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Regulation of protein synthesis is of fundamental
importance to cells. It has a critical role in the control of gene
expression, and consequently cell growth and proliferation.
The importance of this control is supported by the fact that
protein synthesis is frequently upregulated in tumor cells. The
major point at which regulation occurs is the initiation stage.
Initiation of translation involves the interaction of several
proteins to form the eIF4F complex, the recognition of the
mRNA by this complex, and the subsequent recruitment of
the 40S ribosomal subunit to the mRNA. This results in the
formation of the 48S complex that then scans the mRNA for
the start codon, engages the methionyl-tRNA and eventually
forms the mature 80S ribosome which is elongation-
competent. Formation of the 48S complex is regulated by the
availability of individual initiation factors and through specific
protein-protein interactions. Both of these events can be
regulated by post-translational modification by ubiquitin or
Ubls (ubiquitin-like modifiers) such as SUMO or ISG15. We
provide here a summary of translation initiation factors that
are modified by ubiquitin or Ubls and, where they have been
studied in detail, describe the role of these modifications and
their effects on regulating protein synthesis.

Introduction

Initiation of protein synthesis
Protein synthesis is of fundamental importance in cells and its

regulation is crucial for the continued viability of organisms. The
process comprises 3 stages: initiation, elongation and termina-
tion. Of these, initiation is generally considered to be one of the
major regulatory steps of gene expression in mammalian cells.
Initiation requires the function of a number of translation initia-
tion factors (Fig. 1), several of which have key roles in cell sur-
vival and oncogenesis. These proteins modulate the binding of
mRNA to the ribosome, a process facilitated by the assembly of
the cap binding protein (eIF4E), a helicase (eIF4A) and a scaffold

protein (eIF4G), to form the eIF4F complex (eIF4E/eIF4A/
eIF4G).1-3 The eIF4G scaffold protein possesses domains that
interact with eIF4E, eIF4A, eIF3 and the poly(A) binding pro-
tein, PABP.1-4 PABP itself is regulated by interaction with other
proteins; binding of Paip1 to PABP stimulates protein synthesis
while interaction with Paip2 is inhibitory to translation.5,6 The
activity of the eIF4F complex is regulated by a family of proteins,
the eIF4E binding proteins (4E-BPs). Using a conserved motif,
4E-BPs compete with eIF4G for a common surface on eIF4E
and inhibit eIF4F assembly. In mammalian cells, activation of
the mechanistic target of rapamycin (mTORC1) leads to phos-
phorylation of 4E-BP1 in a hierarchical manner. This promotes
protein synthesis by releasing eIF4E and enabling eIF4F complex
assembly on the m7GTP cap of mRNA, mediating 40S ribo-
somal subunit binding by a bridging interaction between eIF4G
and eIF3.1-3

In most organisms there is more than one isoform of most of
these translation initiation factors. For example, there are 3 iso-
forms of eIF4A, eIF4G and PABP.7-9 In some cases the functions
of the isoforms are indistinguishable, in others there are indica-
tions that the different isoforms display mRNA-specific regula-
tion.7-9 Further work will be required to uncover the full range of
functions and specificities of these isoforms.

Ubiquitin like proteins
Ubiquitin-like proteins (Ubls) comprise a family of structur-

ally related proteins. The different members of the family share
sequence similarities, and in particular the proteins contain a
conserved b-grasp fold consisting of 5 b sheets and one a helix.10

Ubiquitin is a 76 amino acid protein and is the most highly con-
served member of the Ubl family, with 96% identity between
yeast and human ubiquitin. SUMO (small ubiquitin-like modi-
fier) is less conserved between species and contains a longer,
more variable N-terminal extension than ubiquitin being around
100–110 amino acids in total length.11 ISG15, between 155–
165 amino acids in length, contains 2 ubiquitin-like domains.12

It was the first member of the family to be identified and, unlike
ubiquitin and SUMO, is present only in vertebrates. The gene
was so named because it was observed to be an interferon stimu-
lated gene encoding a 15 kDa protein.13 Most members of the
Ubl family are synthesized as precursor proteins that need to be
processed to a mature form to reveal a di-glycine motif at the
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Figure 1. For figure legend, see page e959366-3.
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C-terminus that is required for activation and subsequent con-
jugation of the Ubl to target proteins. The exception to this
is ISG15 in fish and bovine species where the protein is syn-
thesized in the mature form.14 Ubls are attached to one or
more lysine residues in target proteins. There are no known
consensus sequences for conjugation sites for ubiquitin and
ISG15. However SUMO is frequently, although not always,
attached to lysine residues present within the consensus
sequence cKxE, where c D a hydrophobic amino acid and x
is any amino acid.11

