH 

synthesis. Methylation in response to therapy in alcohol and viral infections plays a crucial 

role. Genetic factors in susceptibility to ALD and NASH are an increasingly studied subject. 

The interplay of these factors may explain the differential susceptibility to the development 

of ALD. In addition, it is essential to use adequate laboratory tools.
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AH acute alcoholic hepatitis

ALD alcoholic liver disease

ALT alanine aminotransferase

ASH alcoholic steato-hepatitis

AST aspartate aminotransferase

CDT carbohydrate-deficient transferrin

CYP cytochrome p450

GAA guanidinoacetate

γGT gamma glutamyl transpeptidase

HCC hepatocellular carcinoma

HCV hepatitis C virus

HFD high fat diet

4-HNE 4-hydroxynonenal

IGF insulin-like growth factor

IL interleukin

LA linoleic acid

LGG Lactobacillus rhamnosus GG

LPS lipopolysaccharide

MCV mean corpuscular volume of erythrocytes

MDB Mallory–Denk body

MDF Maddrey discriminant function

MELD Model for End-Stage Liver Disease

MEOS microsomal ethanol oxidizing system

MMP matrix metalloprotein

MRI magnetic resonance imaging

NAFLD non-alcoholic fatty liver disease

NASH nonalcoholic steatohepatitis

PTU propylthiouracil

ROS reactive oxygen species

SAH S-adenosylhomocysteine

SAM S-adenoslmethionine

SF saturated fat
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TIMP tissue inhibitor of metalloproteinase

TLR toll like receptor

TNF tumor necrosis factor

USF unsaturated fat
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Fig. 1. 
A) SNIP of morphometric quantitative immunofluorescence of FITC labeled antibody to 

C1Q in a liver of a patient with alcoholic hepatitis. The scale on the left is in arbitrary units 

of intensity tracing (197 compared with the control (B) of 78 p < 0.01) along the yellow line/

arrow x918. B) SNIP of morphometric semi quantitative immunofluorescence of FITC 

labeled antibody to C1Q in the liver of a control patient. The fluorescent intensity scale on 

the left is lower than that shown in panel A. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. 
A) Flow chart for TLR4/TLR3 in liver biopsies from patients with alcoholic hepatitis 

(ASH). B) Flow chart for TLR4/TLR3 in liver biopsies from patients with non-alcoholic 

hepatitis (NASH).
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Fig. 3. 
Flow chart for FATylation, ubiquitylation and ufmylation in liver biopsies from patients 

with alcoholic hepatitis (AH) and non alcoholic hepatitis (NASH).
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Fig. 4. 
Zinc therapy positively impacts multiple mechanisms of ALD.
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Table 1

MicroRNAs dysregulated between non-tumor and tumor liver in a model of obesity-associated HCC.

miRNA Dysregulation vs. non-
tumor liver

Function(s)

miR-182 Down FOX proteins (Segura et al., 2009), metastasis (Hirata et al., 2013)

miR-27a Up Lipid metabolism (Fernández-Hernando et al., 2011), Fox proteins (Guttilla and White, 2009)

miR-125a-5p Up Tumor suppressor (Kim et al., 2013), insulin resistance (Herrera et al., 2009)

miR-139-5p Down Tumor suppressor (Gu et al., 2014), c-Fos regulation (Fan et al., 2013)

miR-455 Down Poorly characterized

miR-378 Down Lipogenesis (Fernández-Hernando et al., 2011), CYP2E1 (Mohri et al., 2010), Liver 
regeneration (Song et al., 2010)

miR-193a Down Poorly characterized
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