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Abstract
KPU-300 is a novel colchicine-type anti-microtubule agent derived from plinabulin (NPI-

2358). We characterized the effects of KPU-300 on cell cycle kinetics and radiosensitization

using HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator

(Fucci). Cells treated with 30 nM KPU-300 for 24 h were efficiently synchronized in M phase

and contained clearly detectable abnormal Fucci fluorescence. Two-dimensional flow-cyto-

metric analysis revealed a fraction of cells distinct from the normal Fucci fluorescence pat-

tern. Most of these cells were positive for an M phase marker, the phosphorylated form of

histone H3. Cells growing in spheroids responded similarly to the drug, and the inner quies-

cent fraction also responded after recruitment to the growth fraction. When such drug-

treated cells were irradiated in monolayer, a remarkable radiosensitization was observed.

To determine whether this radiosensitization was truly due to the synchronization in M

phase, we compared the radiosensitivity of cells synchronized by KPU-300 treatment and

cells in early M phase isolated by a combined method that took advantage of shake-off and

the properties of the Fucci system. Following normalization against the surviving fraction of

cells treated with KPU-300 alone, the surviving fractions of cells irradiated in early M phase

coincided. Taken together with potential vascular disrupting function in vivo, we propose a

novel radiosensitizing strategy using KPU-300.
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Introduction
Microtubules, which consist of polymers of α- and β-tubulins, are major cytoskeletal compo-
nents that play an important role in the regulation of chromosome separation in mitosis [1–3].
Consequently, the dynamic polymerization/depolymerization process of microtubules is a use-
ful target in cancer therapy. Many anti-microtubule agents have been developed; in general,
they can be classified into three types depending on the binding site in β-tubulin: the taxane
site, the vinca domain, and the colchicine site. Drugs belonging to the former two types, such
as paclitaxel and vincristine, have been already extensively used as chemotherapeutic agents in
the clinic [4, 5]. Indeed, plethora of studies reported that these drugs induce mitotic arrest at
early M phase, resulting in mitotic catastrophe for many types of tumor cells [6–9]. Several
drugs with colchicine-like activities have been recently developed; these compounds also exert
vascular disruption [10] in addition to their cytotoxic effects on tumor cells themselves. Agents
of this type include combretastatin A-4 (CA-4) [11] and plinabulin (NPI-2358) [12, 13]. A
phase I clinical study revealed that plinabulin is well tolerated [14, 15]. Hayashi et al. synthe-
sized a large number of plinabulin derivatives, including KPU-300, which has a simpler 2-pyri-
dyl structure in place of the tert-butylimidazole moiety that lacks the imidazole moiety, a
higher affinity to β-tubulin, and higher toxicity than the parent compound [16]. The simpler
structure of KPU-300 makes chemical synthesis much easier.

Radiotherapy (RT) is a powerful cancer treatment modality; however, radiosensitization of
radioresistant tumor cells is necessary for efficient tumor control. Many studies have reported
radiosensitization using taxane-type anti-microtubule agents [17–24]. Because such drugs syn-
chronize many types of tumor cells in M phase, which is the most radiosensitive stage of the
cell cycle [25–27], appropriate timing of administration results in optimal radiosensitization.
On the other hand, because some cells are radiosensitized without undergoing mitotic arrest,
inhibition of DNA repair is also thought to be involved in the mechanism of radiosensitization
by such drugs [28–30]. However, vascular disruption has been primarily reported in the con-
text of colchicine-type agents [31–33]. Hence, we sought to test KPU-300 as a radiosensitizer
in vitro and to characterize its radiosensitizing mechanism. Currently, it remains unclear
whether the radiosensitivity of cells accumulated in early M phase by anti-microtubule agents
is consistent with that of cells in early M phase. Indeed, until recently, this question was techni-
cally impossible to address. In this study, we used the fluorescent ubiquitination-based cell
cycle indicator (Fucci) system, in which cells emit red fluorescence in G1 phase and green fluo-
rescence in S/G2/M phases [34]. By combining the Fucci system with the shake-off method,
which concentrates mitotic cells [27], we could specifically collect cells in early M phase and
compare their radiosensitivity with cells synchronized by KPU-300 treatment. We show here
that the radiosensitivity coincides and propose a novel radiosensitizing strategy using KPU-300.