Ubiquitylation
Ubiquitin can be covalently attached to lysine residues in tar-

get proteins as a monomer or in the form of chains. This occurs
via the activity of a number of proteins, the E1 (ubiquitin acti-
vating enzyme), E2 (ubiquitin conjugating enzyme) and E3
(ubiquitin ligase) proteins (Fig. 2). In most organisms there is a
single E1, around 40 E2s and hundreds of E3s (reviewed
in15,16). Ubiquitin is produced as a precursor protein that is
processed to the mature form by one of a small number of spe-
cific ubiquitin proteases, to reveal a diglycine motif at the C-ter-
minus. Ubiquitin is then activated in an ATP-dependent
manner, by the formation of a thioester bond between the C-ter-
minal glycine residue and a cysteine residue on the E1 activating
enzyme. From here it is passed to an E2 ubiquitin conjugating
enzyme, again, via the formation of a thioester bond between the
C-terminal glycine residue and a cysteine residue. Attachment of
ubiquitin requires one of a large number of E3 ubiquitin ligases,
which in many cases interact directly with target proteins, but
which in some instances interact with targets via an adaptor pro-
tein. In the main, the E3s provide the specificity for the modifi-
cation. Ubiquitin chain formation occurs via lysine residues
within ubiquitin itself, and also requires the activities of the E1,
E2 and E3 enzymes. The most common linkages are via K11,
K48 and K63.17,18 Ubiquitin can be removed from targets by
the actions of deubiquitinating enzymes (DUBs). Ubiquityla-
tion has 2 main roles: targeting of proteins for proteolysis and
modification of protein function. The best studied role of ubiq-
uitylation is its targeting of proteins for proteasome-mediated
degradation. This involves the recognition of K11- and K48-
linked ubiquitin chains by the 26S proteasome.19 However,
there is a rapidly expanding literature on other roles for ubiqui-
tylation. For example ubiquitylation of PCNA is required for
the recruitment of an error-prone polymerase to undertake
translesion DNA synthesis e.g,20 while ubiquitylation of mem-
brane proteins is required for endocytosis and ubiquitylation of
PIN2 is required for vacuolar sorting (reviewed in21). In these
cases the modification involves a single ubiquitin or K63-linked
chains.

Sumoylation
The process of sumoylation is very similar to that of ubiqui-

tylation, involving SUMO-specific E1 (SUMO activating
enzyme), E2 (SUMO conjugating enzyme) and E3 (SUMO
ligase) proteins.11 There is a single E1 (a heterodimer), a single
E2 (Ubc9) and to date around 12 E3s have been identified.
Unlike ubiquitylation, an E3 is not always required for modifi-
cation, as the E2 is in some cases sufficient, and can provide a
degree of target specificity.22 Like ubiquitin, SUMO can be
attached to proteins either as a monomer or in the form of
poly-SUMO chains.11 Sumoylation affects protein-protein
interactions,23,24 protein activity25 and protein localization.26

In addition, SUMO chains interact with STUbLs (SUMO-tar-
geted ubiquitin ligases) that bring about ubiquitylation of the
target protein and associated SUMO chains, resulting in pro-
teasome–mediated proteolysis.27

ISGylation
ISG15 is conjugated to target proteins in a manner similar to

that of ubiquitin and SUMO.28 ISG15 expression and modifica-
tion (ISGylation) are activated by Type I interferon (IFN), which
is one of a number of critical cytokines in the innate immune
response. As is the case for ubiquitin and SUMO, there are pro-
teases that are specific for processing ISG15 and deconjugating it
from target proteins (e.g., USP43,29) and a specific E1 enzyme
for ISG15.29 However, some of the E2s (e.g., UbcH8) and E3s
(e.g., Efp—the partner of UbcH8, and HHARI—the human
homolog of Drosophila ariadne) involved in ISGylation also
appear to be involved in ubiquitylation.30,31

