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Abstract

Islet amyloid polypeptide (IAPP) is a peptide hormone whose pathological self-assembly is a 

hallmark of the progression of type II diabetes. IAPP–membrane interactions catalyze its higher-

order self-assembly and also underlie its toxic effects toward cells. While there is great interest in 

developing small molecule reagents capable of altering the structure and behavior of oligomeric, 

membrane-bound IAPP, the dynamic and heterogeneous nature of this ensemble makes it 

recalcitrant to traditional approaches. Here, we build on recent insights into the nature of 

membrane-bound states and develop a combined computational and experimental strategy to 

address this problem. The generalized structural approach efficiently identified diverse compounds 

from large commercial libraries with previously unrecognized activities toward the gain-of-

function behaviors of IAPP. The use of appropriate computational prescreening reduced the 

experimental burden by orders of magnitude relative to unbiased high-throughput screening. We 

found that rationally targeting experimentally derived models of membrane-bound dimers 

identified several compounds that demonstrate the remarkable ability to enhance IAPP–membrane 

binding and one compound that enhances IAPP-mediated cytotoxicity. Taken together, these 

findings imply that membrane binding per se is insufficient to generate cytotoxicity; instead, 

enhanced sampling of rare states within the membrane-bound ensemble may potentiate IAPP’s 

toxic effects.
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Islet amyloid polypeptide (IAPP, or amylin) is a small (37 residue) peptide hormone that 

forms fibrillar amyloid aggregates relevant to the pathology of type II, and treatment of type 

I, diabetes.1 IAPP is predominantly unstructured in solution, but weakly samples α-helical 

states which are then strongly stabilized upon binding phospholipid bilayers.2,3 The 

structured domain spans residues 1–22, with α-helical sampling dominating between 

residues 5 and 19.3–7 It has been suggested that oligomeric self-assembly mediated by this 

structural transition is associated with cytotoxicity and dysfunction of the insulin-secreting 

β-cells of the pancreas.1,8–11 In vitro, membrane-bound oligomeric states can accelerate 

amyloid formation12 and induce membrane leakage.13,14 Here, we describe a computational 

and experimental strategy to modulate these membrane-bound states of IAPP, and their 

downstream biochemical effects, by identifying previously unrecognized small molecule 

ligands from large commercial libraries.

While the mechanisms of IAPP-mediated toxicity are complex and may progress through 

several interrelated pathways,15 membrane disruption induced by prefibrillar oligomeric 

forms of IAPP is plainly a crucial component. Recent comparative studies of the amyloid-

forming human isoform of IAPP (hIAPP) and the nonamyloidogenic rat isoform (rIAPP) 

highlight the contribution of helical states (as opposed to β-sheet-rich conformations 

exclusively) to this phenomenon: both hIAPP and rIAPP can cause membrane leakage13,14 

and dose-dependent cytotoxicity,16–18 with the latter attributed to mitochondrial localization 

and dysfunction.19–21 Importantly, mutagenic diminution of α-helical propensity disrupts 

the cytotoxic potential of the human isoform.21 In addition, small molecules rationally 

designed to target helical states effectively inhibit IAPP-mediated cytotoxicity.22 These data 

all indicate that preamyloid α-helical membrane-bound oligomers are either themselves 

cytotoxic or enhance the sampling of cytotoxic states. hIAPP and rIAPP differ at 6 out of 37 

residues, of which one substitution (H18R) occurs in the helical subdomain and preserves its 

amphipathic topology. Both isoforms appear to sample broadly similar membrane-bound 

monomeric structures, although the variety of different detergent micelle and bicelle systems 

used as model membranes in these NMR studies3,5–7 make direct comparisons difficult. The 

effects of synthetic inhibitors on rIAPP membrane binding, hIAPP-mediated cytotoxicity, 

and lipid-catalyzed hIAPP amyloidogenesis are strongly correlated,23,24 further suggesting 

that both isoforms sample similar membrane-bound states. The observed differences in 

cytotoxic potency between hIAPP and rIAPP thus appear to result from differences in the 

energetics of membrane binding and cooperative self-assembly25 rather than fundamentally 

distinct cytotoxic mechanisms.21 Given the striking commonalities in conformation and 

pathological activity of the two isoforms, rIAPP serves as a powerful and widely used model 
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system to characterize prefibrillar states of hIAPP without experimental complications due 

to protein aggregation.

