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Huntington’s disease (HD) is a currently incurable neurodegenerative condition caused by an 

abnormally expanded polyglutamine tract in huntingtin (HTT). We identified novel modifiers of 

mutant HTT toxicity by performing a large-scale “druggable genome” siRNA screen in human 

cultured cells, followed by hit validation in Drosophila. We focused on glutaminyl cyclase 

(QPCT), which had one of the strongest effects on mutant HTT-induced toxicity and aggregation 

in the cell-based siRNA screen, and which also rescued these phenotypes in Drosophila. We 

found that QPCT inhibition induced the levels of the molecular chaperone alpha B-crystallin and 

reduced the aggregation of diverse proteins. We generated novel QPCT inhibitors using in silico 

methods followed by in vitro screens, which rescued the HD-related phenotypes in cell, 

Drosophila and zebrafish HD models. Our data reveal a novel HD druggable target affecting 

mutant huntingtin aggregation, and provide proof-of-principle for a discovery pipeline from 

druggable genome screen to drug development.

Introduction

Huntington’s disease (HD) is a fatal, currently incurable, late-onset neurodegenerative 

disorder. The disease signs include involuntary and repetitive choreic movements, 

psychological dysfunction and cognitive impairment, which result from progressive 

degeneration of cortical and striatal neurons 12.

HD is caused by the expansion of a CAG repeat tract in exon 1 of the gene encoding 

huntingtin (HTT), which results in an abnormally long polyglutamine stretch in the N-

terminus of the protein 3. Although the mechanisms are not fully understood, it is believed 

that the disease arises from a toxic-gain-of function of the mutant protein 45. A hallmark of 

HD is the presence of intracellular aggregates, which is also a characteristic of the other ten 

polyglutamine-expansion disorders, as well as other neurodegenerative conditions such as 

Parkinson’s or Alzheimer’s disease 6. The role of these aggregates in the disease is not clear, 

although an increasing importance of the oligomeric forms in toxicity is emerging 78 and 

reducing mutant HTT aggregation with strategies such as pharmacological upregulation of 

chaperone function has been pursued as a therapeutic strategy in HD 9. Mutant HTT toxicity 

is believed to be accentuated, or possibly induced, after cleavage events resulting in the 

formation of short N-terminal polyglutamine containing fragments, which can also be 

produced by aberrant splicing 10. Hence, exon 1 models have been frequently used for 

disease modeling.

Here, we combined two approaches to identify modifiers of mutant HTT toxicity by first 

performing a cell-based screen to identify genes that when knocked down could suppress 

mutant HTT-induced toxicity, using a library of 5,623 siRNAs selected according to the 

potential druggability of their targets with small molecules 11. We performed this screen in 

two different HD models. Initially, we screened the effects of siRNAs in a mammalian cell 

line inducibly expressing HTT with an abnormal polyglutamine expansion. In a secondary 

analysis, we validated primary hits in a Drosophila model of HD.

One of the strongest suppressors of mutant HTT toxicity in both mammalian cells and 

Drosophila was an enzyme responsible for the modification of N-terminal residues of 

glutamine or glutamate into an N-terminal 5-oxoproline or pyroglutamate (pE), named 
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glutaminyl cyclase (QPCT).. QPCT not only suppressed mutant HTT induced toxicity but 

also greatly reduced the number of aggregates. This effect is not HTT-specific, since QPCT 

exerted a general effect on aggregation of different aggregate-prone proteins, including other 

proteins containing an expanded polyglutamine or polyalanine tract, which could be 

attributed to increased levels of the chaperone alpha B-crystallin upon QPCT inhibition. 

Furthermore, we designed small molecule modulators of QPCT activity, which effectively 

suppressed mutant HTT aggregation and toxicity in cells, neurons, fly and zebrafish models 

of the disease.

Results

Primary cell screen for suppressors of mutant Htt toxicity

We performed the primary screen using a stable HEK293/T Rex cell line expressing full-

length human HTT bearing 138 polyglutamines (Q138) under the control of a tetracycline-

inducible promoter. We confirmed the expression of HTT(Q138) after inducing the cells 

with doxycycline using antibodies recognizing the N-terminus of human HTT 

(Supplementary Results, Supplementary Fig. 1a and Supplementary Note 1), and 

quantitative RT-PCR using primers spanning different areas of the human HTT cDNA 

(Supplementary Fig. 1b). This cell line had reduced cell viability after expression of mutant 

HTT, which was reverted by treatment with a known reference compound (Y27632) 12 

(Supplementary Fig. 1c), suggesting that this model could be used to identify potential 

modulators of mutant HTT cellular toxicity in a large-scale screen.

For our high-throughput screen, we utilised a strategy consisting of an iterative siRNA 

screen where positive genes were selected after three consecutive rounds to compensate for 

the variability of the assay. We eliminated non-positive siRNAs and added new siRNAs 

targeting the selected genes in consecutive passes. We assessed rescue of cellular toxicity by 

each siRNA by fluorescence microscopy and automated image analysis using three 

independent readouts: 1) number of cell nuclei (#nuclei), 2) apoptotic index and 3) aberrant 

nuclei index, and used rescue indices to express the effect of each individual siRNA for each 

parameter analysed. In an initial screen, we tested 3 independent siRNAs for each of the 

5,623 genes (a total of 16,869 siRNAs), from which we selected 670 primary genes (see 

Supplementary Note 1 for screen assay and criteria selection). As shown in supplementary 

figure 2a, the three readouts were partially redundant, as more than 50% of the 1,000 top 

scoring siRNAs of one rescue index also ranked amongst the top 1,000 siRNAs of at least 

one of the other rescue indices. In supplementary figure 1b, a representation of rescue 

indices obtained in pass 1 shows the relatively large variability of the assay, with non-

targeting negative control siRNAs, negQ and negF, showing a #nuclei rescue indices of 14% 

and 3% respectively, while using siRNA targeting HTT as a positive control rendered a 

mean #nuclei rescue index of 81%.

After 3 consecutive rounds of screening, we selected and 257 genes and ranked these based 

on all three rescue indices, using #nuclei rescue index as a primary criterion (Supplementary 

Data Set 1).
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Secondary RNAi screening in a Drosophila model of HD

To validate the hits obtained in mammalian cells and to focus on targets with potential 

relevance in vivo, we performed a secondary screen in a Drosophila model that expressed a 

construct containing 48 polyglutamines, Q48, that causes eye degeneration when expressed 

using a GMR-GAL4 driver 13. For most genes selected, we studied two UAS-RNAi 

constructs from the Vienna Drosophila RNAi Center (VDRC): a P-element (GD) and a 

phiC31 (KK) construct, the latter of which carries more GAL4-binding sites and should 

therefore express the RNAi more strongly 14. Of the 257 mammalian genes previously 

selected, we detected 133 that had one or more gene orthologs in flies (Supplementary Data 

Set 1 and 2). Of these 133 mammalian genes with fly orthologs, 74 Drosophila genes 

(corresponding to 66 mammalian genes) rescued the Q48-induced eye degeneration with at 

least one RNAi line, while the others showed no obvious or significant effect 

(Supplementary Fig. 3a and 3b and Supplementary Data Sets 1 and 2). We crossed 

suppressor RNAi lines to transgenic flies that expressed EGFP, also driven by the same 

GMR-GAL4 driver. We used EGFP to test whether modifiers affected transgene protein 

synthesis, since Q48 levels can be modified by aggregation or autophagic degradation, 

which do not impact EGFP levels. Two of these fly RNAi lines, targeting orthologs to 

human CTSF and to human ADAM8, ADAM11 and ADAM33, reduced EGFP levels on 

western blots (Supplementary Data Set 2), suggesting a general effect of these genes in 

protein expression, while suppression exerted by the other RNAi lines seemed to be 

polyglutamine-specific.