Identification of Ubl Attachment Sites and the Roles
of Modification

Early methods for the identification of modified sites involved
site-directed mutagenesis of individual lysine residues in target
proteins, followed by analysis in vitro or in vivo to determine
whether modification still occurred. While this has been success-
ful in some cases (e.g.,32) in many cases it has been problematic
since other lysine residues are frequently used instead of the nor-
mal sites in the mutant proteins. More recently, mass spectrome-
try has been used successfully for site identification (e.g.,33). This
involves the cleavage of modified proteins by trypsin or other
suitable protease to release peptides from the target. This method
is facilitated by having a protease cleavage site close to the C-ter-
minal diglycine motif attached to the target, so that only a few
extra amino acids remain attached to the modified site. Modifica-
tion sites are thus detected by the identification of peptides that
are increased in Mr by an amount dependent on the position of
the cleavage site within the Ubl.

Figure 1. (See previous page). Formation of the 48S preinitiation complex. eIF1, 1A and 3 interact with the 40S ribosomal subunit. This then interacts
with eIF5 and the ternary complex (eIF2-GTP-Met-tRNA) to form the 43S complex. In parallel, eIF4E and eIF4A are recruited by eIF4G to form the eIF4F
complex. The availability of eIF4E is controlled by 4E-BP1, which in turn is regulated by phosphorylation by mTOR. The eIF4F complex binds to the cap
on mRNA along with Poly(A)-binding protein (PABP) and eIF4B. PABP is regulated via interactions with 2 PABP proteins, PAIP1 and PAIP2. The 43S com-
plex then binds close to the cap from where it can scan the mRNA for the start codon.

www.landesbioscience.com e959366-3Translation



Analysis of the role of the modifications is hampered by the
fact that frequently, only low levels of modified forms are
observed in cells. The reason for this could be that the modifica-
tions are transient, are labile, or as in the case of poly-ubiquityla-
tion and poly-sumoylation, are targeting the protein for
proteasome-mediated destruction. It is also possible that modifi-
cation may be confined to target molecules in a particular cellular
location. Additionally, it is proposed that this form of post-trans-
lational modification is not like modifications such as phosphory-
lation—i.e., an on/off switch. For example, in the case of
SUMO, it is proposed that in some cases modification results in

a change in conformation of the target protein that is maintained
even after desumoylation occurs. Thus analysis of the roles of
these modifications has lagged behind analysis of the function of
other types of modifications.

Identification of the roles of the modifications has been under-
taken, in the main using in vitro assays to look at relative binding
abilities of wild type and unsumoylatable mutant proteins for
their binding partners e.g.,32 or by introduction of mutant cod-
ing sequences into cells to determine the effect of inability to
modify a particular protein. This is relatively straightforward in
yeast where a mutant copy can be integrated in the genome as

Figure 2. Ubiquitylation pathway. E1 D Ubiquitin activating enzyme, E2 D ubiquitin conjugating enzyme, E3 D ubiquitin ligase, DUB D deubiquitylating
enzyme. Ubiquitin is activated by the formation of a ubiquitin-adenylate before forming a thioester bond with a cysteine residue in the E1 ubiquitin acti-
vating enzyme. Ubiquitin is passed to an E2 ubiquitin conjugating enzyme, again forming a thioester bond. Target proteins are recognized by E3 ubiqui-
tin ligases, either directly or via an adaptor, and ubiquitin is attached via the formation of an e-amino bond. Ubiquitin can be attached to target proteins
either as a monomer, or in the form of ubiquitin chains. Ubiquitin can be removed from target proteins by the action of one of a number of DUBs.
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the sole copy of the coding sequence e.g.,34 In mammalian cells,
the mutant sequence can be introduced by transfection, but is
dependent on having cells where the gene has been knocked out
or where siRNA depletion is efficient. Depletion of the any of
the enzymes in the conjugation pathway would be likely to affect
multiple targets and would not be appropriate.

