
Magnetic resonance imaging of the spinal marrow: Basic 
understanding of the normal marrow pattern and its variant

Mohamed Ragab Nouh, Ahmed Fathi Eid

Mohamed Ragab Nouh, Faculty of Medicine, Alexandria 
University, Alexandria 21563, Egypt

Ahmed Fathi Eid, National Guard hospital, Al Ehsa 31982, 
Eastern Provience, Saudi Arabia

Author contributions: Nouh MR had the idea of the manuscript, 
reviewed the literature, drafted the manuscript and supplied some 
of the figures; Eid AF supplied some of the figures, critically 
reviewed the manuscript; Both authors approved the manuscript 
in its current final form.

Conflict-of-interest statement: The authors declare no conflict 
of interest.

Open-Access: This article is an open-access article which was 
selected by an in-house editor and fully peer-reviewed by external 
reviewers. It is distributed in accordance with the Creative Commons 
Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-
commercially, and license their derivative works on different terms, 
provided the original work is properly cited and the use is non-
commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Mohamed Ragab Nouh, MD, Assistant 
Professor of radiology and clinical imaging, Faculty of 
Medicine, Alexandria University, 1 Kolyat El-Teb Street, Mahata 
El-Ramel, Alexandria 21563, Egypt. mragab73@yahoo.com
Telephone: +20-111-6590365

Received: June 2, 2015
Peer-review started: June 5, 2015
First decision: August 8, 2015
Revised: September 29, 2015
Accepted: October 23, 2015
Article in press: October 27, 2015
Published online: December 28, 2015

Abstract
For now, magnetic resonance (MR) is the best no-
ninvasive imaging modality to evaluate vertebral bone 
marrow thanks to its inherent soft-tissue contrast and 

non-ionizing nature. A daily challenging scenario for 
every radiologist interpreting MR of the vertebral column 
is discerning the diseased from normal marrow. This 
requires the radiologist to be acquainted with the used 
MR techniques to judge the spinal marrow as well as 
its normal MR variants. Conventional sequences used 
basically to image marrow include T1W, fat-suppressed 
T2W and short tau inversion recovery (STIR) imaging 
provides gross morphological data. Interestingly, using 
non-routine MR sequences; such as opposed phase, 
diffusion weighted, MR spectroscopy and contrasted-
enhanced imaging; may elucidate the nature of bone 
marrow heterogeneities; by inferring cellular and chemical 
composition; and adding new functional prospects. 
Recalling the normal composition of bone marrow 
elements and the physiologic processes of spinal marrow 
conversion and reconversion eases basic understanding of 
spinal marrow imaging. Additionally, orientation with some 
common variants seen during spinal marrow MR imaging 
as hemangiomas and bone islands is a must. Moreover, 
awareness of the age-associated bone marrow changes as 
well as changes accompanying different variations of the 
subject’s health state is essential for radiologists to avoid 
overrating normal MR marrow patterns as pathologic 
states and metigate unnecessary further work-up. 
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Core tip: Magnetic resonance (MR) remains the ideal 
noninvasive imaging modality to evaluate vertebral 
bone marrow. Radiologists have to be aware by age-
associated bone marrow changes as well as changes 
accompanying different variations of the subject’s 
health state. Moreover, acquaintation with the used MR 
techniques, their privileges and limitations, in evaluation 
of spinal marrow is a prime requirement for radiolo-
gist to discern the normal spinal marrow as well as its 
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variants from diseased one.

Nouh MR, Eid AF. Magnetic resonance imaging of the spinal 
marrow: Basic understanding of the normal marrow pattern and 
its variant. World J Radiol 2015; 7(12): 448-458  Available from: 
URL: http://www.wjgnet.com/1949-8470/full/v7/i12/448.htm  
DOI: http://dx.doi.org/10.4329/wjr.v7.i12.448

INTRODUCTION
The spine is the largest store of bone marrow in the 
body[1,2]. Addressing bone marrow signal pattern is an 
integral part of the spinal magnetic resonance (MR) 
imaging evaluation. By far, magnetic resonance imaging 
(MRI) is the best imaging modality to depict bone 
marrow thanks to its inherent soft-tissue contrast and 
non-ionizing nature[3-5]. 