Functional categorization of mutant HTT modifiers

To gain further insight into the biological relevance of the data generated, we categorized 

the different sets of HD toxicity modulators according to their molecular function. 

Suppressors were enriched for certain classes of proteins such as GPCRs or transporters 

compared to the initial library, while the number of positive kinases in the screen was 

reduced and no cytokines, growth factors or translational regulators were represented. We 

observed similar functional categorizations after selection from the cell and Drosophila 

screen (Supplementary Fig. 4a). An Ingenuity Pathway Analysis (IPA) of the hits obtained 

in the primary screen in cells (Supplementary Table 1a) revealed that the majority of these 

proteins participate in general processes such as GPCR- or cAMP-mediated signalling, but 

also in canonical pathways related to neurodegeneration, such as apoptosis, mitochondrial 

dysfunction, amyloid processing or protein ubiquitination. Importantly, 10 of these proteins 

have been previously related to HD signalling, including subunits of the succinate 

dehydrogenase complex and huntingtin-associated protein 1 (HAP1) (Supplementary Table 

1a). Many of the genes validated in Drosophila (Supplementary Fig. 4b and Supplementary 

Table 1b) are also involved in processes related to neurodegeneration but were enriched in 

mitochondrial metabolic pathways, especially those associated with fatty acid biosynthesis 

and metabolism.

Validation of QPCT in Drosophila

We focused our attention on a gene that had one of the strongest and most consistent effects 

in rescuing mutant HTT-induced toxicity in the cell-based siRNA screen. The gene product 
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has glutaminyl cyclase activity and is named QPCT. Two orthologs have been reported in 

fly 15, Glutaminyl cyclase (QC) and iso Glutaminyl cyclase (isoQC), which show about 39% 

amino acid identity; a third fly ortholog, CG6168, shows expression restricted to male 

accessory glands (www.flyatlas.org) and is not considered further here. RNAi lines targeting 

either QC or isoQC partially rescued eye depigmentation and mediated a significant 

decrease in the number of black spots in flies expressing Q48 (Fig. 1a, 1b and 

Supplementary Fig. 5a) (Data are shown for GD- and KK-RNAi lines in the case of QC, but 

only a KK line was available for isoQC). These effects are likely independent of 

transcription/translation of the Q48, since no change in EGFP protein levels were seen when 

we crossed transgenic flies expressing EGFP driven by the same GMR-GAL4 driver as Q48 

with QC or isoQC RNAi lines (Supplementary Fig. 5b). Thus, QPCT represents an 

interesting candidate for studying in HD.

To further evaluate the benefits of downregulating QPCT on HD, we took advantage of an 

additional Drosophila model of neurodegeneration, HD flies that express exon 1 of HTT 

with 120 polyglutamines, GMR-HTT.Q120 in eye photoreceptors 16. Drosophila 

melanogaster has a compound eye consisting of many ommatidia, each of which is 

composed of 8 photoreceptors, seven of which can be visualized by light microscopy using 

the pseudopupil technique 17. Neurodegeneration results in the loss of visible rhabdomeres 

of each photoreceptor and can be rescued or enhanced by genetic or chemical approaches 18. 

Consistent with our data using the Q48 flies, the loss of visible photoreceptors in transgenic 

flies expressing GMR-HTT.Q120 was partially rescued when they were crossed with RNAi 

lines for either of the two QPCT fly orthologues, QC and isoQC (Fig. 1c). We observed no 

effect on the number of rhabdomeres in QPCT RNAi lines in the absence of GMR-

HTT.Q120. The effects of QPCT knockdown on toxicity correlated with a reduction in HTT 

aggregation, which we assessed in flies expressing GFP-tagged expanded huntingtin exon 1, 

HTTEx1-Q46-eGFP in the eye 19 (Fig. 1d).

QPCT modulates mutant HTT aggregation

To further validate QPCT, we first confirmed the protective effect of its knockdown against 

toxicity and aggregation in HEK293 cells expressing the exon 1 of HTT (from residue 8) 

with a 74 polyglutamine expansion fused at its N-terminal to EGFP (EGFP-HTT(Q74)) 20 

(Fig. 2a, Supplementary fig. 6a and 6b). The QPCT siRNAs used in these experiments as 

well as in the screen do not target QPCT-like, which encodes a paralogous protein that 

catalyzes a similar reaction and shows 51% of sequence identity to QPCT (Supplementary 

Fig. 6b and 6c). We also validated the effect of QPCT knockdown on aggregation in HeLa 

cells (Supplementary Fig. 6d) which, like HEK293 cells, express QPCT 21. We also 

confirmed a decrease in protein aggregation of a construct which expresses full-length HTT 

carrying 138 polyglutamines (similar to the one used in the initial screen) (Supplementary 

Fig. 6e). QPCT siRNA did not have a general anti-apoptotic effect as it did not affect 

caspase 3 activity in response to staurosporine treatment (Supplementary Fig. 6f). Consistent 

with these data, QPCT shRNA reduced EGFP-Q80 (80 glutamines fused to EGFP) 

aggregation in primary cortical neurons (Fig. 2b and Supplementary fig. 6g). We could not 

assess the effect of QPCT knockdown on polyglutamine-mediated toxicity in these neurons, 

where the levels of cell death obtained in this assay were very low, as can be appreciated in 
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fig. 2b. While knocking down QPCT was protective, overexpression of QPCT in HeLa and 

HEK293 cells increased the numbers of apoptotic nuclei and also led to a large 

accumulation of HTT(Q74) aggregates (Fig. 2c and Supplementary Fig. 7a), while QPCT 

did not increase caspase activity upon staurosporine treatment (Supplementary Fig. 7b). The 

effects of QPCT were activity-dependent, since the catalytically inactive E201Q mutant did 

not increase the percentage of cells with HTT(Q74) aggregates (Fig. 2d and Supplementary 

Fig. 7c and 7d).

We measured mRNA levels of QPCT in HD mice and found that its expression was reduced 

when compared to their wild-type littermates, suggesting that QPCT expression may be 

downregulated as a compensatory mechanism (Supplementary Fig. 8) and that raised QPCT 

activity may not be a prerequisite for aggregation.

QPCT catalyzes the modification of N-terminal glutamines or glutamates into a 

pyroglutamate (pE) residue. Although the presence of an extended polyglutamine tract 

makes HTT a potential substrate for QPCT, this enzyme only modifies N-terminal residues, 

suggesting that any modification on mutant HTT would require an N-terminal cleavage to 

reveal a glutamine at the N-terminal that could be cyclated. The formation of a pE residue 

may then affect its stability and propensity to aggregate, a hypothesis that was previously 

suggested 22. This cleavage model in either the polyglutamine tract or HTT exon 1 or GFP is 

unlikely, as QPCT modulated the aggregation of constructs consisting only of isolated 

polyglutamine expansions (Q57 and Q81) fused C-terminal to EGFP (Fig. 2e and 2f), or 

HTT exon 1 with 74 glutamines fused to HA 23 (Supplementary Fig. 9a and 9b), and QPCT 

siRNA also reduced the aggregation of an expansion of 37 alanines 24 (Fig. 2f). QPCT 

appeared to modulate the early stages of mutant HTT oligomerisation, since QPCT 

overexpression increased the amounts of Flag-tagged monomeric mutant HTT that were co-

immunoprecipitated by GFP-tagged mutant HTT (Fig. 2g) 25. Since QPCT did not interact 

with HTT directly by immunoprecipitation (e.g. Fig. 2g), its effect on HTT oligomer 

formation is likely mediated via intermediaries.