Role of Modification by Ubiquitin or Ubls
in Translation Initiation Factors

A series of recent proteomic screens have identified numerous
translation initiation factors that are modified by either ubiquitin
or SUMO, or in many cases, by both (Table 1). Additionally,
some of the screens have identified the lysine residues required
for the modification. Early studies involved the overexpression of
the modifier, but recently more refined methods using diGly cap-
ture techniques have been used to identify sites when the

modifier is expressed at endogenous levels e.g.35,36 These studies
use mass spectrometry to identify diGly-modified peptides
obtained by trypsin digestion of cellular proteins. A list of modi-
fied sites can be found at PhosphoSitePlus37 (http://www.
phosphosite.org/home). In many cases, individual lysine residues
are identified as a single ‘hit’, making them less likely target sites
than lysine residues that are highly represented, as for example is
observed in eIF4A and eIF4G proteins.

More detailed studies on the role of modification of a number
of the individual proteins by ubiquitin, SUMO and in one case,
ISG15 have also been reported. We summarize here what is
known about the roles of these post-translational modifications
and how they might affect translation rates in mammalian cells.

eIF4E
Regulation of eIF4E levels is important for normal cell

growth, as disruption of its expression or its over-production
leads to aberrant cell growth or oncogenesis.38 Additionally,

Table 1. Proteins identified in proteomic screens as being modified by ubiquitin or SUMO

Initiation factor Ubiquitin SUMO Reference

eIF1A Hs Ubiquitin*Mm Ubiquitin Rn SUMO-3 35,36,58,59

eIF2A Hs Ubiquitin*Mm Ubiquitin Hs SUMO-2*At SUMO 35,55,59,80

eIF2a Hs Ubiquitin*Mm Ubiquitin Dm SUMO 36,56,59

eIF2B-b Hs Ubiquitin*Mm Ubiquitin Hs SUMO-1/2 36,59,81

eIF2b Hs Ubiquitin*Mm Ubiquitin At SUMO*Sc SUMO-1 36,59,80,82

eIF2 subunit 1 Hs Ubiquitin*Mm Ubiquitin Rn SUMO-3 35,58,59

eIF2g Hs Ubiquitin*Mm Ubiquitin Dm SUMO*Hs SUMO-1*Hs SUMO-2/3*Sc SUMO 35,36,56,57,59,82,83, *

eIF5B* Hs Ubiquitin*Mm Ubiquitin Hs SUMO-2*Hs SUMO-1* 55,59,61(A)
eIF3A Hs Ubiquitin*Mm Ubiquitin*Rn Ubiquitin Hs SUMO-2*Hs SUMO-1 36,55,59,61(B)*
eIF3B Hs Ubiquitin*Mm Ubiquitin Hs SUMO-2 35,55,59

eIF3C Hs Ubiquitin*Mm Ubiquitin Hs SUMO 1/2 35,59,81

eIF3D Hs Ubiquitin*Mm Ubiquitin Rn SUMO-3 35,58,59

eIF3E Hs Ubiquitin*Mm Ubiquitin Hs SUMO-1/2 35,59,81

eIF3F Hs Ubiquitin*Mm Ubiquitin 59,74(C)
eIF3G Hs Ubiquitin*Mm Ubiquitin 35,36,59

eIF3H Hs Ubiquitin*Mm Ubiquitin*Rn Ubiquitin 35,36,59(D)*
eIF3I Hs Ubiquitin Sc SUMO*Hs SUMO-1/2 35,36,59,60,82–84

eIF3J Hs Ubiquitin*Mm Ubiquitin 36,59

eIF3K Hs Ubiquitin*Mm Ubiquitin 35,36*
eIF3L Hs Ubiquitin*Mm Ubiquitin 35,59

eIF3M Hs Ubiquitin*Mm Ubiquitin Hs SUMO-1 35,59,83

eIF3X Hs SUMO-2 55

eIF4A1 Hs Ubiquitin*Mm Ubiquitin*Rn Ubiquitin Dm SUMO*Rn SUMO-3*Hs SUMO-1/2*At SUMO 35,36,55–62(D)
eIF4A2 Hs Ubiquitin*Mm Ubiquitin Hs SUMO-1 35,59,61

eIF4E Hs Ubiquitin*Mm Ubiquitin Hs SUMO-1 36,46,59

eIF4GI Hs Ubiquitin*Mm Ubiquitin Hs SUMO-1/2 36,57,59,61

eIF4GII Hs Ubiquitin 35

eIF4GIII Hs Ubiquitin*Mm Ubiquitin 35,36

eIF5A Hs Ubiquitin*Mm Ubiquitin*Rn Ubiquitin Hs SUMO-1/2 35,59,83(D)
PABP1 Hs Ubiquitin*Mm Ubiquitin Hs SUMO-2*Sc SUMO 35,55,57,59,85

