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Abstract

DNase I hypersensitive sites (DHSs) provide important information on the presence of 

transcriptional regulatory elements and the state of chromatin in mammalian cells1–3. 

Conventional DNase-Seq for genome-wide DHSs profiling is limited by the requirement of 

millions of cells4,5. Here we report an ultrasensitive strategy, called Pico-Seq, for detection of 

genome-wide DHSs in single cells. We show that DHS patterns at the single cell level are highly 

reproducible among individual cells. Among different single cells, highly expressed gene 

promoters and the enhancers associated with multiple active histone modifications display 

constitutive DHS while chromatin regions with fewer histone modifications exhibit high variation 

of DHS. Furthermore, the single-cell DHSs predict enhancers that regulate cell-specific gene 

expression programs and the cell-to-cell variations of DHS are predictive of gene expression. 

Finally, we apply Pico-Seq to pools of tumor cells and pools of normal cells, dissected from 

formalin-fixed paraffin-embedded (FFPE) tissue slides from thyroid cancer patients, and detect 

thousands of tumor-specific DHSs. Many of these DHSs are associated with promoters and 
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enhancers critically involved in cancer development. Analysis of the DHS sequences uncovers one 

single-nucleotide variant (chr18:52417839 G>C) in the tumor cells of a follicular thyroid 

carcinoma patient, which affects the binding of the tumor suppressor protein p53 and correlates 

with decreased expression of its target gene TXNL1. In conclusion, Pico-Seq can reliably detect 

DHSs in single cells, greatly extending the range of applications of DHS analysis for both basic 

and translational research and may provide critical information for personalized medicine.
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We developed a circular carrier DNA-mediated sequencing method, called Pico-Seq, to 

analyze genome-wide DHSs in a few cells or even single cells (Fig. 1a). Application of 

Pico-Seq to NIH3T3 cells generated DHS profiles of 10,000, 1000, 100 and even single cells 

comparable to that of mouse ENCODE data obtained from 10 to 20 millions of cells (Fig. 

1b). On average, about 317K unique Pico-Seq reads and 38K DHSs were detected per single 

cell. Although the numbers of mapped reads and DHSs decrease as the cell numbers 

decrease, the enrichments of reads in DHS in different single cells were very similar (23–

26% of reads in DHS regions), despite minor differences (Supplementary Table S1–S3). 

Scatter plot analysis indicated that the DHSs from 10,000, 1000 and 100 cells are as 

reproducible as the ENCODE data (Fig. 1c–d and Extended Data Fig. 1a–c). The pooled 

DHSs of five single NIH3T3 cells were significantly correlated with that of 1000 cells (Fig. 

1e). We also observed high correlation of DHSs between single cells (Fig. 1f, Extended Data 

Fig. 1d–l). Venn diagrams showed that ≥90% of DHSs in single cells could be detected in 

1000-cells data (Fig. 1g and Extended Data Fig. 2a–d). Large fractions (41–82%) of DHSs 

were shared between two single-cells (Fig. 1h and Extended Data Fig. 2e–m). While only 

35%–59% of the DHS in 1000-cells data were detected in each single cell (Fig. 1g and 
Extended Data Fig. 2a–d), detectability increased to 72% when the 5 single cells were 

pooled (Fig. 1i), suggesting single cell specific DHSs contribute to the total number of 

DHSs detected in a population of cells.

The false discovery rates (FDR) of single cell libraries were 11%–13% (Supplementary 

Table S2) when one Pico-Seq tag was detected within a DHS region, suggesting that even 

detection of one tag is likely to represent a true DHS. Indeed, TSSs with one tag exhibited 

significantly higher expression levels than those without any tag (Fig. 2a and Extended Data 