Design and characterization of compounds that inhibit QPCT

To target QPCT pharmacologically, we tested a previously described QPCT inhibitor 26, 

which did not rescue the HD phenotype in mammalian cells (Supplementary Fig. 10a and 

10b). While this compound has been effective in Alzheimer disease (AD) models by 

reducing the formation of extracellular pE-Aβ, this may be due to extracellular QPCT 

inhibition 2127. Thus, we reasoned that the failure of this compound was likely due to poor 

cell permeability. In order to generate novel QPCT inhibitors, we employed existing data on 

its structure and known inhibitors to generate three 3D pharmacophore models, two ligand-

based and one structure-based (using the human QPCT X-Ray structure (PDB id: 2AFW)). 

We used these models, along with stringently applied CNS filters and a solubility model 

developed in-house, to select 10,000 compounds from both commercially available 

screening compounds and the SienaBiotech compound library. We screened these molecules 

in a functional assay assessing the conversion of the H-Glu-AMC fluorogenic substrate into 

pyroGlu-AMC, as previously described 28, and selected hits associated with predicted robust 

binding for the hit-to-lead phase. The optimization strategy was based on physicochemical 
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properties and ensemble docking model-driven approaches. The ensemble docking 

methodology 2930 was chosen to take into account the flexibility of human QPCT catalytic 

site and was constructed using both X-Ray structures and protein conformations coming 

from a 100 ns molecular dynamic study of the human QPCT 2AFW X-Ray structure. The 

ensemble docking model was evolved during the project development. Initially, only 4 X-

Ray structures were used (PDB ID: 2AFW, 2AFX, 2AFZ31), then a set of 16 protein 

conformations, selected by clustering of molecular dynamic simulations, were added to 

improve model accuracy. Recently, two more X-Ray structures were added to the model 

(3PBB32 an 3SI033). All the docking calculations were performed using CCDC Gold 

(versions 4 and 5)343536 along with an ad-hoc developed program to rank and select the best 

scored ligand docking pose from the pool of QPCT conformations. Along with the 

biochemical readouts used during this optimization, we included a range of in vitro ADME 

assays, including solubility measurements, a CNS membrane permeability assay (PAMPA-

BBB) 37 and stability in the presence of human CYP3A4, a member of the cytochrome P450 

mixed-function oxidase system, and a key enzyme involved in the metabolism of 

xenobiotics in humans.

We selected a series of compounds on the basis of these properties and validated their 

effects on mutant HTT aggregation and toxicity in cells expressing HTT(Q74)GFP, which 

led to the selection of three of them, SEN177 (1), SEN817 (2) and SEN180 (3) 

(Supplementary note 2, Fig. 3a, Supplementary Fig. 11a). Non-toxic concentrations of these 

compounds caused a dose-dependent reduction in the percentage of cells with aggregates, 

which correlated with a suppression of mutant HTT-induced apoptosis (Fig. 3b, 3c, 3d, 3d 

and Supplementary Fig. 11b). As seen with genetic knockdown experiments, pharmacologic 

inhibition of QPCT using these compounds also reduced aggregation of polyalanines (Fig. 

3d) and did not affect protein levels, as assessed by measuring GFP levels by western 

blotting (Supplementary Fig. 11c) or by metabolic labeling of wild type HTT followed by 

detection of newly synthesized protein in the presence of SEN177 (Supplementary Fig. 

11d). Importantly, the effect of these compounds was blocked when QPCT expression was 

suppressed by shRNA, confirming that they protect by a mechanism that requires QPCT 

inhibition (Fig 3e, Supplementary Fig. 11e and 11f). Thus, even though these compounds 

also inhibited QPCT-like (Supplementary Fig. 11a) and we cannot exclude the possibility 

that at least some of the effects observed may be mediated by this QPCT isoenzyme, their 

effects on aggregation were QPCT-dependent, as the shRNA used did not target QPCT-like. 

Consistent with these data, SEN177 greatly reduced the early stages of mutant HTT 

oligomerisation, as it decreased the amounts of GFP-tagged monomeric HTT that were co-

immunoprecipitated by Flag-tagged HTT (Fig. 3f). The protective effect of these compounds 

was also confirmed in primary cortical neurons (Fig. 3g), with SEN177 and SEN817 

significantly reducing the percentage of neurons with Q80 aggregates.

QPCT modulates the levels of alpha B-crystallin

The effects of QPCT inhibition on HTT aggregation appeared to be independent of effects 

on protein clearance pathways targeting mutant huntingtin (autophagy and the ubiquitin-

proteasome system) (Supplementary Fig. 12), changes in mRNA or protein levels 

(Supplementary Fig. 13a and 13b), or secretion of the enzyme into the medium 
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(Supplementary Fig. 13c). QPCT is localized in the ER and secretory pathway and its 

knockdown, overexpression or inhibition seemed to have inconsistent and rather modest 

effects on different readouts of the ER stress response, measured by GRP78/BIP levels or 

phosphorylation of eIF2α, which did not correlate with its effect on aggregation 

(Supplementary Fig. 14). Our data also suggested that CREB (c-AMP response element 

binding protein) or ERK (extracellular signal-regulated kinase) signaling, recently reported 

to be activated upon QPCT inhibition 38 (Supplementary Fig. 15a and 15b), or JNK 

signaling (Supplementary Fig. 15c) were unlikely contributors to the effects we have 

observed.

QPCT overexpression or knockdown did not modulate levels of HSP70, the main inducible 

stress response chaperone (Supplementary Fig. 15d). We performed transcriptional profiling 

to assess changes in alternative molecular chaperones induced by SEN177 in the presence of 

mutant HTT, and observed upregulation of several small heat shock proteins (sHSPs) 

(HSPB6 with 1.6 fold-change; HSPB3 with 1.5 fold-change; HSPB7 with 1.5 fold-change; 

and notably, alpha B-crystallin which had >2.5 fold increase in transcript levels) 

(Supplementary Fig. 16a and Supplementary Data Set 3). We confirmed this induction at the 

protein level as well as with other QPCT inhibitors (Fig. 4a). Genetic inhibition of QPCT 

dramatically increased alpha B-crystallin protein and mRNA levels in the presence of 

HTT(Q74) (Fig. 4b and 4c and Supplementary Fig. 16b), while QPCT overexpression, 

which increased mutant HTT aggregation and toxicity (Fig. 2c and Supplementary Fig. 7a), 

reduced alpha B-crystallin levels (Supplementary Fig. 16c). QPCT also modestly modulated 

alpha B-crystallin levels in the absence of mutant HTT or in the presence of the non-

pathogenic Q23 (Supplementary Fig. 16b and 16c).

As a sHSP, alpha B-crystallin acts as a molecular chaperone and is a suppressor of 

polyglutamine toxicity in cells and in Drosophila 394041. As expected, overexpression of 

alpha B-crystallin lowered the number of HTT(Q74) aggregates, while QPCT inhibitors 

failed to reduce aggregation further (Fig. 4d and Supplementary Fig. 16d), suggesting that 

this increment in alpha B-crystallin was a major contributor to the protection afforded by 

QPCT inhibition.

QPCT inhibition protects fly and zebrafish HD models

We tested QPCT inhibitors in flies expressing Httex1Q46 in the eye and found a reduction 

in the number of aggregates (Fig. 5a). The compound with a greatest effect, SEN177, was 

able to also rescue the number of visible rhabdomeres and prevent neurodegeneration (Fig. 

5b).