PABP4 Hs Ubiquitin*Mm Ubiquitin Hs SUMO-2 35,55,59

Hs: human, Rn: rat, Mm: mouse, Sc: S. cerevisiae, At: Arabidospsis. (A) (2010) CST Curation Set: 9913; Year: 2010; SILAC: N; Biosample/Treatment: AMO-1(cell
line)/Velcade; Disease: -; Specificity of Antibody Used to Purify Peptides prior to MS2: anti-UbK Antibody Used to Purify Peptides prior to MS2: Ubiquitin
(D4A7A10) XP(R) Rabbit mAb Cat#: 3925, PTMScan(R) Ubiquitin Branch Motif (K-e-GG) Immunoaffinity Beads Cat#: 1990. (B) (2008) CST Curation Set: 3970;
Year: 2008; SILAC: N; Biosample/Treatment: brain(tissue)/untreated; Disease: -; Specificity of Antibody Used to Purify Peptides prior to MS2: anti-UbK.
(C) (2009) CST Curation Set: 8668; Year: 2009; SILAC: N; Biosample/Treatment: RPMI-8266(cell line)/Velcade; Disease: -; Specificity of Antibody Used to Purify
Peptides prior to MS2: anti-UbK Antibody Used to Purify Peptides prior to MS2: Ubiquitin (D4A7A10) XP(R) Rabbit mAb Cat#: 3925, PTMScan(R) Ubiquitin
Branch Motif (K-e-GG) Immunoaffinity Beads Cat#: 1990. (D) (2007) CST Curation Set: 3578; Year: 2007; SILAC: N; Biosample/Treatment: brain(tissue)/ischemia
and Reperfusion; Disease: -; Specificity of Antibody Used to Purify Peptides prior to MS2: anti-UbK.
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eIF4E protein levels increase during differentiation e.g.,39 eIF4E
is both mono- and poly-ubiquitylated40,41 and this has been
demonstrated to occur mainly on K159.40 This modification is
enhanced by the E3 ubiquitin ligase, Chip (carboxy terminus of
Hsp-70 interacting protein) which is known to have a role in reg-
ulating protein quality control.42 A mutant form of eIF4E that is
unable to interact with eIF4G or 4E-BP1 is more highly ubiqui-
tylated than wild type eIF4E. This results in increased degrada-
tion by the proteasome of the mutant form, consistent with a
role for ubiquitylation of eIF4E in a quality control process,
removing inactive forms of the protein from the cell.40 A role for
ubiquitylation in quality control is supported by a number of
observations. First, that binding of eIF4E to 4E-BP1 (eIF4E
binding protein that is also regulated by ubiquitylation—see
below) suppresses ubiquitylation and degradation and that only
non-ubiquitylated eIF4E binds eIF4G. Second, overexpression of
4E-BP1 prevents ubiquitin-mediated degradation of eIF4E.
Third, heat shock (45�C 10 min, conditions that would result in
a degree of protein misfolding) also induces ubiquitylation of
eIF4E, as does exposure to another form of stress, cadmium
chloride.41

While poly-ubiquitylation clearly has a role in targeted
destruction of eIF4E, little work has been performed to deter-
mine whether there is a different role for mono-ubiquitylation in
regulating levels or subcellular localization of eIF4E. In contrast,
the biological significance of eIF4E phosphorylation and its effect
on translation have been studied over many years; however, the
role of phosphorylation in modulating the activity of the protein
is still not completely understood, although enhanced levels of
eIF4E phosphorylation are associated with a number of human
tumors.43,44 Biophysical studies have suggested that phosphoryla-
tion of eIF4E decreases its affinity for the mRNA cap of mRNA,
possibly allowing rapid recycling of eIF4E between competing
mRNAs.45 However, it has also been suggested that phosphoryla-
tion of S209 causes a retractable salt bridge to form with K159
(the ubiquitylation site) which leads to increased binding of
capped mRNA.40 Mutation of K159 to alanine but not arginine,
reduces association with cap analogs, indicating that a positive
charge is required at this position. Despite the fact that the
K159R mutant cannot be ubiquitylated, it has been proposed
that mono-ubiquitylation may stabilize the distance between
S209 and K159, or that ubiquitin itself may form part of the
bridge between S209 and K159.40