Bone marrow is a dynamic organ with continued 
changes occurring with increased age and increased 
hematopoietic needs in different environmental and 
health states[4,6]. Similarly, it is the target of a lot of 
pathologic processes that results in altered signal 
intensity or heterogenous signal pattern on MR imaging. 
A daily challenging scenario for every radiologist 
interpreting MR of the spine is to discern the diseased 
from normal marrow. This requires the radiologist to 
be acquainted with normal MR patterns of the spinal 
bone marrow, its chronological conversion, and its 
different common variants. This review starts with a 
brief discussion of the composition and physiology of 
the spinal marrow, followed by a concise discussion on 
the common MR sequences used to evaluate the spinal 
marrow. In the latter section the normal spinal marrow 
MR patterns and common variants are displayed. 

Spinal bone marrow buildup and physiology
Imaging-wise, the spinal bone marrow is a mix of 
cellular elements enclosed within a cortical bone 
shell; the vertebral body. These cellular elements are 
enmeshed within the medullary bony trabeculae; 
predominantly vertically oriented; that provide both 
structural support and storage of minerals as calcium 
and phosphate; thicker in the lumbar region[2,5,6]. 
There are two types of bone marrow in the spine: the 
red marrow, named after its richness in hemoglobin 
in erythrocytes lineage and is richly vascular; and the 
yellow marrow, named after abundant carotenoid 
bodies in its fat cells and is scarily vascular[7]. Either 
marrow type, whether red or yellow, is composed of a 
blend of fat, water and proteins in different proportions 
(Table 1). The 3 components vary in volume with 
normal growth and in response to different stimuli. 
Hence, their proportions are the main determinants 
of spinal marrow MR signal characteristics[8-10]. The 
nutrition of spinal marrow is derived from ambient 
sinusoids branching from nutrient vessels piercing the 
vertebral cortices and drained via the Batson’s venous 

plexus emerging from the posterior vertebral bodies’ 
cortices. Nerves accompany this vascular network and 
few lymph nodes can be identified within the vertebral 
marrow[7]. The function of bone marrow is to provide 
different blood cell lineages involved in tissue nutrition, 
oxygenation and body’s immune reactions[7].

Spinal marrow conversion
At birth, the whole spinal marrow is metabolically active 
(hematopoietic/red marrow). This pattern gradually, 
and in orderly fashion, turns into a less metabolically 
active (fat/yellow) marrow with growing up. This tem-
poral physiologic phenomenon is known as normal 
marrow conversion and concludes around age of 25-30 
years[2,6,11,12]. As in other skeletal region, the pattern of 
spinal marrow conversion is centripetal starting in the 
subcortical and subendplates regions and going to the 
center of vertebral body[8]. At all times, both red and 
yellow marrow are spinal marrow cohabitant yet the 
prevalent type is used to address the type of marrow 
in focus[2,4,12]. Moreover, a peculiar character of the 
spinal marrow is the persistence of red marrow over all 
ages, especially in the lumbar region[1]. Consequently, 
heterogeneity of the spinal marrow is a normal pheno-
menon, especially in adolescence and middle age. Focal 
areas of red marrow may be a challenge to disclose its 
nature in some clinical scenarios and mandates making 
use of different MR pulse sequences to disclose its 
nature.

Spinal marrow reconversion
During lifetime, various physiologic and pathologic 
states require increased tissue demands for more 
oxygen and hemoglobin. The metabolically inactive 
fat marrow dynamically repopulates into the metabo-
lically active red type, capable of responding to 
tissues’ needs of oxygen in a process named marrow 
reconversion[5,6,13,14]. 

It could be in response to physiologic stimuli as in 
obesity, cigarette smokers and heavy training athletes; 
or pathologic conditions as chronic hemolytic anemias 
and marrow replacing disorders[2,13,14].