Materials and Methods

Cell lines and culture conditions
HeLa cells expressing the Fucci probes (HeLa-Fucci cells) were provided by RIKEN BioRe-
source Center through the National Bio-Resource Project of MEXT, Japan. Cells were main-
tained in DMEM (Sigma-Aldrich, St. Louis, MO) containing 1000 mg/L glucose, supplemented
with 10% fetal bovine serum (FBS) and 100 units/ml penicillin and 100 μg/ml streptomycin, at
37°C in a humidified atmosphere of 95% air and 5% CO2. For cell viability assays, HeLa (with
no Fucci probes), SAS (human tongue cancer), HSC3 (human tongue cancer), DLD-1 (human
colon cancer), Li-7 (human hepatocellular carcinoma), ACNH (human renal cell carcinoma),
TE8 (human esophageal cancer), and Lu65 (human lung giant cell carcinoma) cells were
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obtained from the Cell Resource Center for Biomedical Research (Sendai, Japan). HeLa and
TE8 cells were maintained in DMEM containing 1000 mg/L glucose, and SAS and HSC3 cells
were maintained in DMEM containing 4500 mg/L glucose. ACNH, DLD-1, Li-7, and Lu65
cells were maintained in RPMI-1640 (Gibco, Grand Island, NY). All media were supplemented
with 10% FBS, 100 units/ml penicillin, and 100 μg/ml streptomycin, and cultured under the
same conditions as for HeLa-Fucci cells.

Drug preparation and treatment
KPU-300, a yellow powdery substance, was developed as described previously [16]. It was
stored in aliquots at -80°C at a stock concentration of 10 mM in dimethyl sulfoxide. The solu-
tion was diluted to the indicated final concentrations in the growth media described above and
protected from light. Cells were irradiated using an RX-650 Cabinet X-radiator system (Faxi-
tron, Lincolnshire, IL) at a dose rate of 0.8 Gy/min (130 kVp, 5 mA, 0.5 mm Al filtration)
before or after KPU-300 treatment.

Immunofluorescence staining
Cells grown on Lab-Tek Chamber slides (Nunc, Rochester, NY) were treated with 30 nM
KPU-300 for 16 h. After treatment, cells were fixed in 4% paraformaldehyde for 30 min. Fixed
cells were then incubated in rabbit monoclonal anti–β-tubulin antibody (1:50) (Cell Signaling
Technologies, Beverly, MA) for 1 h at room temperature. After extensive washing in Tris-buff-
ered saline plus Triton X-100 (TBS-T), cells were incubated with Alexa Fluor 647–conjugated
anti-rabbit IgG (1:500) (Life Technologies, Carlsbad, CA) for 30 min. Finally, chamber slides
were washed in TBS-T and mounted with ProLong Gold Antifade Reagent (Life Technologies)
containing DAPI. Fluorescence and phase contrast images were observed using an FV10i-DOC
confocal laser scanning microscope (Olympus, Tokyo, Japan) with a UPLSAPO 60× W objec-
tive lens.

Cell viability assay
HeLa, SAS, HSC3, DLD-1, Li-7, ACNH, TE8, and Lu65 cells were plated in 96-well plates.
KPU-300 was added at the indicated concentrations in quintuplicate wells. Cell viability after
24 h KPU-300 treatment was determined based on absorbance at a wavelength of 450 nm
using the Cell Counting Kit 8 (DOJINDO, Kumamoto, Japan) (CCK-8).

Time-lapse imaging
Time-lapse images were acquired using a BIOREVO BZ-9000 fluorescence microscope (KEY-
ENCE, Osaka, Japan) at 2 h intervals for 24 h. During imaging, cells were held in a small incu-
bation chamber (Tokai Hit, Fujinomiya, Japan) at 37°C in a humidified atmosphere containing
95% air and 5% CO2.

Colony-forming assay
Cells were treated with the indicated concentrations of KPU-300 for the indicated times. For
combined treatment, drug treatment was followed by X-irradiation, or irradiation was followed
by drug treatment for 24 h. Immediately after combined treatment, the cells trypsinized, and
appropriate numbers of cells were seeded in 60-mm dishes. After incubation for 10 days, clono-
genic survival was determined by counting crystal violet–stained colonies consisting of more
than 50 cells. The surviving fractions were calculated from three independent experiments.
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Flow-cytometric analysis
After treatment with KPU-300 and/or X-irradiation, collected culture medium and trypsinized
cells were centrifuged together. After washing, the pellets were fixed in 4% paraformaldehyde
for 30 min. Cells were subsequently stained with a monoclonal antibody against phospho-his-
tone H3 (Ser10) (1:50) (Cell Signaling Technologies) for 1 h at room temperature, and then
with Alexa Fluor 647–conjugated anti-rabbit IgG (1:500) for 30 min. Finally, cells were washed
in phosphate-buffered saline (PBS), and re-suspended in PBS containing 10 μg/mL Hoechst
33342 dye solution (Invitrogen, Carlsbad, CA) to examine DNA content, and incubated for at
least 30 min. Cells were then re-washed and stored in ice-cold PBS. Before analysis, single-cell
suspensions were strained through nylon mesh. Samples were analyzed using a FACSCanto II
(BD Bioscience, Franklin Lakes, NJ) with the FlowJo software (Tree Star, Ashland, OR).