eIF4E is also modified by SUMO,32,46 in a process that is pro-
moted by HDAC2 (histone deacetylase 2).46 Sumoylation occurs
on several lysine residues, namely K36, 49, 162, 206 and 212.
Interestingly, unlike what has been observed with a number of
other proteins, such as IkBa and PCNA,34,47 sumoylation and
ubiquitylation of eIF4E do not occur on the same lysine residues.
Sumoylation of eIF4E is dependent on phosphorylation, but the
reverse is not true: inability to sumoylate eIF4E does not affect
its ability to be phosphorylated.32 Sumoylation results in the
induction of translation of a subset of mRNAs required for cell
proliferation and apoptosis. A mutant form of eIF4E that cannot
be sumoylated is still able to bind m7GTP, indicating that cap-
binding is unaffected. However, compared with wild type

protein, the mutant form binds significantly better to 4E-BP1
than it does to eIF4G, and is unable to form stable eIF4F com-
plexes. It has been suggested that sumoylation induces a confor-
mational change in eIF4E producing a change in interaction
surfaces resulting in release from 4E-BP1 and promoting interac-
tion with eIF4G. The inability of the mutant protein to be
sumoylated results in an increase in the amount of eIF4E inter-
acting with 4E-BP1.32 While overexpression of wild type eIF4E
in NIH-3T3 cells results in increased expression of eIF4E-
regulated genes, this is not observed when unsumoylatable eIF4E
is overexpressed.32 At this time is unclear whether sumoylation of
eIF4E has any effect of global rates of translation or rates of
export of specific mRNAs from the nucleus.

4EHP
4EHP, also known as eIF4E2, binds to the m7GTP cap in a

manner similar to that of eIF4E. However, unlike eIF4E, it does
not bind eIF4G and therefore does not allow ribosome recruit-
ment. It thus competes with eIF4E for the mRNA and prevents
translation.48 It is targeted for ubiquitylation49 and interestingly,
also for modification with another Ubl, ISG15.50 Curiously, the
E3 ligase HHARI, which has recently been shown to be a marker
of cellular proliferation,51 stimulates both ubiquitylation and
ISGylation of 4EHP.49,50 Proteomic studies have identified
K239 as a ubiquitylation site, but this has not been verified in a
detailed study. In contrast, ISGylation, which occurs on K134
and K222, has been analyzed in some detail.50 Binding studies
indicate that ISGylated 4EHP has a higher affinity for m7GTP
than the unmodified form. It has been proposed that this modifi-
cation is used by cells to inhibit translation of specific mRNAs in
innate immune responses. Interestingly, despite its similarity to
4EHP, eIF4E is not ISGylated.

4E-BP Family
The eIF4E binding proteins (4E-BPs) are key regulators of

protein synthesis.1-3 As their name suggests, they function by
interacting with eIF4E. This inhibits eIF4E function by prevent-
ing it from interacting with eIF4G to form the mature eIF4F
complex. The 4E-BP proteins are phosphorylated following acti-
vation of mTORC1, in response to changes in growth condi-
tions, and interaction of eIF4E with 4E-BP1 and -2 occurs with
the hypophosphorylated form.1-5 A key factor in the regulation
of translation initiation is that the relative levels of eIF4E and
4E-BP1 and -2 are highly controlled.52 The hypophosphorylated
form, but not the hyperphosphorylated form, of 4E-BP1 is unsta-
ble if not bound to eIF4E. Under these conditions, 4E-BP1 is
ubiquitylated and targeted for proteasome-mediated proteoly-
sis.52,53 The role of ubiquitylation was identified following some
rather unexpected results obtained when knockdown of eIF4E
using shRNA was demonstrated to have no effect on protein syn-
thesis.52 This was subsequently shown to be due to concomitant
degradation of 4E-BP1, which resulted in the release of eIF4E
molecules to compensate for the loss brought about by the
reduced expression. K57, a lysine residue conserved between all 3
4E-BPs, was identified by the Sonenberg lab as the ubiquitylation
site in 4E-BP1,52 and a screen of an siRNA library identified the
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KLHL25-CUL3 as the E3 ubiquitin ligase responsible for 4E-
BP1 degradation. Knockdown of KLHL25 resulted in a decrease
in translation, consistent with it having a role in controlling levels
of 4E-BP1.52