A transgenic zebrafish expressing Htt exon 1 with 71Q fused to EGFP in the rod 

photoreceptors using the rhodopsin promoter has been established and validated as a model 

to study mutant huntingtin aggregation in vivo 42. Zebrafish have two homologs with 

putative glutaminyl-peptide cyclotransferase activity, QPCT and QPCTLA with 51% and 

47% protein identity with QPCT and QPCT-like respectively. In order to test the effect of 

pharmacologic inhibition of QPCT in this model, we first determined the maximum 

tolerated concentration for each of the three compounds tested in mammalian cells and 

subsequently treated HD larvae. SEN817 and SEN180 reduced total number of EGFP-
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aggregates in the retina (Fig. 6a), which correlated with a marked decrease in toxicity 

similar to the positive control, clonidine 42, assessed by a rescue in the total area of eye 

photoreceptors (Fig. 6b).

Although the three compounds were protective, their effectiveness varied between these 

models, which might be due to intrinsic properties of each system, SEN180 only mildly 

reduced aggregation in neurons and the effect of SEN817 was not significant in Drosophila. 

Although SEN177 had the highest in vitro activity and was able to efficiently reduce 

aggregates in mammalian cells, primary neurons and Drosophila, we found that this 

compound was tolerated at much higher concentrations than its analogs in zebrafish and 

therefore the bioavailability in this model is much lower, which could explain the lack of 

effect in this system. All together, we have identified a number of small molecules that 

through QPCT inhibition have beneficial effects on the treatment of HD in a variety of in 

vivo models.

Discussion

Our approach using a two-step screen, starting with an initial large-scale analysis in human 

cell models followed by a validation in Drosophila, has yielded a number of potentially 

druggable targets which may be suitable for HD. A variety of HT-RNAi screens have 

identified genetic suppressors of phenotypes mediated by mutant HTT N-terminal fragments 

in Drosophila, C. elegans and mammalian (mouse and human) cells 44454647. In most cases, 

aggregation was the primary readout, often measured with C-terminal GFP fusions. 

Differences in the nature of the previous screens (species, cellular context, huntingtin 

fragment length, length of the polyglutamine expansion, primary readout and differences in 

siRNA/shRNA sequences) complicates cross-screen comparisons. Also, virtually no screens 

in this area have examined their false negative rates due to inefficient knockdown. 

Additionally, the screen presented here was biased towards the druggable component of the 

human genome, and a further selection was made in the course of triaging towards specific 

protein target classes. This likely contributes to the relatively poor overlap of hits in the 

present and previous screens. A comparison with a screen performed in HEK293T cells to 

identify genetic suppressors of inducibly expressed mutant HTT exon 1 toxicity 46 revealed 

an overlap of only 4 genes (CPA1, GRIN2A, NR3C2 and USP21) when considering the top 

257 hits (Supplementary Data Set 1). However, matrix metalloproteases, identified in 

HEK293T cells as modulators of fragmentation and toxicity of N-terminal portions of 

mutant HTT 45 were also identified in our dataset, as well as PAK1, which we previously 

identified as a kinase promoting mutant HTT self-association and toxicity 25, thus validating 

the effectiveness of the screen.

Based on the reproducible and clear rescue that QPCT inhibition exerts on mutant HTT 

toxicity in cells and in Drosophila, we focused on this target. A catalytically inactive QPCT 

was not able to increase the number of aggregates, suggesting that pE modifications 

modulate the levels of aggregates in HD models. Although one obvious mechanism would 

involve cleavage of the polyglutamine tract followed by cyclation of an N-terminal pE 

residue that may change properties such as stability or hydrophobicity, which would account 

for its change in aggregation 22, our data suggest that the effect of QPCT on HTT may be 
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indirect. We found that modulation of aggregation by QPCT was not restricted to mutant 

HTT but it also affected aggregation of other aggregate-prone proteins and that QPCT 

influences the formation of mutant HTT oligomeric species. We observed an induction in 

several sHSPs, mostly alpha B-crystallin, suggesting that QPCT inhibition caused a stress 

response distinct from classical Hsp70 induction, which might be mediated by indirect 

substrates for pE modification. This molecular chaperone reduces aggregation of 

polyglutamine containing proteins 3941, alpha-synuclein 4841or amyloid-β peptide 4950, 

underscoring QPCT inhibition as an effective target for misfolded protein disorders. Since 

alpha B-crystallin is regulated at the transcriptional level while QPCT resides in the 

secretory pathway, inhibition of QPCT may activate a signalling response that enhance 

alpha B-crystallin transcription. Our data suggest that this is likely independent of an ER 

stress response or the involvement of ERK and CREB, which have been recently found 

phosphorylated upon QPCT inhibition 38, as well as other stress signalling pathways such as 

JNK. Further work will need to clarify the QPCT substrate mediating this effect. It is 

important to stress that the benefits of QPCT downregulation may not be restricted to alpha 

B-crystallin as an effector, as the upregulation of other related sHSPs may also contribute 

beneficially.

We identified and characterised a series of compounds that efficiently reduce mutant HTT 

aggregation in mammalian cell lines and also in primary mouse neurons, fly eye and in 

zebrafish. While the levels of rescue and significance obtained varied between compounds 

depending on the model used, this may be as a result of differences in absorption routes and 

bioavailability. Nevertheless, our data showed that pharmacologic inhibition of QPCT using 

this compound series can rescue HD phenotypes and provides proof-of-principle for QPCT 

as a potential therapeutic target for HD and possibly other related intracellular 

proteinopathies by modulating the formation of oligomeric forms, which have been 

proposed as the most toxic species in these diseases 78. Clearly, further work is required 

before considering that this will be clinically relevant, including likely additional drug 

development. Nevertheless, in a broader perspective, our data suggest that a discovery 

pipeline from druggable genome screen to drug development may be tractable for 

neurodegenerative diseases.

Online Methods

Assays for validation polyglutamine toxicity modifiers in Drosophila

Drosophila fly stocks—As a model of polyglutamine toxicity, flies that expressed a 

protein with 48 glutamines encoded by P{UAS-Q48.myc/flag}31 13 in eyes under control of 

the GMR-Gal4 driver P{GAL4-ninaE.GMR}12 51 (Q48) were used. Fly orthologs to the 

genes identified in the cell screen were selected by performing reciprocal BLASTP and 

cross checking with databases including http://www.ncbi.nlm.nih.gov/homologene, http://

www.genecards.org/, http://www.ensembl.org/index.html. The RNAi lines corresponding to 

the identified genes were obtained from Vienna Drosophila RNAi Center (VDRC, http://

stockcenter.vdrc.at/control/main).
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The following stocks were generous gifts: UAS-Q48.myc/flag from J.L. Marsh 13, UAS-

Httex1-Q46-eGFP from N. Perrimon 19. Fly lines that are not referenced here are 

documented in FlyBase (www.flybase.org).

All fly crosses and experiments were performed at 25°C.

Drosophila RNAi screen—Five virgins of genotype w; GMR-GAL4; UAS-Q48.myc/flag 

(Q48) were crossed to males carrying each UAS-RNAi (GD- and KK-RNAi collections, 

VDRC, http://stockcenter.vdrc.at/control/main). Genetic background was controlled by 

crossing w; GMR-GAL4; UAS-Q48.myc/flag females to w1118 males that share the same 

genetic background (VDRC stock number 60000 for the GD-RNAi lines and 60100 for the 

KK-RNAi lines). For Glutaminyl cyclase (CG32412) the GD-RNAi line 38277 and the KK-

RNAi line 106341 were used. For isoGlutaminyl cyclase (CG5976), the KK-RNAi line 

101533 was used. For GD-RNAi lines, degeneration was determined by scoring the eye 

depigmentation in the progeny of the above crosses 4 days after eclosion, assessing 

modification of polyglutamine loss-of-pigmentation and black necrotic-like spots. For KK-

RNAi lines, as their background leads to dark eye pigmentation (http://www.vdrc.at/rnai-

library/rnai-protocols), toxicity was assessed by scoring the presence or abscence of black 

necrotic-like spots in the eyes of 10-day old flies. Fisher’s exact test was performed to 

compare the numbers of necrotic-spot-containing flies in the KK-RNAi crosses with 

controls using an arbitrary p<0.005 as a statistical cut-off for significance. Eyes were imaged 

using a Nikon CoolPix 990 digital camera attached to a dissecting microscope.