Spheroid formation
A HydrocellTM 96-well plate (CellSeed, Tokyo, Japan) was used to generate spheroids. Three
hundreds HeLa-Fucci cells were plated onto each well and incubated for 7 days. After the
spheroids became visible to the naked eye during incubation, the culture medium was
exchanged with fresh medium every 2 days. Spheroids around 500 μm in diameter were trans-
ferred to the agar-spread culture dish containing growth medium, which was originally pre-
pared for observation by the FV10i-LIV confocal laser scanning microscope (Olympus, Tokyo,
Japan).

Cell sorting
To collect cells in early M phase, mitotic shake-off method and cell sorting were combined as
previously reported [35]. Briefly, to detach the loosely adhering mitotic cells, cells grown in
flasks were shaken and rinsed gently about 10 times in DMEM. To purify only cells in early M
phase, the green cell fraction with a high intensity of green fluorescence was isolated using a
cell sorter MoFlo XDP (Beckman Coulter, Brea, CA). All of these processes were performed at
ice-cold temperatures.

Statistical analysis
Mean values were statistically compared using one way ANOVA with post hoc Tukey’s multi-
ple comparison test or the two-tailed t-test. P values< 0.05 were considered statistically signifi-
cant. The data are represented as means and standard error of the mean from three
independent experiments.

Results

Characterization of cell cycle kinetics and cell survival in HeLa-Fucci
cells following KPU-300 treatment
Fig 1A shows a schematic representation of the chemical structure of KPU-300, a novel anti-
microtubule agent that possesses a unique 2-pyridyl structure [16]. When cells were treated
with 30 nM KPU-300, microtubule structures were disrupted and the mitotic spindle was not
formed (Fig 1B), both characteristic consequences of treatment with inhibitors of microtubule
polymerization [36–38]. We next examined the kinetics of Fucci fluorescence in HeLa-Fucci
cells following treatment with various concentrations of KPU-300 (Fig 1C, upper panel). In the
Fucci system, cells in G1 and S/G2/M phases basically emit red and green fluorescence, respec-
tively, whereas cells in early S phase emit both [34]. Images of the cells shown in Fig 1C,
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Fig 1. Characterization of cell cycle kinetics in HeLa-Fucci cells following KPU-300 treatment. (A) Chemical structure of KPU-300. (B) Immunostaining
for β-tubulin. Exponentially growing HeLa-Fucci cells were fixed and prepared for immunostaining following treatment with 30 nM KPU-300 for 16 h. Blue,
DAPI; pink, β-tubulin. Bar, 5 μm. (C) Time course of Fucci fluorescence and histogram of DNA content following KPU-300 treatment. Cells were treated with
the indicated concentrations of KPU-300 and prepared for time-lapse imaging and flow-cytometric analysis. The time points are shown as hours:minutes in
each image; 0:00 represents the start of drug treatment. Bar, 20 μm. (D) Time course of the percentages of green fluorescent cells (a), M-phase cells (b), and
total cell number (c) following KPU-300 treatment. Green cells and M-phase cells were manually counted in merged fluorescence and phase contrast
images. A total of 170–350 cells obtained from 8–11 visual fields were counted in one experiment. M phase cells adopt a round-shape, accompanied by
disappearance of the nuclear envelope. Data represent means ± S.E. of values from three independent experiments. *, p < 0.05; **, p < 0.01 vs. treatment
with 10 nM for the same duration of time.

doi:10.1371/journal.pone.0145995.g001
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acquired after longer incubation at 30 nM, are also shown in S1 Fig. Because cells collapsed
after 24 h of drug treatment, in subsequent experiments we restricted the observations to time
points prior to 24 h. The kinetics corresponded to those of G2/M fractions detected by flow-
cytometric analysis (Fig 1C, lower panel). At a drug concentration of 10 nM, the percentage of
green cells gradually increased, reaching a maximal value of ~70%, and subsequently decreased
to the control level (~40%). On the other hand, at higher concentrations (30 and 100 nM), the
percentage continued to increase up to 24 h after treatment, reaching almost 100% (Fig 1Da)
(S1 Table). Close kinetics were also obtained in the percentage of M-phase cells, indicating that
cells were almost completely arrested in M phase following KPU-300 treatment at
concentrations� 30 nM (Fig 1Db) (S1 Table). Accordingly, increase in cell number was
completely inhibited at concentrations> 10 nM (Fig 1Dc) (S1 Table). Interphase and M phase
cells could be distinguished easily: M phase cells have a characteristic round shape, accompa-
nied by disappearance of the nuclear envelope; fluorescence in interphase cells is localized to
the nucleus, but is spread throughout the whole cell in M phase cells (c.f. images of cells dis-
persed from the spheroid, as shown below) [34].