Proteasome activity (presumed to be a result of poly-ubiquity-
lation) has also been demonstrated to be required for the forma-
tion of a truncated form of 4E-BP1 (tr4E-BP) in murine erythro-
leukemia (MEL) cells containing activated p53.54 This truncated
form is 3 kDa smaller than full-length protein, is unphosphory-
lated and relatively stable. It also binds to eIF4E in preference to
the full-length protein. It has been proposed that the production
of this p53-induced form may be contributing to the ability of
p53 to regulate apoptosis and malignancy.

eIF4A
Two isoforms of eIF4A have been identified in proteomic

screens as being modified by ubiquitin and SUMO.35,36,55-62 In
contrast to what is observed with some of the other initiation fac-
tors, modified peptides from both eIF4A1 and eIF4A2 are highly
abundant in the proteomic screens designed to identify ubiquity-
lation sites, implying that modification is likely to have a key role
(s) in the regulation of the function of these 2 proteins. In the
ubiquitin screens, most of the modified sites identified in the
human eIF4A proteins were also observed in the mouse proteins,
suggesting that they are likely to be true ‘hits’ and not false posi-
tives. Interestingly, eIF4A2 (but not eIF4A1) and translational
repression have both been shown to be essential for miRNA-
mediated gene regulation.63 However, the post-translational
modification of these proteins by ubiquitin or Ubls has not been
analyzed in detail and to date there are no reports on whether it
affects the activity of the eIF4A protein or miRNA-mediated
translational control.

In a role unrelated to its function in translation, ubiquityla-
tion of Drosophila eIF4A has been shown to be linked with
Decapentaplegic (Dpp) signaling.64 Additionally, rice DRM2
(required for RNA-directed DNA methylation) interacts with
eIF4A via its ubiquitin associated (UBA) domain, (although
whether this occurs with a ubiquitylated form has not been
analyzed).65

eIF4G
There are 3 isoforms of the scaffold protein, eIF4G, eIF4GI-

III. As observed with eIF4A, diGly-modified peptides from these
proteins are abundant in proteomic screens designed to identify
ubiquitylation sites,35,36,57,59,61 and again most are observed in
both the human and mouse proteins. In eIF4GI these sites (6 in
total, 4 common to both human and mouse) map to lysine resi-
dues occurring between amino acids 593–925 which map close
to, or in the region of, the eIF4E and eIF4A/3 binding sites. The
abundance of these modified tryptic fragments and their position
in the protein suggests that this post-translational modification is
likely to be important for regulating the functions of these pro-
teins, possibly by affecting the interaction of eIF4G with other
members of the eIF4F complex. Again, these modifications have
not been analyzed in detail and to date there are no reports on
whether they affect the activity of eIF4GI. In addition to this

modification by ubiquitin, eIF4GI has been shown to be sumoy-
lated in both fission yeast and human cells.66 Sumoylation of S.
pombe eIF4G is increased following exposure of cells to 1 M KCl
or arsenite, conditions which result in the formation of stress
granules. In vitro sumoylation studies have identified 2 sumoyla-
tion sites in mammalian eIF4GI, K1368 and K1588, residing in
the eIF3/4A binding site and the Mnk-binding domain, respec-
tively. (Mnks (MAP kinase-interacting kinases) are kinases which
bind to the C-terminus of eIF4G and phosphorylate eIF4E
which is bound to the N-terminus of eIF4G.67) These data sug-
gest that sumoylation may be affecting interactions of eIF4GI
with associated proteins, e.g., eIF4E, and possibly the assembly
of eIF4G into stress granules.