EGFP expression levels assessed in Drosophila RNAi lines—Western blot 

analysis was performed using progeny of crosses between virgins of the genotype w; GMR-

GAL4; UASEGFP and males of each VDRC-RNAi line used or background control (VDRC 

stock number 60100). Fly heads were homogenized in Laemmli sample buffer. Rabbit 

polyclonal anti-GFP at 1:1000 (AbCam, Ab6556) and monoclonal anti-beta tubulin at 

1:10000 (Developmental Studies Hybridoma Bank) were used. Blots were scanned using 

Odyssey Fc Imaging System (LI-COR Biosciences). This validation was initially performed 

once on each suppressor, and subsequently RNAi lines showing an apparent reduction in 

EGFP levels were re-tested using the progeny of three independent crosses. Statistical 

analysis was performed by two-tailed paired t-test between the RNAi lines and the control 

line.

Pseudopupil assay—Analysis was performed as previously described 17. Virgins of 

genotype elav-GAL4C155; {GMR-HD.Q120}4.62/TM3 (elav-Gal4; GMR-HTT.Q120) 16 

were crossed with males carrying the RNAi construct for Glutaminyl cyclase (lines 

QCGD38277 or QCKK106341) or isoGlutaminyl cyclase (line isoQCKK101533) and compared to 

background control line.

To evaluate the effect of QPCT inhibitors, virgins of genotype yw; {GMRHD.Q120}2.4 

(GMR-HTT.Q120) were allowed to mate with w1118 control males for 48 hours on standard 

cornmeal food and then transferred on fly food containing the compounds.
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The number of rhabdomeres per ommatidium was scored in progeny of the above crosses at 

3 (GMR-Q120) or 4 (elav-Gal4; GMR-HTT.Q120) days post-eclosion. Statistical analysis 

was performed using one-tailed t-test on data from 3 or 4 independent experiments, each 

based on approximately 10 individuals for each genotype, scoring 15 ommatidia per eye. 

When compounds were tested, the analysis was done on females and males of each 

treatment separately.

Aggregate counting—Virgins of genotype w; GMR-GAL4; UAS-Httex1-Q46-eGFP 19 

were crossed with males of QPCT UAS-RNAi lines or from the background KK-RNAi 

control line, since all the background controls show similar aggregate scoring. Eye pictures 

of 18-day old progeny were taken using a Leica MZ16F microscope connected to a Leica 

DFC340FX digital camera. For each genotype, GFP punctae indicating aggregate formation 

was counted using ImageJ “Cell Counter” plugin in the eyes of 20 males, a pool of 5 males 

from four independent crosses. For compound testing, virgins of genotype w; GMR-GAL4; 

UAS-Httex1-Q46-eGFP were crossed with w1118 control males, and females of the progeny 

scored 15 days post-eclosion. The experiment was repeated at least three times and for each 

experiment at least 4 female eyes were scored. An unpaired one-tailed t-test was used to 

determine statistical significance for single comparisons between two groups using 

GraphPad Prism.

Compound treatment—Flies were reared on food (Instant Fly Food, Philip Harris, 

Ashby de la Zouch, UK) containing either QPCT inhibitor (50 μM) dissolved in DMSO or 

DMSO alone. The progeny were flipped every 2 days on fresh food containing the specific 

inhibitor or DMSO.

Bioinformatics Analysis

Ingenuity Pathways Analysis (Ingenuity® Systems, www.ingenuity.com) was used to 

analyze the distribution of siRNAs tested among the different protein classes as well as to 

determine the canonical pathways associated to the confirmed primary actives.

Assays for validation of polyglutamine toxicity and aggregation modifiers in human cell 
lines

Cell culture—HEK293 (Human Embryonic Kidney), HeLa (Human cervical carcinoma) 

cells and Atg5-deficient (Atg5-/-) mouse embryonic fibrolasts (MEFs) (gift from N. 

Mizushima) were grown in Dulbecco’s modified eagle medium supplemented with 10% 

FBS, 100 U/ml penicillin/streptomycin and 2 mM l-glutamine at 37°C in 5% CO2. 

UbG76V-GFP-expressing stable HeLa cell line (kind gift from N.P. Dantuma) was 

maintained in medium containing 0.5 mg/ml G418.

Isolation and culture of mouse primary cortical neurons—Primary cortical 

neurons were isolated from C57BL/6 mice (Jackson Laboratories) embryos at E16.5. 

Briefly, brains were harvested and placed in ice-cold PBS/glucose where the meninges were 

removed and the cerebral cortices were dissected. After mechanical dissociation using sterile 

micropipette tips, dissociated neurons were resuspended in PBS/glucose and collected by 

centrifugation. Viable cells were seeded on poly-ornithine-coated 12-multiwell plates. Cells 
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were cultured in Neurobasal medium supplemented with 2 mM glutamine, 200 mM B27 

supplement, and 1% Penicillin-Streptomycin at 37°C in a humidified incubator with 5% 

CO2. One half of the culture medium was changed every two days until treatment. After 5 

days of culturing in vitro, differentiated cortical neurons were infected with lentiviral 

particles bearing EGFP-Q80 and scramble or QPCT-directed shRNAs. Compounds were 

added 3 days after EGFP-Q80 viral infection and left for another 24h. When EGFP-Q80 was 

expressed together with shRNA, 5-6 days were needed before cultures were fixed in a 2% 

PFA-7.5% glucose solution.

DNA constructs—Human QPCT (NM_012413) plasmid was purchased from Origene 

(pCMV6-XL5-QPCT). A C-terminal Flag-tagged QPCT construct was generated by PCR 

amplification of QPCT cDNA from pCMV6-XL5-QPCT using primers overhanging HindIII 

and BgIII sites and insertion into the pCMV5-FLAG in HindIII and BamHI restriction sites, 

using standard restriction enzyme digestion and ligation procedures. QPCT(E201Q)-Flag 

was generated using QuickChange II Agilent Site-Directed mutagenesis kit with the 

following primers Fw 5′-CTTCTTTGATGGTCAAGAGGCTTTTCTTCACTGG-3′ and 

Rev 5′-CCAGTGAAGAAAA GCCTCTTGACCATCAAAGAAG-3'. pcDNA or pCMV5-

Flag empty vectors were used as mock controls for pCMV6-XL5-QPCT or QPCT-Flag 

respectively.

Constructs expressing the first exon of the Htt gene carrying 74 polyglutamines expressed 

from pEGFP-C1 (Clontech) (EGFP-HTTQ74) or pHM6 (Roche Diagnostics) (HAHTTQ74), 

or with only 23 polyglutamines (EGFP-HTTQ23), were described previously 52. pEGFP-

N1-Q57 and pEGFP-N1-Q81 23 and pEGFP-C1-A37 24 have been previously described. 

Mutant HTT(1-588)-Flag was provided by MR Hayden and mutant HTT(1-548)GFP 

generated by S. Luo 25. 3xFlag-CRYAB construct has been previously described 53. The 

pGL3-BIP/GRP78-luciferase construct was kindly provided by M. Renna 54

Reagents—Chemical compounds used in cell culture were the autophagy inhibitors 

Bafilomycin A1 (400nM, DMSO; 4 hours; Millipore) and 3MA (10 mM, 16 hours; 

SIGMA), staurosporine (3 μM) and the proteasome inhibitor MG132 (10 μM). PBD150 was 

synthesized as described in 26.