In contrast to the orderly fashion of normal marrow 
conversion, reconversion is a patchy and an asym-
metrical process where areas of red marrow are 
embedded within the surrounding yellow marrow[15]. 
That is why recognition of this physiologic phenomenon 
is mandatory to rule out underlying myeloproliferative 

Nouh MR et al . The normal spinal marrow: Magnetic resonance imaging

449 December 28, 2015|Volume 7|Issue 12|WJR|www.wjgnet.com

  Marrow phenotype Chemical composition Cellular components

  Red marrow 40%-60% lipids 60% hematopoietic cells
30%-40% water 40% fat cells

10%-20% proteins
  Yellow marrow 80% lipids 95% fat cells

15% water 5% hematopoietic cells
5% proteins

Table 1  Vertebral bone marrow chemical composition and 
cellular buildup



disorder on MR imaging. 

MRI technique for the spinal marrow
Routine evaluation of spinal marrow will include spin 
echo T1 and T2W pulse sequences in the sagittal plane. 
Some institutes add short tau inversion recovery (STIR) 
sequences in the sagittal plane as a routine. The author’s 
prefer to use the STIR in the coronal plane to discourse 
the neutral axis and its meningeal sleeves, especially in 
cervical and lumbar regions, abnormalities of the facets 
and sacroiliac joints and exploration of accidental extra-
spinal pathologies not apparent on routine sagittal and 
axial planes. Any suspicious bone marrow lesion on the 
routine planes could be ascertained on this additional 
coronal STIR image. Axial planes will be advantageous 
in labeling presence of extra-medullary extensions and 
neural axis involvement by any marrow pathology.

Routine MR sequences for spinal bone marrow imaging
T1-weighted imaging: Both red and fat marrows con-
tain lipid and water with various proportions. The red 
marrow appears as low signal due to its higher water 
content on T1W images yet it has to be higher than that 
of intervertebral discs and paraspinal muscles[16]. On the 
contrary, a high lipid content of yellow marrow returns 
high signal intensity comparable to that of subcutaneous 
fat on T1W images[16]. This makes T1W the money’s 
worth sequence of MR screening of bone marrow[3,17,18]. 

T2-weighted imaging: The signal returning from both 
water and fat are high yet signal returning from red 
marrow is slightly lower than that of yellow marrow[19]. 
So, the ability of T2-sequence to differentiate marrow 
hyperplasia from marrow lesions is limited without 
the use of fat suppression especially on the fast spin 
echo (FSE) acquisitions[10,20]. This mandates the use 
of fat-suppression for better utility of T2 FSE used in 
clinical imaging of the spines. On fat suppression T2W 
sequences the red marrow will be of slightly higher 
signal than muscle while the yellow marrow has signal 
lower than it[6,10]. 

STIR sequence: It enhances the difference in longi-
tudinal relaxation of fat and water on T1W imaging. A 
non-selective 180° inversion pulse applied at specified 
inversion time followed by refocusing 90 pulse can 
cancel any signal from fat and the returning signal will 
be of the non-fatty components, e.g., water[10,21]. This 
enhances contrast of bone marrow lesions within the 
suppressed background. The main drawback of STIR 
imaging, that it suppresses any signal other than fat as 
hematomas and gadolinium enhancement[22]. 

Problem-solving MR sequences for spinal bone marrow 
imaging
Chemical-shift imaging: Chemical-shift or opposed 
phase imaging relies on the fact that water and fat have 
different resonance frequencies so that when they are 
resonating aligned their signal is summed (in-phase 

imaging) while when they are opposed (out-phase 
imaging) their signals are subtracted with subsequent 
signal drop[23]. As fat and water intermix in both types 
of marrow, the signal of red marrow will not significantly 
drop in out phase while that of yellow marrow will[23]. 
However, this is not absolute and a cut off value of 20% 
signal drop has postulated[24].

The main value of opposed phase imaging is to rule 
out neoplastic replacement of the marrow. Metastatic 
and infiltrative marrow neoplasia will destroy normal 
marrow and retain high water content with resultant 
high-signal on out-phase imaging[23]. This has proved 
beneficiary in differentiation neoplastic and osteoporotic 
fractures[25,26].

However, false negative results can rise from fat-
containing metastasis (e.g., from renal cell carcinoma) 
and false positive results can results from marrow 
fibrosis as well as susceptibility artifacts accompanying 
marrow hematomas and sclerotic metastasis[25,27]. This 
may necessitate marrow biopsy for histopathologic 
confirmation.