IAPP is one of a number of intrinsically disordered proteins for which membrane binding 

can result in the induction of a subset of pathological structures. Others include amyloid-β 

from Alzheimer’s disease and α-synuclein from Parkinson’s disease.8 A central challenge in 

developing insights in these systems is the heterogeneity and dynamic nature of the 

membrane-bound ensemble. In previous work, we addressed this by using sub-binding 

affinity concentrations of rIAPP in the presence of Nanodisc model membranes.26 This 

created an environment where only a small fraction (~0.5%) of protein samples a 

membrane-bound oligomeric state. Using single-pair Förster resonance energy transfer 

(spFRET), we were able to detect the formation of dimers with no progression to higher-

order species. SpFRET-derived restraints were used in a computational refinement protocol 

to develop a set of α-helical models representative of the membrane-bound ensemble of 

rIAPP dimers.

These models present us with the opportunity to modulate cooperative membrane-mediated 

self-assembly: we expect that selective ligands targeting these experimentally derived 

conformations should alter the sampling of the initial membrane-bound dimeric ensemble so 

as to increase or decrease the overall fraction of membrane-bound IAPP. Rational design 

targeting monomeric α-helical IAPP has already been used to potently inhibit membrane 

binding,22,27,28 so any inhibitors we develop could act solely by interacting with monomeric 

states. In contrast, any bona fide enhancers of membrane binding must act by binding to 

membrane-bound dimers (or dimer-like states within membrane-bound oligomers) and 

enhancing their sampling. Such ligands would thus directly validate our spFRET-derived 

models and could also serve as pharmacological reagents to better understand the 

pathological self-assembly process of IAPP. The challenge in developing such compounds 

lies in effectively and rationally targeting a heterogeneous collection of states rather than a 

single well-defined structure. In this article, we develop and demonstrate a novel and 

efficient approach to this problem that encompasses computational docking, statistical 

inference of ligand activity, and robust experimental assays of compound effects on IAPP–

membrane binding and IAPP-mediated cytotoxicity.

METHODS

Human and rat isoforms of IAPP were synthesized using standard Fmoc methods at the 

Keck Biotechnology Resource Laboratory at Yale University (New Haven, CT) or 

purchased from Elim Biopharmaceuticals (Hayward, CA). Fluorescent dyes were obtained 

from Life Technologies (Carlsbad, CA). 1,2-Dioleoylphosphatidylglycerol (DOPG) was 

purchased as powder from Avanti Polar Lipids (Alabaster, AL). Screening compounds were 

obtained from ChemDiv, Inc. (San Diego, CA), Maybridge (Waltham, MA), ChemBridge 

Corp. (San Diego, CA), or via the Yale Center for Molecular Discovery (YCMD, New 

Haven, CT). Other reagents were obtained from Sigma-Aldrich, unless otherwise stated.
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Computational Prediction of Binding Selectivity

All small molecule structures were energy-minimized using the UFF force field29 

implemented in Open Babel 2.230 prior to docking. The targets for computational docking 

were one monomeric, three antiparallel dimeric, and three parallel dimeric α-helical models 

of IAPP, generated by incorporating spFRET measurements into Rosetta31,32 computational 

refinement as previously described.26 These models are available in PDB format upon 

request. Models were prepared for docking using MGLTools 1.5.4,33 and docking was 

performed using Autodock Vina 1.1.2,34 running on local workstations and Yale High 

Performance Computing clusters.

Autodock results were used to train a fingerprint-based partial least-squares regression 

(PLSR) statistical inference algorithm. We implemented both feature-based fingerprints, 

which encode the presence or absence of specific chemical features as bit values of 1 or 0, 

respectively, in a binary vector, and topological fingerprints, which encode the various 

patterns of chemical connectivity within a compound by setting a particular combination of 

bits to take value 1. Fingerprints generated by either method are degenerate in that distinct 

(but similar) compounds may share the same fingerprint. Feature-based Molecular ACCess 

System (MACCS) fingerprints35 were generated using Open Babel 2.2, while topological 

2048-bit Extended-Connectivity FingerPrints (ECFP)36 and feature-based 881-bit 

CACTVS37 keys were generated using ChemFP 1.0a1.38 PLSR inference was performed 

using custom Python scripts employing the SciPy module39 following the Nonlinear 

Iterative PArtial Least-Squares (NIPALS) algorithm40 as previously implemented41 and was 

used to predict the Autodock scores of a given small molecule binding to each of the seven 

IAPP models. Selectivity was defined as the difference between the lowest docking score for 

any of the three antiparallel dimers and the lowest docking score for any of the three parallel 

dimers such that negative values indicate preferential binding to antiparallel states. An 

iterative scheme was used to extend the training set into relevant regions of chemical space 

sampled by the NIH Molecular Libraries Small Molecule Repository (MLSMR) collection, 

as described in the Results section. The optimized training set was then applied to the 

YCMD compound collections. The 4000 compounds predicted to have the most positive and 

most negative selectivity scores (2000 each) were docked to the seven IAPP models, and the 

80 most selective compounds from this step were then purchased and used for experimental 

screening, along with 20 compounds selected at random from the YCMD set.