Transfection—Cells were transfected in 6-well plates with 0.5-1.5 μg of DNA and 5 μl of 

Lipofectamine (Invitrogen) or TransIT-2020 (Mirus) per well for 4 hours in Optimem 

(GIBCO-BRL) and then incubated in full media for 48 hours. Gene knockdown experiments 

were performed using ON-TARGETplus SMARTpool siRNA (Dharmacon) for human 

QPCT, consisting on 4 siRNAs with the following sequences: 

CUAUGGGUCUCGACACUUA; GUACCGGUCUUUCUCAAAU; 

CCUUAAAGACUGUUUCAGA; GGAACUUGCUCGUGCCUUA, and which do not 

target the QPCT like sequence. For siRNA treatment, a single transfection protocol using 

50nM siRNA for 48 h or a double transfection protocol which consisted on a first 50 nM 

siRNA transfection followed by a second 50 nM siRNA transfection after 48 hours.

Western blotting—Cells were washed once in PBS and harvested on lysis buffer (20 mM 

Tris-HCl pH 6.8, 137nM NaCl, 1 mM EGTA, 1% Triton X-100, 10% glycerol, 1x Roche 
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complete mini protease inhibitor). Equal loading was obtained by protein concentration 

determination using a Bio-Rad assay followed by resuspension and boiling in Laemli buffer. 

Samples were subjected to 12% SDS-PAGE and transferred to PVDF membrane 

(Immobilion-P, GE Healthcare). Blots were proved with primary antibody: anti-LC3 

(1:2000; Novus Biologicals, NB100-2220), anti-Hsp70 (1:1000; Enzo SPA810), anti-

CRYAB (1:1000; Cell signalling 8851), anti-actin (1:2000; Sigma, A2066), anti-α-tubulin 

(1:4000; T9026, Sigma), anti-Flag epitope (1:2000; SIGMA, F7425), anti-GFP (1:1000; 

Clontech, Living colours, polyclonal), eIF2α (1:1000, Abcam 5369) and phospho-S51-

eIF2α_(1:1000, Abcam 32157), GRP78 (1:1000, Abcam 21685), anti-phospho-ERK 

(1:1000, Cell signalling, 9101), anti-ERK (1:1000, Cell signalling, 9102), anti-phospho-

CREB (S133) (1:1000, Cell signalling 9191), anti-CREB 86B10 (1:1000, Cell signalling, 

9104), anti-phospho-JNK (1:1000, Cell signalling, 9255), anti-JNK (1:1000, Cell signalling, 

9252). The appropriate anti-mouse or anti-rabbit secondary antibodies were used and 

visualized using an ECL detection kit (Amersham) or LI-COR Biosciences infrared imager 

(Odyssey).

Caspase 3/7 activity assay—Cells were seeded in a 96-well plate 24h prior to the assay 

and 1 μM staurosporine or DMSO was added for the last 8h. Caspase 3/7 activity was 

measured by using a luminogenic caspase 3/7 substrate (Caspase 3/7-Glo Assay, Promega) 

following manufacturer protocols in a Glomax luminometer (Promega). Protein 

concentration was determined in each cell lysate and caspase 3/7 activity was normalized to 

protein levels.

Co-inmunoprecipitation assays—Assays were performed as previously described 25, 

where HTT(1-588)Flag(Q138) and HTT(1-548)GFP(Q138) were expressed in HeLa cells 

together with QPCT plasmid for 48h, or treated with 25 μM SEN177 for 24h. Cells were 

lysed in buffer B containing 10 mM Tris pH 7.4, 150 mM NaCl, 1 mM EDTA pH8, 1% 

triton and 1x Roche complete mini protease inhibitor for 20 min on ice, followed by 

centrifugation at 13000 rpm for 10 min. Five hundred micrograms total protein were 

incubated with primary anti-Flag M2 (Sigma) or anti-GFP (Clontech, Living colours, 

polyclonal) at 5 μg/ml overnight at 4°C. Protein G Dynabeads (LifeTechnologies) were 

added and incubated for further 2 h. Beads were washed 3 times with buffer B and eluted 

using 0.1 M glycine pH 2.5M followed by boiling in laemli buffer. Samples were subjected 

to western blot and visualized using LICOR. A fraction of the total lysates was run 

simultaneously.

Reverse-transcriptase PCR analysis—Total RNA was isolated from cell pellets using 

Trizol Reagent (Invitrogen), treated with DNase I, and cDNA synthesis was performed by 

SuperScript III First-Strand Synthesis System (Invitrogen). Standard conditions were used 

for cDNA amplification and PCR products were analyzed by agarose gel electrophoresis and 

ethidium bromide staining or quantitated with real-time PCR. For real-time PCR analysis, 

the reaction mixture containing cDNA template, primers, and SYBR Green PCR Master 

Mix (Invitrogen) was run in a 7900 Fast Real-time PCR System (Applied Bio-systems, 

Carlsbad, CA). Fold changes on mRNA levels were determined by standard curve and after 

normalization to internal control β-actin RNA levels. Primer sequences used in this study 
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are: QPCT, 5′-CATGGCATGGATTTATTGG-3′ and 5′- GACGGTATCAGATCAAAC-3′; 

QPCT-like, 5′- CAGCGTCTCTGGAGCACTTA-3′ and 5′- 

GCCTCCAGGAACTTTCTGACT-3; GFP 5′- ACGTAAACGGCCACAAGTTC-3′ and 5′- 

TTCAGGGTCAGCTTGCCGTA-3′; actin, 5′-AGAAAATCTGGCCCACACC-3′ and 5′-

GGGGTGTTGAAGGTCTCAAA-3′; CRYAB, 5′- TCTTGAGCTCAGTGAGTACTGG-3′ 

and 5′-AGCTCACCAGCAGTTCATGG-3′; and mouse QPCT, 5′-

CGACTTGAGCCAATTGCTGA-3′ and 5′-CTTCCGGGTTAAGAGTGCTG-3′.

mRNA isolation from mouse brain—All mouse experiments were performed under 

appropriate UK Home Office licences and following institutional procedures. We analyzed 

samples from N171 mutant HD mice and wild-type littermate controls at 20 week. mRNA 

was extracted from brains homogenized in Trizol (Invitrogen) using an Ultra torax 

homogenizer.

Lentivirus infection—shRNA containing pLKO.1 vectors targeting both mouse and 

human QPCT (TRCN032432) were obtained from The RNAi Consortium (TRC) and 

scramble shRNA vector was generated in D. Sabatinit’s laboratory (Addgene, plasmid 

1864). Lentiviral plasmids to express Q80-GFP were kindly provided by J. Uney 55. 

Lentiviral particles were produced and transduced following The RNAi Consortium 

protocols.

Cell toxicity and aggregation assays—Cells were fixed for 7 minutes in 4% 

paraformaldehyde (PFA). For EGFP-tagged constructs, slides were mounted in Citifluor 

(Citifluor, Ltd.) containing 4′,6-diamidino-2-phenylindole (DAPI; 3 μg/ml; Sigma) and 

visualized using an Eclipse E600 fluorescence microscope (plan-apo 60x/1.4 oil immersion 

lens) (Nikon). For detection of HA-tagged constructs, inmunofluorescence with an anti-HA 

(Covance laboratories 1:500) and anti-mouse Alexa488 secondary antibody (Invitrogen, 

1:1000) was performed followed by mounting in Citiflour-DAPI. We assessed the 

percentage of transfected cells (EGFP- or HA-positive cells) with at least one aggregate per 

cell. Apoptotic cell death was determined by assessing the nuclear morphology (nuclei 

fragmented or condensed) in transfected cells. Slides were blinded and at least 200 

transfected cells per slide were scored; each individual experiment was performed in 

triplicate.