Next, we examined cell survival in colony-forming assays. Up to 8 h after treatment, no signif-
icant decrease in surviving fraction was detected at concentrations from 5 to 100 nM, whereas
more than 16 h after treatment, a significant decrease was observed at concentrations> 5 nM.
Dose dependence was not detected in the range from 30 to 100 nM (Fig 2)(S2 Table). Similar
results were obtained in other human tumor cell lines using the CCK-8 assay (S2 Fig)(S3 Table),
confirming that the observed properties were not unique to HeLa-Fucci cells.

Abnormal fluorescence in M phase is detectable in HeLa-Fucci cells
following KPU-300 treatment
We previously reported that plinabulin, which has colchicine-like microtubule depolymeriza-
tion activity, induces abnormal fluorescence in M-phase HeLa-Fucci cells, and that this is an
indicator of mitotic catastrophe [39]. In this study, we obtained similar results following

Fig 2. Cell survival curves following KPU-300 treatment. (A) Dose dependency of surviving fractions after KPU-300 treatment for the indicated times. (B)
Time course of surviving fractions after KPU-300 treatment at the indicated concentrations. After treatment with KPU-300, cells were prepared for colony-
forming assays. Data represent means ± S.E. of values obtained from three independent experiments.

doi:10.1371/journal.pone.0145995.g002
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treatment with 30 nM KPU-300. During the initial stage of mitosis, only green fluorescence
was observed, but abnormal red fluorescence gradually became detectable; subsequently, the
cells underwent mitotic catastrophe (Fig 3A). In flow-cytometric analysis, the green fraction
gradually shifted upward, becoming double-positive for green and red fluorescence, including
most cells after 24 h of treatment (Fig 3Ba). The double-positive fraction was confirmed to be
in M phase by immunostaining for phosphorylated histone H3 (Fig 3Bb). A very small fraction
of cells showing polyploidy are originally included in HeLa-Fucci cells, which were detected in
Fig 3Bb. It is likely that such cells also apparently showed the phosphorylated form of histone
H3 after 16 h of treatment time. Quantitative analysis also supported these results (Fig 3Bc)(S4
Table). Considering that the percentage of sub–G1 phase cells (apoptotic fraction) was 16.8%
(data not shown) after 24 h KPU-300 treatment, we conclude that almost all cells were arrested
in M phase with abnormal fluorescence.

Fig 3. Characterization of abnormal Fucci fluorescence following KPU-300 treatment. (A) Representative images of abnormal fluorescence after
treatment with KPU-300. The time points are shown as hours:minutes in each image; 0:00 represents the start of drug treatment. Bar, 20 μm (B) Relationship
between abnormal Fucci fluorescence and M phase following KPU-300 treatment. (a) Two-dimensional flow-cytometric analysis of Fucci fluorescence. The
area within a quadrangle represents cells expressing abnormal Fucci fluorescence. (b) Two-dimensional flow-cytometric analysis of DNA content and
phosphorylated histone H3 (pHH3). The area within a quadrangle represents cells in M phase. The acquired time points are shown as hours:minutes in each
image; 0:00 represents the start of drug treatment. (c) Quantitative analysis of cells with abnormal Fucci expression and those in M phase in Fig 3a and 3b.
Data represent means ± S.E. of values obtained from three independent experiments. *p < 0.05; **p < 0.01 vs. controls at time 0.

doi:10.1371/journal.pone.0145995.g003
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Following KPU-300 treatment, cells in spheroids exhibit cell cycle
kinetics similar to those in monolayer cultures
We next examined cell cycle kinetics of cells in spheroids following KPU-300 treatment. We pre-
viously reported that HeLa-Fucci cell spheroids with a diameter of ~500 μm have an outer
growth fraction ~80 μm thick and an inner quiescent fraction. However, it was impossible to
visualize the latter fraction under live conditions due to the optical limitations of the confocal
fluorescence microscope [40]. Outer cells visualized at a depth of 65 μm from the spheroid sur-
face responded to the KPU-300 treatment, as shown in Fig 4: the number of green cells increased
gradually, and that of red cells increased 24 h after the treatment. Both signals reached a peak
around 28 h after the treatment (data not shown), and fluorescence intensity gradually decreased
thereafter. After drug treatment, the size of the spheroids significantly increased, indicating that
cell-cell contact was loosened. When the spheroids were dispersed 24 h after the treatment, most
of the cells were yellow (i.e., M phase) cells lacking a nuclear envelope, in contrast to the inter-
phase cells from the untreated spheroid, in which fluorescence was localized in the nucleus (S3
Fig). These results suggest that the drug treatment loosened cell-cell contact, leading to recruit-
ment of the quiescent fraction to growth fraction, which subsequently responded to the drug. As
a control, fluorescence images of the untreated spheroid 24 h obtained under exactly the same
observation conditions used for the KPU-300-treated spheroid are shown in S4 Fig.