Fluorescence Correlation Spectroscopy (FCS) Measurements of IAPP Binding and 
Modulation of Membrane Binding

IAPP was fluorescently labeled by standard amine coupling: carboxytetramethylrhodamine-

succinimidylester (TAMRA-SE) was added in 5-fold molar excess to 250 μM rIAPP in 10 

mM potassium phosphate, pH 7.2, and incubated for 2 h at room temperature. Peptide was 

separated from free dye using HiTrap G-25 desalting columns (GE Healthcare, Piscataway, 

NJ), and the extent of labeling was verified by mass spectrometry (Waters LCT, Waters 

Corp., Milford, MA). Labeled protein was flash-frozen and stored at −20 or −80 °C until 

use. Large unilamellar vesicles (LUVs) were prepared by drying a film of DOPG under a 

stream of argon, followed by lyophilization for 2 h, rehydration for 1 h in buffer (20 mM 

Tris, pH 7.4, 100 mM NaCl), and extrusion through a 100 nm diameter filter (Whatman, GE 
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Healthcare, Piscataway, NJ). FCS samples contained 10 nM TAMRA-labeled rIAPP in 20 

mM Tris, pH 7.4, 100 mM NaCl, 1% DMSO, in the presence or absence of 1.6 μM DOPG 

LUVs, and 10 μM of a given compound. Tests on representative compounds showed that the 

addition of 10 μM unlabeled rIAPP (for a final compound:protein ratio of 1:1) had minimal 

effects on the results (Figure S2b).

FCS measurements were performed on a home-built instrument as previously described.42 

The output from a 561 nm, 50 mW continuous-wave laser (Newport Corp., Stratford, CT) 

was adjusted to a power of 5 μW using neutral-density filters, and directed into an Olympus 

IX-71 inverted microscope (Olympus America, Center Valley, PA) with a 60×/1.2 NA 

water-immersion objective. Emitted fluorescence was isolated using a 585 nm long-pass 

dichroic mirror and a 600 nm long-pass emission filter (Chroma Technology Corp., Bellows 

Falls, VT) and transmitted via a 50 μm multimode fiber (Oz Optics, Ottawa, Canada) to an 

avalanche photodiode detector (PerkinElmer, Waltham, MA) coupled to a Flex03-LQ-12 

hardware correlator (Correlator.com, Bridgewater, NJ). Analysis of autocorrelation traces 

was performed using custom scripts in Matlab (Mathworks, Natick, MA). FCS data were fit 

to a model of a single molecular species diffusing in three dimensions, where the normalized 

autocorrelation G(τ) is given by

(1)

where N is the mean number of labeled particles in the detection volume, s is a structure 

factor that describes the dimensions of the observation volume, τ is the delay time, and τD is 

a diffusion time that is directly proportional to the hydrodynamic radius (i.e., it increases 

along with particle size). At 1.6 μM DOPG, IAPP exists as a mixture of lipid-bound and free 

states and therefore displays an apparent diffusion time intermediate between the solution 

(~0.25 ms) and completely LUV-bound (~7 ms) value. Here, we simply report an apparent 

diffusion time that is a nonlinear combination of these two values. Compounds that enhance 

lipid binding induce an increase in the apparent τD, while inhibitors decrease this parameter.

Compound Effects on IAPP Cytotoxicity

Rat insulinoma INS-1 cells (832/13, Dr. Gary W. Cline, Department of Internal Medicine, 

Yale University) were cultured at 37 °C and 5% CO2 in phenol red free RPMI 1640 media 

supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin (all from Life 

Technologies, Carlsbad, CA), and 2% INS-1 stock solution (0.5 M HEPES, 100 mM L-

glutamine, 100 mM sodium pyruvate, and 2.5 mM β-mercaptoethanol). Cells were passaged 

upon reaching ~95% confluence (0.25% Trypsin-EDTA, Life Technologies), propagated, 

and/or used in experiments. Cells used in experiments were pelleted and resuspended in 

fresh media with no Trypsin-EDTA.