Diffusion-weighted imaging
Diffusion imaging addresses the free mobility of protons 
in a specific tissue[28]. This could be qualitative[29], i.e., 
bull eying or quantitive[30] using the apparent diffusion 
coefficient (ADC). It is a sound fast sequence that 
can comprehend functional aspects of the examined 
tissues in addition to the available routine morphologic 
sequences. Normal marrow that is rich in protons will 
show free diffusion and high ADC values (i.e., high 
signal intensity on both the diffusion image and ADC 
map)[31,32]. Contrarily, in metastatic lesions with densely 
packed cells and in cytotoxic edematous cells following 
trauma lower ADC values are seen (i.e., high signal 
intensity on the diffusion image and low signal on ADC 
map)[31,32]. However, studies on the use of diffusion 
weighted imaging of the marrow are controversial and 
it should be interpreted in line with the routine marrow 
sequences[31,33].

Currently, common clinical musculoskeletal appli-
cations of diffusion weighted imaging of the spine 
are differencing osteoporotic fractures and neoplastic 
vertebral body collapse[34], differentiation of infective 
and degenerative sub-endplates changes[35] and follow-
up treatment response of neoplastic marrow lesions[36]. 

Contrast-enhanced marrow imaging
Contrast enhancement is used to depict marrow lesions. 
The normal spinal marrow may show mild homogenous 
contrast enhancement in neonates and pediatrics due to 
abundant blood flow, prominent extravascular space and 
rich diverse cellularity[17,37]. This progressively become 
imperceptible as a function of age and increased fatty 
marrow content[38]. In normal adults spinal marrow 
doesn’t show perceptible enhancement following 
administration of gadolinium based T1W agents[17,37,38].

Dynamic contrast studies of the spinal marrow 
had been used to diagnose and follow-up myelo-proli-
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linear intermingled low signal intensities within both red 
and yellow marrow on all pulse sequences, especially 
prominent on the gradient recalled one. The trabecular 
marrow changes have little effects on the spinal marrow 
MR signal, if present. 

Actually, the relative ratio of fat and water is the main 
determinant for the MR signal of spinal bone marrow as 
well as the used MR pulse sequence[1,4,5,9,13,50,51]. 

On T1W images, the vertebral fat marrow is high-
signal intensity similar to subcutaneous fat in adults[2,5,6]. 
However, at birth all spinal marrow is of the red type 
with high water content resulting in low signal intensity 
of the vertebral bodies even relative to the intervertebral 
discs and muscles on T1W images (Figure 1)[14,52]. After 
that, gradual increased amount of fat cells, especially 
at the sub-endplates region and anterior part of the 
vertebral body (Figure 2), in the marrow results into 
the adulthood heterogenous vertebral marrow pattern 
(Figure 3)[52].

On T2W images, fatty marrow exhibits signal 
intensity near to that of the subcutaneous fat[2,6,10,17,18,53]. 
So use of fat suppression on fast/turbo spin echo 
T2 imaging is a must for better clinical utility of T2W 
sequence.

On fat-suppressed T2W and STIR images (Figure 
3), the red marrow emits an intermediate signal slightly 
higher than adjacent paravertebral muscles against the 
black background of suppressed fatty marrow. However, 
it is far less intense compared to pathologic lesions with 
high cellular and water contents[10]. 

Following intravenous gadolinium-based contrast 
media administration, the red marrow; predominantly 
in children and young adolescents; shows appreciable 
visual enhancement and increased quantitive para-
meters on MR dynamic contrast studies inferring its 
abundant vascularity, well perfusion and increased 
metabolic activity. However, this SI increased has to be 
less than 35% by the age of 35 years[54]. On the other 

ferative disorders[39]. Following rapid IV gadolinium-
based contrast agent administration, the changes 
in longitudinal relaxation of vertebral marrow are 
measured and signal time intensity curve is reproduced. 
Various parameters have been used like maximum 
intensity, slope of the curve and contrast washout[40]. 
Normal vertebral marrow shows decreased maximal 
enhancement, slope of enhancement and washout 
indices with increased age and fat marrow content[38,41]. 
However, dynamic contrast-enhanced studies have not 
been widely used in clinical practices.