Detection of nascent protein synthesis—Protein synthesis was assessed by metabolic 

incorporation of AHA (L-azidohomoalanine) into cells transfected with EGFP-HTT(Q23). 

Briefly, 12 hours after HeLa cells transfection, media was washed and replaced with L-

methionine/L-cysteine free medium and treated with DMSO or SEN177 (50 uM) for 1h 

prior to addition of AHA (L-azidohomoalanine) to the media and collection of cells every 2 

hours. Labelled protein was detected by western blot after performing Click-IT protein 

detection assay (Life Technologies) using biotin, following manufacturer protocols.

Luciferase reporter assay—Cells were transfected with 1 μg of GRP78-luciferase 

(firefly) reporter construct and 50 ng of renilla-luciferase (pRL-TK) as an internal 

transfection efficiency control. Cells were collected in Passive lysis buffer and luciferase 

activity was measured using the Dual-luciferase Reporter Assay System (Promega) 
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following manufacturer’s protocol in a Glomax Luminometer (Promega). GRP78-luciferase 

relative activity was calculated relative to the renilla-luciferase transfection efficiency 

control activity for each sample; experiments were performed in triplicate.

Statistical analysis—Quantification of immunoblots was performed by densitometric 

analysis using the Image J software or the LI-COR Biosciences infrared imager software and 

normalized to loading control (actin or tubulin, as indicated). The p-values were determined 

by two-tailed Student’s t-test.

Aggregates were counted in at least 200 cells per slide (with the observer blinded to their 

identity), and percentage was calculated relative to control conditions. p-values were 

determined by unpaired two-tailed Student’s t-test.

All experiments were done at least three times in triplicate and a representative blot or graph 

from a triplicate experiment is shown unless indicated.

Heat shock proteins and chaperones PCR array—The Human Heat Shock Proteins 

and Chaperones RT2 Profiler PCR Array (SABiosciences, Frederick, MD) was used to 

study the expression profile of 84 heat shock proteins according to the manufacturer’s 

procedure. Briefly, total RNA was extracted from cells transfected with HTT(Q74)GFP 

treated with DMSO or 25 uM of SEN177 inhibitor for 24h, using Trizol (Invitrogen) and 

further purified using RNeasy mini kit with oncolumn DNAse digest (Qiagen), cDNA was 

then synthesized using an RT2 First strand kit (SABiosciences) and real-time PCR was 

performed using 7900HT fast real time PCR system (Applied iosciences). Data were 

analysed with RT2 profiler PCR array data analysis software version 3.5.

Assays for validation of polyglutamine aggregation modifiers in zebrafish

Maintenance of zebrafish stocks and collection of embryos—All zebrafish 

husbandry and experiments were performed in accordance with UK legislation under a 

licence granted by the Home Office and with local ethical approval. Zebrafish were reared 

under standard conditions (Westerfield et al, 2005) on a 14 h light/10 h dark cycle. Embryos 

were collected from natural spawnings, staged according to the established criteria 56 and 

reared in embryo medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM Mg2SO4, 

5 mM HEPES).

Determination of the maximum-tolerated concentration of compounds in 
larval zebrafish—Compound exposure experiments were performed on wild-type larvae 

(TL strain) from 2 to 3 days post-fertilization (d.p.f.). Concentration response assays were 

performed over log intervals, from 100 nM to 1 mM, to determine the maximum non-toxic 

concentration (MTC) for subsequent aggregate analysis assays (n=10 larvae per 

concentration). Compound exposure experiments were performed in the dark at 28.5 °C.

Measuring aggregate number and rhodopsin protein levels in transgenic HD 
zebrafish—Aggregate counting and analysis of rod photoreceptor degeneration 

(photoreceptor number) was performed using heterozygous larvae from Tg (rho:EGFP-

HTT71Q)cu5 zebrafish 42 (hereafter referred to as transgenic HD zebrafish). Embryos from 
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outcrossed transgenic HD zebrafish were raised in 0.2 mM 1-phenyl-2-thiourea (PTU) from 

1 to 3 d.p.f. to inhibit pigment formation, screened for transgene expression using EGFP 

fluorescence, and then washed twice in the embryo medium to remove PTU. From 3 to 9 

d.p.f., transgenic HD zebrafish larvae were dark-reared in embryo medium alone or embryo 

medium contain containing either DMSO, 1mM SEN177, 100 μM SEN180 or 100 μM 

SEN817. Embryo medium and compounds were replenished daily. Larvae were 

anaesthetized by immersion in 0.2 mg/ml 3-amino benzoic acid ethyl ester (MS222), then 

fixed for aggregate counting at 7 d.p.f. or for photoreceptor analysis at 9 d.p.f. Anaesthetised 

larvae were fixed using 4% paraformaldehyde (PFA) in PBS at 4 °C. Larvae were washed 

briefly in PBS, allowed to equilibrate in 30% sucrose in PBS then embedded in OCT 

medium (Tissue-Tek) and frozen on dry ice for subsequent cryosectioning. Sections were 

cut at 10 μm thickness using a cryostat (Bright Instruments). For aggregate counting, 

sections were mounted in 50% glycerol in PBS and the total number of GFP-positive 

aggregates were counted over 100 μm of the central retina, either side of the optic nerve 

head and mean values were calculated (n = 5 fish (10 eyes)) for each treatment group. For 

quantification of photoreceptor number, the GFP-positive area of the central retina was 

quantified using image thresholding and area analysis in ImageJ (n ≥ 5 fish (10 eyes) for 

each treatment group). To demonstrate that loss of GFP corresponds to loss of 

photoreceptors, sections were stained with anti-rhodopsin (1D1) antibody (a kind gift from 

Paul Linser, University of Florida, FL 57 and mounted using VectaShield hard set mounting 

medium (Vector Laboratories). Sections were viewed and representative images acquired 

using a GX Optical LED fluorescent microscope, GXCAM3.3 digital camera and GX 

Capture software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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lead optimization by in-silico drug design methodologies. V.P. optimized glutaminyl cyclase 

enzymatic assays for compound screening. G.L.S. and N.P.C. performed in vitro ADME 

experiments. C.S. provided support for experiments at Siena Biotech. C.O.K. supervised 

Drosophila experiments. G.P. also supervised molecular biology activities at Siena Biotech. 

A.C. supervised primary screen and chemical biology. D.C.R. supervised cell biology, 

Drosophila and zebrafish experiments. D.C.R and A.C. conceived the project and 

coordinated work between sites with assistance from G.P. M.J.S., D.C.R. and A.C drafted 

the manuscript which was commented on by all authors.
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Figure 1. Downregulation of QPCT in flies rescues HD toxicity
a. The eye phenotype of flies that express Q48 crossed to w1118 (VDRC stock number 

60000) is rescued upon downregulation of Drosophila Glutaminyl cyclase (QCGD38277, 

VDRC GD-RNAi line 38277). Representative images of eye pigmentation rescue are shown. 

F=female; M=male.

b. Downregulation of QPCT fly orthologs QC and isoQC using KK-RNAi lines (lines 

QCKK106341 and isoQCKK101533) reduced the number of black necrotic-like spots on Q48 

flies (see Supplementary Fig.5a for quantification). Fisher’s exact test was applied for 
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statistical comparison between control and test genotypes. Females: isoQCKK101533 p=2.42 

E-14; QCKK106341 p= 3.05 E-12; males: isoQCKK101533 p=3.53 E-0.8; QCKK106341 p= 1.72 

E-0.9

c. Loss of rhabdomeres due to expression of expanded huntingtin exon1 (elav-Gal4; 

GMRHTT.Q120) in the eye was significantly rescued upon downregulation of QPCT fly 

orthologues QC or isoQC (GD- or KK-RNAi lines as indicated). Graph shows the mean ± 

SEM of the average number of rhabdomeres per eye from 4 independent experiments; one-

tailed paired t-test was used to test significance.

d. The number of aggregates in the eyes of flies expressing expanded huntingtin HTTex1-

Q46-eGFP using GMR-GAL4 was reduced by downregulating QPCT fly orthologs QC and 

isoQC (RNAi lines isoQCKK101533, QCKK10634, QCGD38277). Graph shows mean ± SEM of 

the number of aggregates from 4 independent crosses for each genotype with control levels 

set at 100%. One-tailed paired t-test was used for comparison between control and test 

genotypes (n = 4).