Cell viability was measured using the CellTiter Blue (CTB) fluorescence-based assay. CTB 

reagent (Promega, Madison, WI) comprises nonfluorescent resazurin, which is metabolically 

reduced to fluorescent resorufin in living cells. We have previously shown that for INS-1 

cells the CTB readout directly corresponds to cell loss measured by direct counting.9 Cells 
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were plated at a density of 20 000 cells/well (500 μL/well) in 24-well plates (BD 

Biosciences, San Diego, CA). After culturing for 48 h, media was replaced with fresh media 

containing hIAPP and small molecules premixed at the desired concentration. Cells were 

incubated at 37 °C and 5% CO2 with peptide and small molecules for an additional 48 h for 

experiments measuring the effect of computationally selected small molecules. After the 

incubation period, CTB reagent (100 μL) was added to each well and incubated at 37 °C and 

5% CO2 for 2.5–4 h. Fluorescence of the resorufin product was measured on a FluoDia T70 

fluorescence plate reader (Photon Technology International, Birmingham, NJ). All solutions 

included 0.1% DMSO and 1% H2O to account for the addition of peptide and small 

molecules vehicle to sample wells. Wells that included vehicle but not peptide or small 

molecule served as the negative control (100% viable), and wells containing 10% DMSO 

were the positive control (0% viable). Percent viability, V, was calculated using the 

following equation

(2)

Each independent variable is the average fluorescence of four technical replicates from the 

negative control (〈N〉), positive control (〈P〉), and samples (〈S〉).

RESULTS

The premise of this work is that ensembles of preferentially sampled states from a 

heterogeneous system are viable targets for rational screening and the development of novel 

biophysically and biologically active ligands. Our overall approach (shown schematically in 

Figure 1) begins as a superficially simple effort to dock a compound library to a structural 

model. However, this is anything but routine for a heterogeneously sized, partially 

structured, dynamic membrane-bound system such as IAPP. To our knowledge, the only 

other successful comparable effort is from an academic–industrial collaboration targeting 

monomeric states of α-synuclein that identified two active compounds from a 33 000 

member library.43 To target membrane-bound states of IAPP, we perform computational 

docking to a small set of dimeric models and, through an iterative inference protocol, select 

putative hits from large compound libraries. Hits identified in this way are then validated 

using synthetic membrane binding assays and cytotoxicity measures.

Our previously published spFRET-constrained ensemble predominantly sampled states with 

the helical domains of two IAPP monomers arranged in an antiparallel fashion, although a 

small population of parallel helix–helix dimers was also evident. In contrast, simulations 

from that work in which experimental constraints were omitted generated parallel and 

antiparallel dimers in approximately equal numbers. In order to define a sufficiently diverse 

panel of targets for this effort, we selected the three most stable of the antiparallel and 

parallel dimer models from these ensembles (shown in the first panel of Figure 1). The three 

antiparallel models represent stable conformations of rIAPP dimers that are fully consistent 

with all experimental observations of these states,26 whereas the three parallel models are 

Nath et al. Page 6

Biochemistry. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



not evident in the experimental data but are locally stable and may well be transiently 

sampled within the membrane-bound ensemble.

Computational Prediction of Binding Selectivity

It is computationally demanding to use a docking algorithm, such as Autodock,34 on 

multiple targets. Here, we are docking libraries on the order of 105 to 106 compounds to 

seven targets (i.e., one monomer, three antiparallel dimers, and three parallel dimer models). 

Moreover, as a strategy for manipulating intrinsically heterogeneous structures, small 

molecule docking to a modeled structural ensemble will often benefit from much larger sets 

of targets and decoys. We therefore investigated the capacity of fingerprint-based inference 

methods to efficiently predict Autodock scores of compounds binding the above 

arrangements of IAPP.

A fingerprint is a compact one-dimensional representation of the topological structure and/or 

chemical features of a compound. The conversion of diverse chemical structures to a 

common one-dimensional format facilitates the use of statistical inference methods to 

predict properties of interest. Here, we use a PLSR algorithm40,44 that is closely related to 

principal components analysis and is capable of efficiently identifying linear relationships 

between pairs of matrices. In our case, one matrix consists of fingerprints for each small 

molecule in a database, whereas the other contains the corresponding Autodock scores. 

Once optimized using a suitable training set, PLSR can then predict new rows of one matrix 

(in this context, Autodock scores) given the corresponding rows of the other matrix (i.e., 

fingerprints of new compounds not in the training set).