Combined treatment of X-irradiation following KPU-300 treatment
significantly radiosensitizes HeLa-Fucci cells
Because KPU-300 synchronized cells in M phase, the most radiosensitive stage of the cell cycle,
we reasoned that cells would be radiosensitized following KPU-300 treatment. After 24 h treat-
ment with various concentrations of KPU-300, cells were X-irradiated, and survival curves were
obtained (Fig 5A)(S5 Table). As shown in Fig 2, the surviving fractions after 24 h treatment with
KPU-300 alone at concentrations� 30 nM were ~20%. Synergistic radiosensitization was

Fig 4. Confocal fluorescence imaging of spheroids after treatment with KPU-300. The spheroid was treated with 30 nM KPU-300 and observed at the
indicated times at the depth of 65 μm from the bottom using the confocal laser scanning fluorescence microscopy. The time points are shown as hours:
minutes in each image. Bar, 200 μm.

doi:10.1371/journal.pone.0145995.g004
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observed for cells after treatment at� 30 nM, whereas at 10 nM, only an additive effect was
observed. When the concentration was fixed at 30 nM, synergistic effects were observed only
when drug treatment duration was� 16 h (Fig 5B)(S5 Table).

Fig 5. Radiosensitization of HeLa-Fucci cells by the sequence of irradiation after treatment with KPU-300 and their pedigree analysis. (A)Survival
curves of HeLa-Fucci cells irradiated after treatment with variousconcentrations of KPU-300 for 24 h (left panel). Survival curves in HeLa-Fucci cells
irradiated after treatment with 30 nM KPU-300 for various times (right panel). Surviving fractions (SFs) were determined by colony-forming assay. SFs were
normalized such that SFs in the absence of irradiation had a value of 1. Data represent means ± S.E. of values obtained from three independent experiments.
(B) Pedigree analysis in cells treated with KPU-300 alone (left panel) or in combination with irradiation (right panel). After treatment with 30 nM KPU-300 for
24 h, the medium was replaced by fresh medium without drug. Time-lapse imaging was performed in the presence or absence of 4 Gy irradiation, starting
immediately after drug treatment and continuing for up to 72 h. Lines extending to the right end of the panel represent cells surviving for at least 72 h, and
shorter lines represents cells that collapsed within 72 h; the position of the end of the line indicates the time of cell collapse. A unique cell death mode
showing anaphase skipping was observed albeit with an infrequent event in irradiated cells following drug treatment (bidirectional arrow).

doi:10.1371/journal.pone.0145995.g005
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We next investigated how cells died after drug treatment (30 nM, 24 h) with or without
X-irradiation (4 Gy). Pedigree analysis was performed after removal of the drug (Fig 5C). After
drug treatment alone, ~50% of the cells underwent mitotic catastrophe following abnormal
fluorescence (Fig 3), and ~25% of cells survived for up to 72 h after the start of observation
(Fig 5C, left panel). In the typical pattern of mitotic catastrophe, cells exhibited both green and
red fluorescence until collapse. After a combination of 24 h drug treatment and irradiation,
~80% of cells underwent mitotic catastrophe, and ~10% survived for up to 72 h after the start
of observation (Fig 5C, right panel). Following combined treatment, a small fraction of cells
died in G1 phase after skipping anaphase; however, this infrequent event was unlikely to
explain the remarkable radiosensitization we observed. Time-lapse imaging and pedigree anal-
ysis for M phase cells receiving only 4 Gy are shown in S4 Fig as a control.