Another less commonly used class of MR contrast 
agents affect the T2- or T2* imaging characteristics. 
Theses contrast agents, e.g., ultra small particles 
iron oxides are engulfed by the hematopoietic cells of 
the normal bone marrow, produce local field inhomo-
geneities with resultant suppression of normal bone 
marrow[42]. This results in increased conspicuity of 
marrow lesion that will not take these agents. They 
are used to differentiate infiltrative marrow lesions 
from reactive marrow hyperplasia[43]. Also they can 
differentiate bone metastasis from infection[44]. 

Proton MR spectroscopy
MR spectroscopy is a non-invasive method of quantifi-
cation of fat content of the marrow and evaluation of its 
chemical composition[45]. A single or multi-voxel method 
can used to asses one or more vertebral bodies and the 
fat content is expressed as a percentage (due to multiple 
lipid peaks) not an absolute value[46,47]. Previous reports 
emphasized age and sex related physiologic changes of 
the fat content of the spinal bone marrow[48,49]. 

However, it is not widely used clinically as same 
information could be achieved by the above used tools.

MRI appearance of the normal spinal bone marrow
As mentioned earlier, the bone marrow is a mix of red 
and yellow marrow supported by a trabecular marrow 
network. The trabecular marrow appears as a mesh of 
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Figure 1  Sagittal T1W (A) and T2W (B) images of 2-year-old boy showing 
low-signal of the spinal marrow just barely brighter than intervertebral 
discs on T1W images due to richness in red marrow.

Figure 2  Sagittal T1W (A) and T2W (B) images of 25-year-old male 
showing linear high-signal of the normal fat marrow at the sub-endplate 
zones (white arrows) at LV2 through LV5 levels. Note also, linear focal fat 
depositions along the basi-vertebral veins posteriorly. 

Nouh MR et al . The normal spinal marrow: Magnetic resonance imaging
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hand, this enhancement pattern is hardly perceptible in 
the fat marrow, in adults[37,38,55,56]. 

On chemical-shift imaging, the red marrow shows 
no remarkable signal drop on the out-phase image 
thanks to its near equal contents of both water and fat 
protons[57]. However, some signal drop may be seen in 
the yellow marrow (less than 20%) yet it is far less than 
malignant destructive processes[25]. 

On DWI, the normal red marrow shows intermediate 
signal that does not show lost signal on the correspon-
ding ADC map.

Common variant of the normal spinal marrow on MR 
imaging
As bone marrow is a dynamic organ with the normal 
processeses of conversion and reconversion in response 
to various environmental and health stresses, and 
spines are the largest marrow reservoir of our body, 
heterogeneity of vertebral marrow MR signal is a 
common finding in daily clinical MR examinations. 
Additionally, this is more complicated by age- and sex-
related variations as fat marrow is higher in men than 
women[49,58] and water content is higher in females 
child-bearing age[59]. 

In the same vertebral body of an adult, bone 
marrow is homogenously distributed with more abun-
dance of the cellular red-marrow (50% of the spinal 
marrow by age of 70 years) near the endplates and 
anterior portion of the vertebral body while fat marrow 
is abundant around the basi-vertebral vein[2,60]. 

These spatial and sex-related changes are common 
between individuals of the same age group. However, it 
is important to recognize that these variations have to 
be homogenous between vertebral bodies of the same 
subject[54]. 

Spinal marrow heterogeneities’ may be seen in all 

spinal regions but it is more common in the lumbar 
spines[1,6,9]. These changes could be in a focal or diffuse 
pattern, produced by either yellow or red marrow 
variant distributions[6,54,61,62]. 

LOCALIZED NORMAL VARIANTS
Focal T1W hyper-intensities
Basi-vertebral vein fat: On T1W and T2W imaging, 
areas of focal fat deposition are commonly seen in the 
posterior elements of the vertebrae as well as areas 
of high vascularity with active processes of conversion 
and reconversion. This will include the sub-endplates 
and subcortical zones and around the basivertebral vein 
(Figure 4)[5,32,60].