To generate an initial training data set, we performed docking calculations with the panel of 

IAPP targets described above and 2210 compounds from the NIH Clinical Collection and 

Microsource Gen-Plus and Natural Products libraries. We then randomly selected 20 

compounds from this panel as a test set and used the remaining 2190 compounds as a 

training set for PLSR. We compared various fingerprinting algorithms and evaluated them 

based on their accuracy in predicting the test set Autodock scores for monomeric IAPP and 

the best (lowest-scoring) antiparallel and parallel dimer models. We found that 881-bit 

CACTVS fingerprints37 outperformed the widely used 166-bit MACCS keys35 and 

topological ECFP fingerprints,36 achieving high accuracy for the training set (R2 = 0.79) and 

reasonable accuracy for the test set (R2 = 0.61), as shown in Figures 2a and S1. CACTVS 

fingerprints are therefore sufficiently faithful representations of compound structures to 

enable rapid prediction of binding selectivity for membrane-bound IAPP states.

The predictive capacity of this approach is dependent on the extent to which the training set 

of small molecules covers similar regions of chemical space as the test compounds under 

investigation. We therefore developed an approach to extend the training set into regions of 

chemical space more likely to be populated by compounds capable of selectively interacting 

with our models. This was achieved by iteratively performing PLSR predictions on 

MLSMR, a highly diverse collection of ~350 000 structures available through PubChem. 

Using the prediction matrix obtained from the initial 2210 compounds, we predicted 

Autodock scores for the full MLSMR compound set. A set of 4000 compounds was 

identified and predicted to be selective for either antiparallel or parallel IAPP constructs 
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(2000 compounds each). Explicit Autodock calculations for these 4000 test compounds were 

determined, and a new training set composed of the initial 2210 compounds and the 4000 

new compounds was created. This whole process was repeated, with each iteration 

producing a new training set more tightly focused on the regions of chemical space enriched 

in antiparallel- and parallel-selective compounds. Test set prediction accuracy increased 

progressively (Figure 2b,c) until it matched the predictive power observed for the initial 20 

test compounds (Figure 2a).

This final training set was used to predict Autodock scores for 139 584 compounds from 

commercial libraries available through the Yale Small Molecule Discovery Center 

(collectively denoted the SMDC set). Explicit Autodock simulations were then performed 

on 8000 SMDC compounds predicted to have the highest degree of selectivity (4000 each of 

antiparallel- and parallel-selective compounds). The final Autodock selectivity scores were 

then used to choose 81 compounds (41 antiparallel- and 40 parallel-specific, respectively) 

for subsequent experimental screening.

Compound Effects on Membrane Binding

Selected compounds show a range of activities in an IAPP–membrane binding assay. We 

used FCS to characterize the diffusive properties of fluorescently labeled rIAPP. FCS 

measures the diffusion time (τD), which is directly proportional to the size of the diffusing 

particles. We leveraged the large increase in the diffusion time of free IAPP upon binding to 

a liposome42 to characterize IAPP–membrane interactions. By measuring the apparent 

diffusion time of a mixture of fluorescently labeled IAPP and unlabeled lipid vesicles in the 

presence and absence of each compound, we were able to identify modulators that enhanced 

(increased τD) or inhibited (decreased τD) membrane binding (Figure S2a).

Computational prescreening dramatically enhances the sampling of modulators of 

membrane binding. As a negative control, 20 compounds were selected at random from the 

SMDC set and compared to the set of 81 computationally selected compounds, with respect 

to their capacity to modulate IAPP diffusion in the presence of liposomes (Figure 3a). In 

general, randomly selected compounds had little effect on IAPP diffusion or membrane 

binding, generating mean fold changes in τD of 0.8 ± 0.2. Of the 81 compounds selected 

above, 8 compounds generated an increase in τD more than 3 standard deviations above this 

range (a hit rate of ~10%), as compared to 0 compounds from the random set. Our 

computational preselection approach has thus unambiguously and substantially improved the 

odds of finding a compound with biophysical activity over random chance (i.e., unbiased 

screening). Closer examination reveals that 7 of the 8 hits targeted the experimentally 

inferred antiparallel states, while the eighth targeted an alternative parallel state (Figure 

3b,c).