Fig. 3a–d). The tag number at TSSs positively correlated with expression levels when the 

number was low (0–3 tags), but expression levels do not significantly change when the 

number was high (>3 tags) (Fig. 2a and Extended Data Fig. 3a–d), indicating that the gene 

expression is no longer limited by accessibility once the promoter has become accessible. As 

expected, the tag density at TSSs in each single cell correlated with gene expression levels 

measured in a population of cells (Fig. 2b and Extended Data Fig. 3e–h), and almost all 

promoters of highly expressed genes were accessible in each single cell (Fig. 2c and 
Extended Data Fig. 3i–l). Consistent with these observations, the tag densities at 

housekeeping genes were higher and variations lower than those at tissue-specific genes 
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(Fig. 2d). The number of cells where a promoter exhibited DHS correlated with its gene 

expression; the genes with DHSs across all the five single cells have the highest expression 

level (Fig. 2e). Further analysis showed that the genes with the lowest cell-to-cell variation 

at promoters were significantly enriched in basic cell functions such as transcription, cell 

cycle and RNA processing (Supplementary Table S4). The genes with the highest cell-to-

cell variation were significantly enriched in metal ion binding (Supplementary Table S5).

Next we examined the fraction of overlapping open promoters where DHS was detected in 

either 1000 cells or one single cell in different expression groups. The analysis revealed that 

while only 58–61% of the open promoters overlapped in the silent gene group, 98–99.9% of 

the open promoters in intermediately and highly expressed gene groups detected in a single 

cell overlapped with those detected in 1000 cells (Fig. 2f and Extended Data Fig. 4), 

indicating that the DHSs of active genes can be consistently detected in single cells.

Compared with promoter/proximal DHSa, distal DHSs showed lower tag density, higher 

cell-to-cell variation, and noise (Extended Data Fig. 5a–d). Nevertheless, distal DHSs in 

single cells were clearly enriched in active histone modifications (H3K4me1, H3K4me3, 

H3K9ac, H3K27ac and H2A.Z) but not repressive ones (H3K36me3, H3K9me2 and 

H3K27me3) (Fig. 2g); which is consistent with the scenario at the population level 6–11 and 

validated our single cell assay. Interestingly, DHS detectability in single cells correlated 

with the degree of enrichment of the active histone modification (Fig. 2h and Extended Data 

Fig. 5e–h), and also correlated with the number of active marks at the DHSs (Fig. 2i and 
Extended Data Fig. 5i–l). The vast majority of DHSs were detected across all five single 

cells when five active histone modification marks were present, whereas DHSs exhibited in 

variable number of cells when only one or two active marks were present (Fig. 2j). These 

results indicate that DHS at enhancers are variable between different cells and provide 

strong evidence that multiple active histone modifications strongly correlated with 

chromatin accessibility across different single cells.

We compared the DHSs detectability in single cell with the tag density of DHSs from 1,000 

cells or 20 million cells. The results indicated the detectability of DHSs in single cell 

positively correlated with the tag density from library by large number of cells (Fig. 2k, 

Extended Data Fig. 5m). We hypothesized that strong DHSs are present in all the cells and 

weak DHSs are present in only a fraction of the cells. If this is the case, more strong DHSs 

and fewer weak DHSs should be detected within one single cell. Indeed, 80% to 90% of the 

strong DHSs were detected whereas only 20% to 30% of weak DHSs were detected in single 

cells (Fig. 2k, Extended Data Fig. 5m). Another prediction from this hypothesis is that 

relatively fewer strong DHSs and more weak DHSs will be additionally detected as we add 

up single cells. Pooling the 5 single cells indeed showed the fraction of detected weak DHSs 

was doubled, whereas the fraction of detected strong DHSs only increase by a few 

percentages (Fig. 2k, Extended Data Fig. 5m).