Vertebral-end plate degenerative changes: Pro-
gressive degenerative changes of the vertebral end-
plates are not uncommon findings on spinal MR (Figure 
5)[63]. Modic and colleagues described band-like sub-
end plate marrow changes that exhibit water-like (low 
T1W and high T2W) MR signal for type-I, fat-like (high 
T1W and T2W signals) for type-II, and calcium-like (low 
T1W and T2W signals) for type-III Modic changes[64]. 
Recognition of associated disc dehydration and presence 
of intra-discal gas precludes underling pathologies, e.g., 
discitis. 

Focal fatty marrow islands (Focal fatty meta-
plasia): A developmental variation of the bone marrow 
conversion process is the localized aggregates of areas 
of fat marrow. It can occur in any vertebral level yet it is 
a common variant in the lumbar spines (Figure 6) and 
lateral sacral ala of males than females; an area where 
sex-related marrow changes are important as age-
related changes as proved by chemical-shift imaging 
and spectroscopic data[49,65]. It can take the eye of an 
inexperienced interpreter if seen in the turbo-spin echo 
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Figure 3  Sagittal T1W (A), T2W (B) and coronal STIR (C) images of the 
dorsal spines of a 60-year-old male with mild scoliotic deformity of the 
mid dorsal region. The figure shows heterogeneous vertebral marrow with 
predominantly T1W high-signal and T2W intermediate signal meanwhile, the 
whole marrow did not exhibit abnormal signal on STIR images. STIR: Short tau 
inversion recovery.

Figure 4  Sagittal T1W (A) and T2W (B) images of 24-year-old male 
showing linear high-signal intensities along the course of basi-vertebral 
veins with near ending of normal marrow conversion into the mature/fat 
type. 

Nouh MR et al . The normal spinal marrow: Magnetic resonance imaging



T2W images. However, recognizing its high signal on 
T1W images and vanishing on fat-suppressed images 
will disclose its nature. Their corresponding radiographs 
and CT examinations will show preserved trabecular 
and cortical bone. They are not uncommon finding on 
daily spinal MR evaluations and should not raise clinical 
awkward. 

HAEMANGIOMA
Histologically, hemangiomas are developmental vas-
cular malformations consist of endothelial lined, thin-
walled, blood-filled vessels and sinuses, containing 
and supported by fat and interspersed among the 
longitudinally oriented trabeculae of bones[66]. They are 
common in vertebral bodies than posterior elements. 
Hemangiomas are not exceedingly uncommon finding 
in MR studies of the spines. They are commonly 
asymptomatic and multiple. On T2W images as well as 
STIR images, typical hemangiomas have high-signal 
intensity due to slow flow in vascular channels[67]. Its 
benign nature is ascertained by corresponding high-
signal intensity on T1W images due to its abundant 
fat content (Figure 7)[67]. Some atypical patterns of 
hemangioma may mimic more worrisome neoplastic 
lesions on MR imaging (Figure 8). Commonly, the 
intervening thickened trabeculae exhibits linear low-
signal intensity on all pulse sequences[68]. Spinal 
hemangiomas shows variable patterns of enhancement 
and can be confused for serious bony lesions[69]. 
Radiography (Figure 8) and CT can help to solve such 
confusing situations by showing prominent trabeculae 
with the pathognomonic polka-dot sign (Figure 8) on 
axial images[70,71]. 

Focal T1W hypo-intensities
Vertebral enostosis: Enostosis (or bone island) is 
a common imaging finding on all imaging modalities 
assessing skeletal parts, especially the spine with an 

incidence of about 14%. It is thought as a benign 
osseous hamartoma of developmental origin[72]. It is 
composed of cortical bone layers embedded within the 
surrounding vertebral marrow cavity and it is usually 
endosteal surface based. It is common in the mid-dorsal 
and lumbar regions, although it can occur anywhere. It 
has low signal on all MR pulse sequences[72]. However, 
a previous report described a rare pattern of peripheral 
rim of high-signal intensity on STIR images making 
it difficult to differentiate from sclerotic metastasis[73]. 
However, correlation with radiography and CT will help 
to disclose the lesion’s nature.