Paip2
Poly(A)-binding protein (PABP) is regulated through the

interaction with 2 proteins, Paip1 and Paip2.5,6 Paip1, which
also interacts with eIF3g, is eIF4G-like and is stimulatory for
translation, while Paip2 represses PABP function by decreasing
the affinity of PABP for polyadenylated mRNA, thus inhibiting
translation. Paip1 and Paip2 both have 2 domains, PAM1 and
PAM2 which interact with PABP. This interaction occurs
through RRM-1 and PABC domains, respectively.68 Addition-
ally, PAM2 is capable of interacting with EDD (a member of the
HECT domain family of E3 ubiquitin ligases) which also con-
tains a PABC domain.69 In cells where levels of PABP are
depleted, Paip2A is ubiquitylated in an EDD-dependent manner
prior to proteasome-mediated degradation.70 Interestingly, the
affinity of the PAM2 domain of Paip2 for the PABC domain of
PABP is greater than that of the affinity for the PABC of EDD.
Thus, it is proposed that interaction of PABP with Paip2 com-
petes with EDD for interaction with PAM2 on Paip2, and that
this normally prevents ubiquitylation of Paip2.70 However, in
apparently contradictory work, it has been demonstrated that
during human cytomegalovirus infection PABP levels rise con-
comitantly with the levels of both Paip2 and EDD1. The reason
for this is not known, but it has been proposed that it may pro-
vide cells with a process to allow rapid changes in protein levels if
necessary.71 Paip2B is also polyubiquitylated, although at a
somewhat lower level that Paip2, and is hence more stable.72

eIF3
Proteomic studies have identified many of the eIF3 subunits

as targets for ubiquitylation and/or sumoylation. However, inde-
pendent of these studies, eIF3f is the only eIF3 subunit where the
function of these modifications has been studied in any detail.
eIF3f is a non-core subunit of the eIF3 complex. It can act both
as a repressor and as an enhancer of translation (reviewed in73).
Its role as a translational enhancer came to light in a study on
muscle atrophy.74 Here, eIF3f is ubiquitylated by the MAFbnx/
Atrogin1 protein which is a muscle-specific F-box protein ubiq-
uitin E3 ligase.75 This E3 is upregulated and essential for acceler-
ated muscle protein loss in a number of disorders.76

Ubiquitylation of eIF3f occurs on multiple (6) lysines in the C-
terminus74 and results in its ubiquitin-mediated proteolysis in
myotubes undergoing atrophy. Under these conditions both
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MAFbnx and eIF3f are detected in the nucleus.75 It has been pro-
posed that this ubiquitylation may be associated with the rapid
downregulation of certain proteins during muscle atrophy. eIF3f
also interacts with the ubiquitin E3 ligase TRC8 to inhibit pro-
tein synthesis. The mechanism by which this occurs is unknown,
but it has been proposed that TRC8 targets an eIF3 subunit for
ubiquitylation.77 Unrelated to its role in translation, eIF3f can
act as a deubiquitylating enzyme (DUB). In this capacity it is
capable of deubiquitylating, and thus contributing to the activa-
tion of, the Notch signaling receptor in Drosophila.78

Interestingly, recent work has shown that eIF3e is involved in
eIF4E phosphorylation; Mnk1 binding to eIF4F is dependent on
eIF3e, and eIF3e is sufficient to promote Mnk1-binding to
eIF4G.79 As eIF3e is modified by both ubiquitylation and
sumoylation, it would be interesting to know if these modifica-
tions of eIF3e also have a role in controlling eIF4E
phosphorylation.

Summary

In conclusion, despite the fact that numerous translation initi-
ation factors have been shown to be ubiquitylated and/or sumoy-
lated in proteomic screens, relatively little is known about the

effects of the modifications on the functions of individual pro-
teins. In part this is due to the transient nature of these modifica-
tions, e.g., in many cases of sumoylation, less than 5% of a
particular protein is modified at any one time, and the sumoy-
lated species appear to be very labile in certain organisms due to
highly active SUMO-specific proteases. Additionally, since ubiq-
uitylation targets proteins for destruction, analysis of ubiquity-
lated proteins, other than in the presence of a proteasome
inhibitor, is difficult.

The recent use of proteomic screens to identify modified pro-
teins and the modified site(s) suggests that there are many more
cases where post-translational modification by ubiquitin or Ubls
is likely to affect translation initiation factors. For example,
sumoylation of eIF4A1/2 might have a role in regulating both
the unwinding of mRNA secondary structure and the ability of
eIF4A2 to mediate miRNA-dependent gene expression in mam-
malian cells. Further work on these modifications is required to
fully elucidate their effect on individual proteins and on transla-
tional control of gene expression as a whole.
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