The variation of DHSs among single cells within a “homogenous” population is reminiscent 

of the well-known phenomenon on variation of gene expression among single cells12. To 

determine their relationship, we constructed 14 single embryonic stem cell (ESC) Pico-Seq 

libraries (Supplementary Table S6–S8). Comparison with single cell RNA-Seq data13 
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reveals that tag density and variation at TSS of single cell Pico-Seq indeed correlated with 

that of single cell gene expression (Extended Data Fig. 6a, b). Furthermore, the genes with 

DHSs in fewer single cells show high variation of expression and expressed in fewer single 

cells (Fig 3a, b). These results further indicate that the cell-to-cell variations of single-cell 

DHSs are predictive of gene expression. Consistent with this notion, we found a 

significantly higher correlation between the technical repeats compared to that of two non-

technical repeat libraries (Extended Data Fig. 6c, d). The GO terms enriched among genes 

with the lowest and the highest cell-to-cell variation in the 14 ES cells are consistent with 

that in single 3T3 cells (Supplementary Table S9, S10).

We next identified 1,735 NIH3T3-specific DHSs and 2,180 ESC-specific DHSs based on 

the 5 NIH3T3 and 14 ES single cell Pico-Seq libraries. Heatmap showed these cell-specific 

DHSs display expected cell specificity in all the libraries (Fig. 3c). The cell-specific DHSs 

are highly correlated with cell-specific gene expression (Extended Data Fig. 6e, f) and 

enriched in distinct biological functions (Extended Data Fig. 6g, h). Super-enhancers play a 

key role in regulating expression of critical cell-specific genes14–16. We identified 275 

NIH3T3-specific and 231 ESC-specific super-enhancers and compared their single cell 

Pico-Seq tag densities. The sub-peaks of 3T3-specific super-enhancers were associated with 

substantially higher tag density in single 3T3 cells than that in ESC, and vice versa (Fig. 3d, 

e), indicating that single-cell DHSs can help predict super-enhancers.

Chromatin defects underlie various diseases including cancers17. Profiling genome-wide 

chromatin accessibility in patient cells, which are often limiting in numbers, would be 

clinically invaluable. We applied Pico-Seq to cells dissected from follicular thyroid 

carcinoma (FTC) sample fixed on FFPE slides (Fig. 4a). DNase I digestion resulted in 

typical periodic cleavage patterns of nucleosome arrays and reads enrichment around TSSs 

(Fig. 4b and Extended Data Fig. 7a, b, c). Likewise, the genome browser displays showed 

peaks (Fig. 4c), suggesting the cells recovered from the FFPE slides retains key chromatin 

features.

HMGA2 is up-regulated in FTC18,19 and its promoter indeed exhibited higher accessibility 

in the tumor than that in adjacent normal cells (Fig. 4d). Overall, 1,342 tumor-specific and 

2,812 normal-specific DHSs are identified (Extended Data Fig. 8a, b). The genes associated 

with the tumor-specific DHSs were significantly enriched in the GO biological process 

terms such as regulation of GTPase activity and response to hypoxia, and pathways such as 

E-cadherin signaling, RhoA signaling, p53 pathway, RAC1 signaling and MYC 

transformation (Extended Data Fig. 8). Among these were several interesting genes, such as 

TIAM1 and PIP4K2A (Extended Data Fig 9a, b), involved in tumors20,21. Interestingly, 

genes that are characteristic of PAX8-PPARG fusion22 in FTC are enriched in tumor-

specific DHSs (Extended Data Fig. 8f and Supplementary Table S11), even though PPARG 

gene rearrangement was not detected by FISH analysis of FTC #440 (data not shown). This 

suggests that pathways associated with the transcriptional regulation by PAX8-PPARG but 

not necessarily the PAX8-PPARG rearrangement itself is important in mediating follicular 

thyroid tumorigenesis.
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We similarly analyzed samples from two more FTC (#797 and #957) and one papillary 

thyroid carcinoma (PTC #131) samples (Supplementary Table S12). Comparison of the 

tumor-specific DHSs identified in the three FTC samples revealed very few shared DHSs 

among all three FTC samples (Extended Data Fig. 10a). The HMGA2 promoter exhibited a 

strong DHS in the tumor cells but not in their neighboring normal cells in FTC #440, while, 

in the other two FTC cases (#957 and #797) the promoter shows strong DHSs in both tumor 

and normal cells (Extended Data Fig. 10b). Instead, an intronic enhancer showed differential 

DHSs between the tumor and normal cells (Extended Data Fig. 10b). These results suggest 

that the mis-regulation of HMGA2 in the tumor cells may be attributed to different 

regulatory elements in different patients. Analysis of PTC #131 also identified numerous 

tumor cell-specific and normal-cell specific DHSs, which are enriched in disease ontologies 

(Extended Data Fig. 10c). Overall, our results indicate that the vast majority of DHSs are 

patient-specific, implying that these tumors may arise or progress via different mechanisms 

in different patients.