Focal nodular hyperplasia of the red marrow
Bone marrow hyperplasia is an abberance of normal 
marrow conversion-reconversion process with abun-
dance of red marrow[74,75]. Mild regional forms can be 
seen in endurance athletes, obese subjects and heavy 
smokers[15,76]. A more pronounced form can show 
up in some hematologic disorders (e.g., Hemolytic 
anemias) and malignancies as well as patients treated 
with granulocyte colony stimulating factors (GCSF) 
used to relive marrow suppression associated with 
chemotherapeutic regimens[77,78]. 

Rarely a localized focal form can be seen in the spinal 
(Figure 6) and pelvic marrow. On MR imaging these 
areas follow the signal criteria of normal red marrow, 
i.e., low signal intensity on T1W images, intermediate 
or no signal increase on T2W, Fat-suppressed and 
STIR imaging. On gadolinium administration faint or 
no enhancement is observed. Sometimes, these focal 
lesions can show increased signal intensity on T2 FSE 
sequences. This is contradictory to high T2W signal and 
contrast enhancement seen in neoplastic cases[74,75,79]. 

Presences within areas rich in red marrow (sub-
cortical and around basi-vertebral vein), elongated shape 
of the lesions, presence of central high-spot on T1W 
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Figure 5  Sagittal T1W (A) and T2W (B) images of 53-year-old male 
showing LV4 lower end plate irregularities with subjacent Type-II 
Modic changes with high-T1W and T2W signal. Note adjacent LV4-5 disc 
desiccations.

Figure 6  Sagittal T1W (A) and T2W (B) images of 41-year-old female 
showing LV3 patch of high-signal intensity (unchanged on serial magnetic 
resonance follow-up; not shown) on both T1W and T2W with fuzzy 
margins, proved to focal fatty metaplasia. Note areas of low signal intensity 
under the anterior cortex of multiple adjacent vertebral bodies (short white 
arrows) corresponding to focal nodules of red marrow.

Nouh MR et al . The normal spinal marrow: Magnetic resonance imaging



images (Figure 9), fuzzy margins are predictors of their 
benignity[1,3]. On corresponding radiographs and CT 
studies, radiolucency, geographic nature and absence of 

cortical disruption will ascertain their benign nature.

Benign notochordal cell tumors
Benign notochordal cell tumors are increasingly recog-
nized intraosseous; presumably; benign lesions of 
notochordal remnants[80]. Its reported incidence in 
autopsies reaches 20% of clivus and vertebral bodies[81]. 
They are incidental finding on radiologic and histologic 
examinations and have to be distinguished from chor-
domas to save inadvertent extensive surgeries[82]. These 
lesions were found to emit homogenous low- to iso-signal 
intensity on T1W images and high-signal on T2W images 
with no enhancement on MR contrast studies[82,83]. 
Lesions that are sizable enough to be picked on CT and 
radiographs are sclerotic in nature. However, topographic 
features of the lesion, i.e., intravertebral, preserved 
trabecular pattern and non-enhancement following MR 
contrast administration, are equally important to rule 
the possibility of chordoma; the extremely malignant 
spectrum of notchordal cell lineage[82,83]. A recent report 
described malignant, transformation into chordoma of L1 
vertebral body supporting the postulation of a relation of 
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Figure 7  Sagittal T1W (A), T2W (B) and axial T2W images of 63-year-old osteoporotic female showing heterogeneous lumbar vertebral marrow signal with 
diffuse increased high-signal intensities due to higher fat content. There is a focal round patch of increased signal on both T1 and T2 weighting in LV1 body with 
small punctuate areas of low signal intensities; seen unchanged from previous 2 magnetic resonance examinations (not shown here) confirmed to be a small typical 
vertebral hemangioma.
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Figure 8  Sagittal T1W (A), T2W (B) and STIR (C) images of 65-year-old female showing L1 vertebral body atypical hemangioma with diffuse low signal 
intensity on T1W image and high-signal intensity on T2W and STIR images presented on a background of lumbar spondylotic changes. Note also, DV11 old 
porotic wedging. Companion imaging showed prominent trabecular pattern on focused radiography (D) and CT (E) of the LV1 with characteristic polka-dot sign. STIR: 
Short tau inversion recovery.
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Figure 9  Sagittal T1W (A) and T2W (B) images of 33-year-old male 
showing focal geographic low signal intensity patches targeting LV3 
and LV4 bodies centers as well as around basi-vertebral veins. These 
patches still of high-signal intensity on T2W image. Note, the central fat spot 
(white arrow) and fuzzy margins of LV4 lesion inferring benignity features are 
consistent with focal nodular marrow reconversion. 
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the two entities[84]. MR imaging is the best modality to 
address and followup these lesions.