Synchronization of cells at early M phase is a mechanism of synergistic
radiosensitization after drug treatment
Judging from the relationship between cell cycle kinetics after drug treatment and radiosensiti-
zation patterns of survival curves, we reasoned that the underlying radiosensitizing mechanism
of KPU-300 involved synchronization of cells at M phase. To test this idea, we tried to collect
M-phase cells by shake-off method [25]. However, when the collected cells were examined by
flow-cytometric analysis, the green cells were contaminated with many cells that emitted no
fluorescence (representing early G1 cells), as previously reported [35]. Therefore, we were
unable to use the cells collected using the shake-off method alone. Taking advantage of chro-
mosome visualization by GFP-histone H2B, we found previously that plinabulin stops the cell
cycle around metaphase [39]. Fr. 2 in Fig 6A, acquired from cells obtained by the shake-off
method plus cell sorting, contained more than 80% cells in early M phase (i.e., prometaphase
and metaphase) in our previous report [35]. Therefore, we predicted that the surviving fraction
of cells in Fr. 2 would provide a key solution if the radiosensitization is truly due to synchroni-
zation of cells at the specific phase. Hence, we determined surviving fractions (SFs) after
various treatments, as shown in Fig 6B. The shake-off and cell sorting procedures did not sig-
nificantly affect radiosensitivity. The SF of cells in the whole population following KPU-300
treatment for 24 h or irradiation with 4 Gy was ~0.1 (Lane No. 5 and 6). By contrast, the SF of
early M-phase cells in Fr. 2 following 4 Gy irradiation was much lower, ~0.01 (Lane No. 7).
This observation was consistent with our previous results [35]. When cells were subjected to
4 Gy irradiation after KPU-300 treatment for 24 h, the SF was ~0.001 (Lane No. 8). Normaliz-
ing for the effect of KPU-300 treatment alone, i.e., the SF for Lane No. 8 was divided by that for
Lane No. 5, the SF became ~0.01 (Lane No. 9), which coincides with the SF of early mitotic
cells. Thus, the radiosensitizing effect of the KPU-300 treatment is consistent with radiosensiti-
zation obtained by synchronizing cells in early M phase, and the radiosensitizing effect of
KPU-300 can be attributed to cell cycle synchronization.

KPU-300 treatment after X-irradiation exerts an additive effect in low-
dose irradiation, but an antagonistic effect in high-dose irradiation
We next examined the effect of reversing the combination sequence, i.e., by treating cells with
KPU-300 for 24 h immediately after X-irradiation (Fig 7A)(S6 Table). At doses< 4 Gy, the
SFs exhibited an additive effect, whereas at doses� 4 Gy, they exhibited an antagonistic effect.
Thus, this sequence of combination treatment did not result in synergistic radiosensitization.
This observation is reasonable given that the observed radiosensitization could be attributed to
synchronization in early M phase, as described above. To investigate the mechanism of the
antagonistic effect at high doses of irradiation, we closely inspected the cell cycle kinetics
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(Fig 7B). DNA content analysis by flow cytometry revealed that cells were released later from
G2 arrest after 6 Gy irradiation than after 2 Gy irradiation; however, when irradiation was
combined with KPU-300 treatment, no useful information was obtained to explain the differ-
ence (Fig 7Ba). The elongation of the green phase represents G2 arrest [41]; therefore, we con-
cluded that G2 arrest was more strongly induced during KPU-300 treatment following 6 Gy
irradiation than following 2 Gy irradiation (Fig 7Ba). Consequently, the ratio of mitotic cells
released from G2 arrest was significantly higher in cells exposed to 2 Gy than in those exposed
to 6 Gy (Fig 7Bb, Fig 7Bc)(S6 Table). Thus, elongated G2 arrest results in a smaller proportion
of mitotic cells during the limited period of KPU-300 treatment (24 h), leading to decreased
cytotoxicity by KPU-300.

Fig 6. Radiosensitivity in cells in early M phase is comparable to that in KPU-300–treated cells. (A)
Fractions sorted by flow cytometry. Fr. 1, whole cell population; Fr. 2, cell fraction enriched in early M phase
following the shake-off method; Fr. 3, cell fraction accumulated in early M phase following KPU-300 treatment
for 24 h. (B) Radiosensitivity in each cell fraction following various treatments. Radiation dose was 4 Gy, and
concentration of KPU-300 was 30 nM. A value of “-” in the “Fr.” row (i.e., lanes 1 and 4) indicates that cell
sorting was not performed. The SF for Lane No. 9 was normalized by dividing the SF for Lane No. 8 by that for
Lane No. 5. Data represent means ± S.E. of values obtained from three independent experiments. Error bars
are not displayed when they would have been smaller than the circular symbol indicating the mean.N.S., not
significant by either ANOVA or t-test.

doi:10.1371/journal.pone.0145995.g006
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Discussion
Because colchicine-type anti-microtubule drugs are mostly vascular disrupting agents (VDA)
[31–33, 42–44], we closely examined their effect on cell cycle kinetics and investigated the possi-
bility of using such agents as a radiosensitizer in vitro. Specifically, using the novel colchicine-
type anti-microtubule agent KPU-300, we characterized the detailed cell-cycle kinetics following
KPU-300 treatment by taking advantage of the Fucci system. We observed a dramatic radiosensi-
tization when irradiation was administered after KPU-300 treatment at concentrations� 30 nM
for� 16 h. Under these conditions, most of the cells were inM phase at the time of irradiation.