To gain further mechanistic insight, we searched for genetic lesions within DHSs in 

FTC#440 by comparing the DHS sequence between tumor and normal cells. A total of 31 

potential single nucleotide variations (SNVs) were identified in the DHS regions, which 

included both loss of heterozygosity of known SNPs and de novo mutations (Supplementary 

Table S13). We confirmed the de novo mutation (chr18:52417839 G>C) at a DHS 

downstream of the Thioredoxin-like 1 gene (TXNL1) (Fig. 4e). TXNL1 encodes a regulatory 

subunit of the human 26S proteasome23. Down-regulation of TXNL1 is associated with poor 

prognostic outcomes, aneuploidy in colorectal carcinoma24 and is implicated in cispatin-

induced apoptosis25. Interestingly, the G>C change appears to negatively impact the binding 

motif of p53 (Fig. 4f) and correlates with significantly decreased expression of TXNL1 in the 

tumor cells (Fig. 4g). p53 binds to this DHS in a human thyroid cell line (Fig. 4h). The G>C 

mutation at this site compromises p53 binding (Fig. 4i) and impairs its ability to activate a 

reporter promoter (Fig. 4j), suggesting that the G>C change may underlie the decreased 

TXNL1 expression in the tumor cells (Fig. 4g). This SNP was not detected in the other 3 

patients (#797, #957 and #131). Therefore, our strategy for searching SNVs in relevant DHS 

regions seems to be a cost-effective alternative to whole genome sequencing for detecting 

functionally important mutations in regulatory regions.

Tn5 transposase-mediated detection of chromatin accessibility (scATAC-Seq)26,27 in a large 

number of single cells has been reported recently. However, the reads per cell generated by 

scATAC-Seq may be too sparse to examine the cell-to-cell variation at individual regulatory 

regions26,27. In comparison, our Pico-Seq detects a much larger number of DHSs per cell, 

which provides information on cell-to-cell variations of individual DHSs. Pico-Seq is 

expected to find its use in multiple settings, such as the analysis of rare cell populations 

during lineage development and the study of clinical samples with extremely small number 

of cells such as circulating tumor cells, laser-captured cells, core biopsy or fine needle 

aspiration samples. Being able to evaluate of the chromatin states associated with the 

specific disease or developmental programs may provide valuable new information for 

developing new diagnostic and therapeutic strategies for these malignancies.
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Methods

Cell culture and Sorting

NIH/3T3 tet-on 3G cells (Clontech cat# 631197) were cultured in DMEM (Invitrogen cat# 

10566-016) supplemented with 10% FBS (Sigma cat# F4135-500ML) and 100U/ml 

Penicillin-Streptomycin (Invitrogen cat# 15140-122). Mouse ES cells were cultured as 

described28. Single cell suspension after trypsinization was used for DAPI staining 

immediately before sorting by flow cytometry. Single live cells were sorted and deposited 

directly into each tubes of a PCR strip-tube, which containing 30μl cell lysis buffer (10mM 

Tris-HCl, pH 7.5, 10mM NaCl, 3mM MgCl2, 0.1% Triton X-100).

DNase I digestion and Pico-Seq library preparation

To prevent loss of the extremely small amount of DNase I hypersensitive DNA (< 0.001pg) 

released by DNase I digestion of single cells, we added a large amount of circular plasmid 

DNA (30ng; 3×107 times of the DHS DNA) as carrier DNA in the subsequent steps of 

library preparation. The circular DNA was not compatible with the adaptor ligation and thus 

could minimize the non-specific amplification by the subsequent PCR. The PCR conditions 

were optimized to amplify the small fragments (<200 base pairs) derived from DNase I 

hypersensitive sites without prior fractionation of these fragments.