In all panels, * p<0.05, ** p<0.01 and *** p<0.001. Scale bars represent 200 μm.
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Figure 2. QPCT modulates HTT toxicity and aggregation in mammalian cell lines and primary 
neurons
a. The percentage of cells with apoptotic nuclei or HTT(Q74) aggregates is reduced in 

HEK293 cells transiently expressing EGFP-HTT(Q74) and treated with QPCT siRNA. 

Representative images are shown in supplementary figure 6a.

b. QPCT shRNA significantly reduced the number of aggregates in mouse primary cortical 

neurons expressing Q80-EGFP. Scale bar represents 10 μm. The mean of 3 independent 

experiments in triplicate is represented in the graph. Significance was analysed by two-tailed 

paired Student’s t-test.
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c,d. Overexpression of QPCT (pCMV6-QPCT) together with EGFP-HTT(Q74) in HeLa 

cells for 48h increased the percentage of cells with apoptotic nuclear morphology and 

aggregates (c), this effect is not observed with a catalytically inactive QPCT 

(QPCT(E201Q)-Flag) (d).

e. The percentage of HeLa cells expressing EGFP-HTT(Q74), EGFP-Q57 or EGFP-Q81 

with aggregates is enhanced upon QPCT-Flag overexpression for 48 h.

f. QPCT siRNA reduces the percentage EGFP-Q81 or EGFP-A37 with aggregates in 

HEK293.

g. Overexpression of QPCT enhanced the amount of mutant HTT(1-548)-Flag co-

immunoprecipitating with HTT(1-588)-GFP. Levels of Flag-HTT(1-588) co-

immunoprecipitated relative to total lysates from 5 independent experiments are represented 

in the graph. Data were analyzed by two-tailed paired Student’s t-test (n= 5 experiments). 

Full blot images are shown in Supplementary Fig. 17a.

In all panels, unless indicated, graphs show mean values with control conditions set to 100 

and error bars represent standard deviation from a triplicate experiment representative of at 

least three independent experiments. Statistical analyses were performed by two-tailed 

unpaired Student’s t-test: ***p<0.001, **p<0.01; *p<0.05; NS, not significant
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Figure 3. Design of QPCT inhibitors that reduce mutant HTT aggregation
a. Chemical structure of compounds designed to inhibit QPCT activity. Table indicating the 

activity and in vitro ADME properties of the compounds is shown in supplementary fig. 

11a.

b,c. Treatment of HeLa cells expressing EGFP-HTT(Q74) with SEN177, 817 and 180 (50 

μM) for 24h reduced the percentage of cells with aggregates (b) and apoptotic nuclei (c).

d. SEN177 reduces the percentage of HEK293 cells with EGFP-HTT(Q74) or EGFP-A37 

aggregates in a concentration-dependent manner.
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e. SEN177 does not further reduce the percentage of EGFP-HTT(Q74) aggregates in QPCT 

shRNA transfected cells.

f. SEN177 reduces the amount of HTT(1-588)-GFP co-immunoprecipitating with 

HTT(1-548)-Flag in HeLa cells (25 μM SEN177). The amount of GFP-HTT(1-548) 

immunoprecipitated relative to total lysates was quantifiedand the average of 5 independent 

experiments is shown in the graph. Data were analyzed by two-tailed paired Student’s t-test 

(n= 5 experiments). Full blot images are shown in Supplementary information 17b.

g. Primary neurons expressing EGFP-Q80 for 3 days were treated with 50 μM of indicated 

compounds for further 24h.

In all panels, unless indicated, graphs show mean values with control conditions set to 100 

and error bars represent standard deviation from a triplicate experiment representative of at 

least three independent experiments. Statistical analyses were performed by two-tailed 

unpaired Student’s t-test: ***p<0.001, **p<0.01; *p<0.05; NS, not significant.
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Figure 4. QPCT inhibition induces alpha B-crystallin levels
a. Alpha B-crystallin (Cryab) protein levels were increased in cells transfected with 

HTT(Q74)GFP and treated with the indicated compounds at 25 μM for 24 h. Full blot 

images are shown in Supplementary information 17c.

b,c. Knockdown of QPCT for 24 h followed by transfection with HTT(Q74)GFP for another 

24h increased protein (b) and mRNA (c) levels of alpha B-crystallin. Fold change in mRNA 

of QPCT or alpha B-crystallin is represented in the graph with error bars representing 

standard deviation. The mean of three independent experiments in triplicate was normalized 
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to 1 and significance was calculated by one sample t-test. Full blot images are shown in 

Supplementary information 17d.

d. Overexpression of alpha B-crystallin (CRYAB-Flag) reduced the percentage of cells with 

HTT(Q74)GFP aggregates. SEN817 decreased aggregation when added at 25 μM for 24h in 

control but not CRYAB-expressing cells. In all panels, unless indicated, graphs show mean 

values with control conditions set to 100 or 1, and error bars represent standard deviation 

from a triplicate experiment representative of at least three independent experiments. 

Statistical analyses were performed by two-tailed unpaired Student’s t-test: **p<0.01; 

*p<0.05; NS, not significant.
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Figure 5. Pharmacologic inhibition of QPCT in fly
a. Flies that expressed HTTex1-Q46-eGFP in the eye have fewer aggregates after treatment 

with 50 μM of indicated compounds . Graph represents mean ± SEM from 4 independent 

crosses for each compound. Statistical analyses were performed by one-tailed unpaired 

Student’s t-test. Scale bars represent 200 μm.

b. Flies expressing HTTEx1-Q120 (GMR-HTT.Q120) show more rhabdomeres after 

treatment with SEN177 (50 μM). Graph represents the average number of rhabdomeres per 

eye ±SEM from 3 independent experiments with females and males counted separately, each 

based on approximately 10 individuals per datapoint, scoring 15 ommatidia from each 

individual. Statistical analysis was performed using one-tailed paired Student’s t-test.
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Figure 6. Pharmacologic inhibition of QPCT in zebrafish
a. Representative sections through the central retina of transgenic HD zebrafish at 7 d.p.f. 

treated with DMSO, SEN177 (1 mM), SEN817 (100 μM) or SEN180 (100 μM) showing 

aggregates (arrow) within the rod photoreceptors. Scale bar represents 10 μm. Treatment 

with QPCT inhibitors resulted in reduction in aggregates (Student’s t-test) for SEN187 and 

SEN810.

b. Representative sections through the central retina of transgenic HD zebrafish at 9 d.p.f. 

treated with DMSO, SEN177 (1 mM), SEN817 (100 μM) or SEN180 (100 μM). To 

demonstrate that loss of GFP corresponds to loss of photoreceptors, sections were stained 

with anti-rhodopsin (1D1) antibody (red). GFP labels the whole rod photoreceptor, whereas 

rhodopsin is present in the rod outer segment. Merged images show co-localisation of GFP 

the rhodopsin (red). Photoreceptor degeneration is ameliorated by SEN817 and SEN180. 

Scale bars, 10 μm.
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In all panels, **p<0.01; *p<0.05; NS, not significant.
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