Tishler et al. reported that paclitaxel induces dramatic radiosensitization 24 h after irradia-
tion, but not 2 or 8 h after irradiation [45]. This timing is well correlated with the increase in
the G2/M fraction, representing a relatively radiosensitive phase of the cell cycle, as determined
by flow-cytometric analysis. Because cells in late S phase are the most radioresistant, and the
duration of G2/M phase is relatively short, radiosensitivity changes dramatically during a short
cell cycle progression. Therefore, to precisely determine the effect of anti-microtubule agent–
induced synchronization on radiosensitization, a much more elaborate study was essential. In
our previous study, we visualized chromatin configuration in cells expressing GFP-histone
H2B after plinabulin treatment, and determined that the cells were synchronized around meta-
phase [39]. Thus, we had to specifically validate whether KPU-300–induced radiosensitization
could be explained by the radiosensitivity of cells in early M phase (i.e., around metaphase).
This consideration prompted us to collect mitotic cells by the shake-off method, originally
reported by Terasima and Tolmach; this method takes advantage of the loose attachment of
mitotic cells to the substrate and enables specific enrichment of mitotic cells by simple shaking
and washing of culture dishes [25, 26]. In their hands, the purity of mitotic cells was 85–90%
for the HeLa-S3 cell line [27]. However, Sinclair and Morton reported that such a simple
shake-off method does not work for Chinese hamster cells [46]. Likewise, we found that the
method did not work for HeLa-Fucci cells, and that the samples obtained were massively con-
taminated with cells in early G1 phase (Fig 6A). In our previous work, it was possible to isolate
cells in early G1 phase, late M phase, and early M phase by combining the shake-off method
with sorting based on the properties of the Fucci system; the resultant fraction of early M-
phase cells contained more than 80% of cells in prometaphase and metaphase [35]. Thus, the
Fucci system allowed us to determine whether the extent of radiosensitization induced by
KPU-300 could be explained by the radiosensitivity of isolated early M-phase cells. Indeed, this
was the case (Fig 6). The molecular mechanisms underlying the highest radiosensitivity in
mitotic cells remain largely unclear; however, previous work has shown that chromatin in
mitotic cells is more susceptible to DNA double-strand breaks (DSBs) than that in interphase
cells [47], and mitotic cells are deficient in the late stage of the DSB repair process [48].

The surviving fraction (SF) of cells following treatment with 30 nM KPU-300 for 24 h was
in the range 0.1–0.2. Our results indicate that cells that survived the treatment exhibited dra-
matic radiosensitization in early M phase. After drug treatment alone, the typical mode of cell
death was mitotic catastrophe. Even after a combination of drug treatment with irradiation, it

Fig 7. Radiosensitivity and cell cycle kinetics of cells subjected to KPU-300 treatment after irradiation. (A) Survival curves in HeLa-Fucci cells treated
with KPU-300 after irradiation. Cells were treated with 30 nM KPU-300 for 24 h immediately after irradiation, and then prepared for colony-forming assay. For
normalization, the curve for combined treatment was shifted upward so as to obtain the surviving fraction 1 at 0 Gy. Data represent means ± S.E. of values
obtained from three independent experiments. (B) Cell cycle kinetics after the same treatment described in Fig 7A. (a) Time course of DNA content with or
without KPU-300 treatment after 2 Gy or 6 Gy irradiation. (b) Time course of two-dimensional flow-cytometric analysis to detect green fluorescence and an M-
phase marker. The acquired time points are shown as hours:minutes in each image. (c) Quantitative analysis of green cells (left panel) and M-phase cells
(right panel) after the same treatment described in Fig 7A. Data represent means ± S.E. of values obtained from three independent experiments. *, p < 0.05;
**, p < 0.01 vs. lower values for the same time points.

doi:10.1371/journal.pone.0145995.g007
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was likely that the incidence of the cell death mode was enhanced, although a subtle incidence
of anaphase slippage was observed for at least 72 h after irradiation. In addition to M-phase
synchronization, inhibition of DNA repair has also been proposed as a radiosensitizing mecha-
nism [49]. Poruchynsky et al. reported that disruption of intracellular trafficking of DNA
repair proteins from the cytoplasm into the nucleus is an important mechanism underlying
radiosensitization [50]. Given that the nuclear envelope is not present in M phase, however,
this mechanism is not applicable to mitotic cells. This concept supports our results that com-
bined treatment did not induce more radiosensitization than expected of cells in early M
phase. Further molecular studies should be performed to elucidate these issues. Nonetheless,
our methodology using the Fucci system verified for the first time the mechanism of radiosen-
sitization from the viewpoint of cellular radiosensitivity. Notably, an antagonistic effect was
obtained when cells were treated with KPU-300 immediately after irradiation at high doses.
During a limited period of drug treatment, the duration of G2 arrest is likely to affect the cyto-
toxicity of KPU-300, i.e., the duration of mitotic delay is crucial for the cytotoxicity of anti-
microtubule agents.