In separate measurements, we assayed the effect of compounds on the diffusion of IAPP in 

the absence of lipid. While small increases or decreases in τD would indicate expansion or 

compaction, respectively, of the disordered solution state of IAPP induced by ligand 

binding, several compounds (indicated by lightly shaded bars in the histograms of Figure 3) 

induced larger (>2-fold) increases in τD. Such slow diffusion of IAPP in the absence of lipid 

could result from IAPP oligomerization or IAPP binding to small molecule micelles, 
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possibly as a result of poor solubility. These two possibilities are distinguishable by 

additionally assessing the per-particle brightness parameter from the FCS measurement.45 

None of the 13 compounds that markedly increased τD induced an increase in per-particle 

brightness that would be expected from the presence of multiple IAPPs. The observation of 

slowly diffusing IAPP is, therefore, either due to a ligand simultaneously inducing protein 

aggregation and quenching label fluorescence or (more probably) the result of solubility 

limitations under these conditions (10 μM compound), a costly and widespread source of 

false positives in screening.46 This observation highlights the ease with which FCS can be 

used to identify these potential artifacts at an early stage in the screening process. While it is 

possible that some of these 13 putative aggregate formers are instead exerting biologically 

informative effects on the solution-phase IAPP oligomeric ensemble, for the purposes of this 

work, we exclude them from further analysis.

Compound Effects on Toxicity

A cell-based assay was used to determine how identified modulators of membrane binding 

affect IAPP-induced toxicity. INS-1 cells were exposed to a concentration of human IAPP 

that reduced colorimetrically assessed viability by ~50% (8–12 μM, depending on the batch 

of synthetic peptide), in the presence and absence of 10 and 30 μM of the selected 

compounds. We assayed 13 screen-derived compounds, including enhancers and inhibitors 

of membrane binding from both parallel and antiparallel searches, as well as seven randomly 

selected compounds (Figure 4). Several compounds induced >25% toxicity at 30 μM in the 

absence of hIAPP, with two showing similar compound-only toxicity even at 10 μM. These 

data points were excluded from further analysis.

Compound 4 clearly and significantly enhanced IAPP-mediated toxicity. In the presence of 

10 μM 4, the cytotoxicity induced by IAPP increased from 42 ± 3.1% to 58 ± 3.0%, a 

toxicity enhancement of ~16%. The effect was more pronounced at 30 μM 4, with IAPP-

mediated cytotoxicity increasing to 74 ± 2.2%, an enhancement of ~32%. Three additional 

compounds modulated IAPP activity to significant but smaller extents at 30 μM but not at 10 

μM; tested compounds ranged from ~10% rescue to >30% toxicity enhancement. In 

comparison, toxicity measurements of the seven randomly selected compounds at 10 μM 

showed minor effects on IAPP toxicity (3.1 ± 4.3% rescue). These control measurements 

enable us to estimate that the probability of finding a hit at least as active as 4 from 13 trial 

compounds by random chance is ~5 × 10−5 (see Supporting Information for details). 

Clearly, our computational strategy is capable of identifying small molecule reagents that 

are biologically active in cell culture.

DISCUSSION

Tools such as computational docking have transformed the capacity of medicinal chemists 

to identify lead compounds that bind established protein targets.47 An exciting possibility, 

however, is that these tools have reached a level of refinement such that they can instead 

directly participate in the process of elucidating molecular mechanisms relevant to disease 

states. The membrane-bound oligomeric ensemble of IAPP represents one such system in 

which a diversity of conformations and oligomeric species governs the development of 
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pathology. Subsets of these states and/or their interconversion are responsible for one or 

more gains-of-function. These include amyloid nucleation, membrane translocation, 

membrane leakage, cytotoxicity, cooperative membrane binding, and mitochondrial 

localization.15,48 Interactions with cations,49,50 binding partners such as insulin,51,52 or 

specific receptors15 may all play important roles in modulating these phenomena. 

Conventional computational screening efforts that might target such a diverse collection of 

gains-of-function are made particularly challenging by the ever-increasing sizes of small 

molecule libraries (both real and computed) and the intrinsically heterogeneous nature of the 

putative targets.

The target preferences of compounds that modulate IAPP membrane binding simultaneously 

inform our understanding of the membrane-bound IAPP ensemble and validate our earlier 

structural effort.26 Small molecules predicted to be selective for antiparallel forms of IAPP 

have a significantly enhanced propensity to increase membrane binding of IAPP. In fact, 

three antiparallel-targeting ligands (compounds 1–3 in Figure 3d) increase the IAPP 

diffusion time by at least a factor of 2 in the presence of lipid while minimally affecting τD 

in the absence of lipid, compared to none of the parallel-targeting compounds. This effect 

directly supports the spFRET-based observation of membrane-bound antiparallel states: 

selective drug binding to these states could enhance their population so as to cooperatively 

increase IAPP’s overall affinity for the membrane. In contrast, inhibition of membrane 

binding appears to be less dependent on the choice of target, with 3/41 antiparallel-targeting 

compounds and 4/40 parallel-targeting compounds decreasing the equivalent τD by at least 

2-fold. The lack of selectivity with regard to inhibition indicates that these compounds may 

competitively bind to the membrane-binding interface of IAPP in either a dimeric or 

monomeric state.