Diffuse normal variants
Diffuse hematopoietic marrow hyperplasia: Diffuse 
hematopoietic marrow hyperplasia is an exaggeration of 
the normal marrow reconversion discussed in an earlier 
section. It can occur in response to different physiologic 
stimuli as discussed before. Moreover, it is increasingly 
recognized in patients under chemo- and radio-thera-
peutic regimens whom are treated with GCSF to lessen 
the associated bone marrow suppression[85,86]. 

It can be confused with diffuse marrow infiltrative 
processes in the vertebral marrow thanks to both 
red and fat marrow cohabitation. As a rule of thumb, 
marrow hyperplasia exhibits a signal similar to that of 
red marrow. The vertebral hyperplastic marrow shows 
low signal on T1W images that may be even lower than 
adjacent intervertebral discs[1,6,13,14,87,88]. it may show 
mild to moderate enhancement following IV gadolinium 
administration[86]. However, the signal is relatively higher 
than paravertebral muscles on STIR and fat-saturated 
T2 imaging[1,6,13,14,87,88]. In chronic hemoglobinopathies, 
low signal may be seen on T2W images due to chronic 
hemosidine deposition[5]. Problem-solving MR sequences 
may be utilized in some difficult cases. 

Fat conversion of the marrow
Under certain conditions, there may be premature 
conversion of red marrow into the fat type with increased 
MR signal compared to the age and sex matched 
subjects. This can be seen in subjects with hypercor-
tisolism (whether endogenous or exogenous) and in 
some feeding disorders as anorexia nervosa[89]. This 
supposed to be mediated via hormonal effects on the 
preferential differentiation of bone marrow progenitor 
cells[90]. It has to be considered as a normal variation of 
the bone marrow for the health status of those subjects 
and not a pathologic marrow disease. 

Serous conversion of the marrow
In conditions of severe systemic illness associated with 
loss body fat stores, e.g., malignant cachexia, AIDS, 
anorexia nervosa or even following severe infections in 
pediatrics, a rare phenomenon of serous or gelatinous 
transformation of the bone marrow may commence in 
either diffuse or focal forms[91]. It starts in peripheral 
skelton yet it eventually reaches the axial skeleton. 
Pathologically; it is characterized by paucicellular 
marrow including both fat and hematopoietic cells which 
become embedded in hyaluronic acid-rich extracellular 
gelatinous substances[91,92]. These pathologic changes 
are recognized on MR as fat-poor marrow, which emits 
water-like signal on all pulse sequences, i.e., low on 
T1W and high on T2W and STIR sequences[3,93]. Visual 
loss of normal fat stores of the subcutis and inter-
tissues fascial spaces will raise this suspicion[93,94]. On 
18FDG PET/CT it may show increased tracer uptake[95].

CONCLUSION
MR is the gold standard noninvasive imaging modality 
to evaluate vertebral bone marrow. Conventional 
sequences used basically to image marrow include 
T1W, fat-suppressed T2W and STIR imaging provides 
gross morphological data. Moreover, non-routine MR 
sequences may elucidate the nature of bone marrow 
heterogeneities; by inferring cellular and chemical 
composition; and adding new functional prospects. 
Awareness of the age-related bone marrow changes 
as well as changes accompanying different variations 
of the subject’s health state is essential for radiologists. 
This will avoid overrating normal MR marrow patterns 
as pathologic states and avoid unnecessary further 
work-up.
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