Using the Fucci system, Yano et al. elegantly demonstrated that L-methioninase [51] or Sal-
monella typhimurium A1-R [52], which is able to induce G0/G1 tumor cells to advance into S/
G2 phase, can sensitize tumor cells to DNA-interacting or DNA synthesis-inhibiting chemo-
therapeutic drugs such as cisplatin, doxorubicin, and 5-fluorouracil. The resultant changes in
cell cycle phase are clearly indicated by a fluorescence shift from red to green. Considering that
M is the most radiosensitive phase of the cell cycle and late S is the most radioresistant, pro-
gression from G0/G1 to S/G2 is unlikely to be sufficient for sensitization; rather, synchronizing
in early M phase (e.g., by KPU-300 treatment) would be an ideal radiosensitizing strategy.

As noted above, colchicine-type anti-microtubule agents also have vascular disrupting func-
tions, resulting in rapid necrosis in tumor tissue via blocking tumor blood flow [12, 32, 33, 42,
43], leading to hypoxia in tumor tissue, which may cause radioresistance. Taken together with
our results, these findings may suggest that it will be quite difficult to determine the optimal tim-
ing of irradiation in combination with this class of drugs in a clinical setting. However, vascular
disrupting agents (VDA) cause necrosis only in inner regions of solid tumors; recurrence arises
from cells in peripheral regions, due to differences in the properties of tumor vessels in the inner
and peripheral regions [53]. Given that tumor vessels in the peripheral regions are refractory to
VDA, we speculate that the radiosensitizing effects of KPU-300 obtained in this study could be
applied to peripheral regions. It is not necessary to consider VDA-induced hypoxia, because
eradication of tumor cells in this inner region could be achieved by subsequent necrosis. Hypoxic
tumor cells should exist even in peripheral regions, and such cells may be reoxygenated by elimi-
nation of oxygen-consuming tumor cells and/or loosening of cell–cell contacts, as demonstrated
by our findings in spheroids (Fig 4), providing an opportunity for strong radiosensitization (i.e.,
reoxygenation, recruitment to the growth fraction, and synchronization in early M phase) to the
next round of irradiation. Although paclitaxel has been reported to achieve such reoxygenation
in whole tumor tissues [54, 55], here we propose, for the first time, the aforementioned radiosen-
stizing strategy using VDA. Given the information about oxygen tension and cell cycle kinetics
via surrogate markers during the treatment, further optimal timings could be designed for the
maximal tumor cell killing efficiency in an individualized way.

Supporting Information
S1 Fig. Fucci fluorescence images later times after 24 h of 30 nM KPU-300 treatment in Fig
1C. The time points are shown as hours:minutes in each image. Bar, 20 μm.
(TIF)
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S2 Fig. Cell viability assays performed on various tumor cell lines after treatment with the
indicated concentrations of KPU-300. Cell viability was determined 24 h after treatment, as
described in Materials and Methods. Data were normalized such that viabilities in the absence
of treatment had a value of 1.
(TIF)

S3 Fig. Fluorescence images dispersed from KPU-300-untreated and–treated spheroids.
KPU-300-untreated (left panel) and -treated spheroids (30 nM, 24 h)(right panel) were gently
physically dispersed and observed by a fluorescence microscope. Bar, 50 μm.
(TIF)

S4 Fig. Confocal fluorescence imaging of untreated spheroids Spheroids were observed at
varying depths from 36.9 μm to 88.5 μm, using confocal laser scanning fluorescence
microscopy, 24 h under exactly the same observation conditions used for KPU-300-treated
spheroids. Bar, 200 μm.
(TIF)

S5 Fig. Fluorescence images in HeLa-Fucci cells irradiated at M phase. Time-lapse imaging
for three cells irradiated (4 Gy) at M phase (upper panel). The time points are shown as hours:
minutes in each image. Bar, 20 μm. Pedigree analysis for the three cells in the upper panel
(lower panel). The colors and lines represent the same as those in Fig 5.
(TIF)

S1 Table. Data points for Fig 1D.
(XLSX)

S2 Table. Data points for Fig 2.
(XLSX)

S3 Table. Data points for S2 Fig.
(XLSX)

S4 Table. Data points for Fig 3Bc.
(XLSX)

S5 Table. Data points for Fig 5A and 5B.
(XLSX)

S6 Table. Data points for Fig 7A and 7Bc.
(XLSX)
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