The screening approach employed here possesses certain important limitations. First, a set of 

coarse-grained models of IAPP dimers cannot capture the full diversity of structures 

sampled by IAPP. A trade off must be made between the number of docking targets 

included, the resolution of structural information about the system, and the computational 

resources available. In this case, a set of three antiparallel targets and three parallel decoys 

was sufficient to generate multiple active hits. Second, neither the published spFRET-

constrained model refinement26 nor our current docking calculations included a simulated 

membrane, due to the technical difficulty in accurately simulating lipid–protein and lipid–

small molecule interactions at reasonable computational cost. Hydrophilic ligands could, in 

theory, be hindered from binding to the membrane-facing surface of IAPP dimers, thereby 

biasing our results. However, the set of 81 experimentally characterized compounds is 

significantly but not overwhelmingly lipophilic (calculated octanol/water log P values30 of 

4.1 ± 1.5), suggesting that they, in general, ought to be able to access membrane-facing 

surfaces via the lipid phase.

Despite these caveats, our approach has enabled the identification of several novel active 

compounds that include three potent agonists of membrane binding and one agonist of 

cytotoxicity. The observed activity of compound 4 is unexpected and particularly intriguing 

because, despite its enhancement of IAPP-mediated toxicity, it is a fairly potent inhibitor of 

membrane binding, reducing τD in the presence of lipid by >2-fold. By comparison, the 
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membrane-binding enhancers 1–3 either minimally affected cytotoxicity or caused levels of 

compound-only toxicity that precluded insight into their true effects on IAPP-mediated 

cytotoxicity. These findings clearly demonstrate that membrane binding alone is insufficient 

for IAPP to exert its cytotoxic effects. This reinforces the idea that numerous gains-of-

function, beyond membrane leakage alone, may be relevant to toxicity.8,15,48 Recently 

described assays of compound effects on IAPP-induced membrane leakage,13 lipid-

catalyzed IAPP amyloidogenesis,53 and intra-cellular localization21 could help to determine 

the particular mechanisms at play. Another important consideration is that membrane 

charge, curvature, and composition can all modulate the lipid-binding affinity of IAPP12,54 

and could potentially perturb the membrane-bound structural ensemble. Proteinaceous or 

other nonlipid components of biologically derived membranes can also dramatically affect 

IAPP–membrane interactions.55 Also of note is the observation that over-stabilization of 

helical states, by an excess of either fluorinated solvents56 or membranes,12 can instead slow 

the time scale of fibril formation. Here, we used DOPG vesicles for our FCS experiments for 

consistency with earlier spFRET experiments.26 Subsequent NMR and spFRET experiments 

with appropriate, physiologically relevant membrane models could be used to refine 

structural models of prefibrillar membrane-bound IAPP for future screening and design 

efforts.

Moreover, the observation that 4 can bias the membrane-bound ensemble so as to 

simultaneously disfavor binding and enhance the sampling of toxic conformations suggests 

that particular, rare states within the ensemble are likely to be responsible for the generation 

of the relevant toxic IAPP species. It should be emphasized that our results do not imply that 

IAPP dimers are themselves the toxic species; instead, the toxic species may be the 

downstream products of an as-yet unknown assembly mechanism. Our results also do not 

indicate that hIAPP and rIAPP sample identical conformations in identical proportions but, 

rather, that the two populate sufficiently similar structures that compounds targeting the 

helical region of one peptide can exert effects on the other despite differences in activity16,57 

and assembly pathways.58,59 In general, toxic species in amyloid diseases are thought to 

comprise a small fraction of the total precursor, and sensitive techniques such as 

autoradiography have been necessary to directly identify this subpopulation in systems such 

as amyloid-β.60 Agonists such as 4 might serve as pharmacological chaperones to aid in the 

identification and characterization of toxic states by enriching their population, mirroring the 

many contexts in which deleterious familial mutations have advanced our understanding of 

amyloid pathogenesis and toxicity.61–64 Future studies will focus on understanding how the 

interactions between IAPP and compounds 1–4 mediate their varied effects on membrane 

binding and toxicity. We anticipate that this approach will allow dissection of the 

mechanisms of membrane-mediated IAPP self-assembly and the consequent development of 

pathology in type II diabetes.

We have demonstrated that bioactive compounds can be identified from large libraries for 

targets as challenging as the transient, membrane-bound and heterogeneous oligomeric 

ensemble of an intrinsically disordered protein. To date, successful pharmacological 

modulation of amyloid assembly pathways has involved either structure-aided drug design 

targeting a well-defined state,65,66 conventional high-throughput screening unaided by 
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structural insights,67 or computational docking to monomeric states derived from 

unconstrained68 or constrained43 molecular dynamics simulations. Our approach bridges 

these strategies, by using structural insights about relevant oligomeric states to strongly bias 

screening efforts, while also taking into account the potential for intrinsic structural 

heterogeneity in the target pool. Our combined computational and experimental strategy for 

the identification of novel, active small molecule modulators of the IAPP system entails 

relatively minor computational costs and tractable experimental effort. In particular, the use 

of fingerprint-based inference reduces the computational cost by >85% relative to docking 

alone; furthermore, the computational components enable experimental screening to focus 

on a relatively small region of chemical space enriched in active compounds. The protocol 

generated a diverse set of previously unrecognized modulators, which enhanced membrane 

binding or toxicity and could aid in the study of pathologically relevant rare states in the 

IAPP oligomeric ensemble. Analogous strategies may prove to be useful for similar targets 

including α-synuclein (implicated in Parkinson’s disease), amyloid-β, and tau (both 

implicated in Alzheimer’s disease). They may also enable the modulation of the numerous 

cell signaling pathways that involve the association of intrinsically disordered proteins with 

diverse binding partners.69,70
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Figure 1. 
(a) Sequences of human (hIAPP) and rat (rIAPP) isoforms of IAPP. Differences between the 

two isoforms are in bold. The gray region indicates the approximate extent of the structured 

domain in the membrane-bound state. Stars indicate residue positions labeled in our 

previous spFRET study of membrane-bound IAPP dimers.26 (b) One representative 

spFRET-derived model of an IAPP dimer. The gray region indicates the hypothesized 

orientation of the membrane relative to the dimer. (c) Schematic of a combined 

computational and experimental approach to pharmacologically target conformationally 

plastic proteins based on an ensemble of targets (see text for details).
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Figure 2. 
Statistical inference of IAPP–compound binding selectivity. (a) PLSR predictions compared 

with Autodock-derived affinity scores for 2190 compounds in the training set (small open 

circles) and 20 compounds in the test set (large closed circles) binding monomeric IAPP 

(red), the lowest-scoring antiparallel dimer (blue), and the lowest-scoring parallel dimer 

(cyan). (b) Comparison of PLSR predictions and Autodock scores obtained through the 

iterative extension of the training set. In each iteration, the 4000 most selective compounds 

from PLSR predictions were docked to a panel of IAPP models and added to the training set. 

(c) The correlation between PLSR predictions and Autodock scores increased progressively 

and asymptotically as the training set size was increased.
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Figure 3. 
FCS-based characterization of diverse new modulators of IAPP membrane binding. (a) 

Histogram of effects on IAPP–membrane binding for compounds selected by our screening 

protocol (gray bars) or at random (white bars) from the SMDC set. Enhanced membrane 

binding results in an increase in measured diffusion time. Compounds that slow the 

diffusion of IAPP in solution by more than 2-fold, and hence may exert their effects by 

mechanisms other than targeting membrane-bound states, are indicated by lighter shading in 

this and subsequent panels. (b) Histogram as in (a), showing only compounds with enhanced 

selectivity for antiparallel dimer targets. This set is highly enriched in enhancers of binding, 
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including compounds 1–3. (c) Histogram as in (a), showing only compounds with enhanced 

selectivity for parallel dimer targets. (d) Structures of membrane-binding enhancers 1–3 and 

toxicity enhancer 4. Representative poses of these compounds docked to IAPP dimer models 

are shown in Figure S3.
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Figure 4. 
Effects of selected compounds at 10 μM (gray) and 30 μM (black) concentrations on IAPP-

mediated toxicity in cell culture experiments. Antiparallel-selective compound 4 robustly 

enhances toxicity (*, P < 0.01; **, P < 0.0001). The dashed gray region spans the complete 

range of effects observed for seven compounds randomly selected from the SMDC set at a 

concentration of 10 μM, and n.d. indicates compounds that induced >25% toxicity even in 

the absence of IAPP.
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