For DNase I digestion, 0.2 to 1 unit of DNase I (Roche, catalog # 04716728001) was added 

to the cells and incubated at 37°C for 5 minutes. The reaction was stopped by adding 80 μl 

of Stop Buffer (10mM Tris-HCl, pH 7.5, 10mM NaCl, 0.15% SDS, 10mM EDTA) 

containing 1μl of 20mg/ml Proteinase K and 5μl of 6ng/μl circular carrier DNA. The mixture 

was incubated at 55°C for 1 hour and DNA purified by Phenol-chloroform extraction, 

followed by precipitation with ethanol in the presence of 20μg glycogen. The library was 

prepared using Illumina kits as described29. The libraries were amplified using a two-step 

method to preferentially amplify the small DNA fragments derived from the DNA 

hypersensitive sites and to reduce non-specific amplification of the carrier DNA. The first 

amplification was done with index primers with the PCR condition: 98°C, 10″; 67°C, 30″; 

72°C, 30″ for 6 cycles. After isolation of the desired fragments (160 to 300bp) using 2% E-

gel (Invitrogen), the second amplification was done with the P5 and P7 primers with the 

condition: 98°C, 10″; 68°C, 30″; 72°C, 30″ for 22 cycles. The fragments between 160bp to 

300bp were isolated on E-gel and sequenced on Illumina HiSeq2500.

Recovery of cells from formalin-fixed paraffin-embedded tissue slides

The anonymized tumor samples from Ambry Genetics, IRB-approved with informed 

consent, were used in this study. Three thyroid cancer cases were diagnosed as follicular 

thyroid carcinoma and one case was diagnosed as papillary thyroid carcinoma. Cells were 

manually scraped off from the highlighted area of a paraffin slide using a razor blade and 

resuspended in 150μl of deparaffinization solution (Qiagen, Mat. No. 1064343) and 

incubated at 56°C for 3 minutes. After cooling to room temperature, 150 μl of lysis buffer 

(10mM Tris-HCl, pH 7.5, 10mM NaCl, 3mM MgCl2, 0.1% Triton X-100) was added and 

incubated at 37°C for two hours. The cells in the lower layer were transferred to a new tube 

and digested by DNase I as described above. The formaldehyde cross linking was reversed 
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by incubating DNA at 65°C, overnight, which was followed by DNA purification and 

library preparation.

Extraction of total RNAs from cells recovered from FFPE slides, RT-PCR, RNA-Seq

Cells recovered from FFPE slides were resuspended in 150μl of deparaffinization solution 

(Qiagen, Mat. No. 1064343) and incubated at 56°C for 3 minutes. Total RNA was extracted 

using an RNA extraction kit from (Qiagen, Cat #73504), following manufacture’s 

instruction. After reverse transcription using an oligo dT primer, the mRNA expression 

levels of selected genes were analyzed using the following gene-specific primers and probes 

from Applied Biosystems: (HMGA2-Hs00171569_ml, TIAM1-Hs01021959_ml, TXNL1-

Hs00355488_ml, PIP4K2A-Hs00178197_ml and GADPH-Hs99999905_ml.

The RNA-Seq libraries were generated according to established protocols and sequenced on 

HiSeq2500 platforms.

Validation of SNVs by Sanger sequencing

The tumor and adjacent normal cells from FFPE slides were recovered and resuspended in 

100μl of 1xTE + 0.1% SDS + 0.2mg/ml proteinase K. Following incubation at 65°C for 

overnight, the genomic DNA was purified using phenol-chloroform extraction and ethanol 

precipitation. The genomic region containing the potential sequence variation was amplified 

by PCR using specific primers. The PCR products were then sequenced by Sanger 

sequencing.

Forward primer: AAGCTAAATGAGCAAAATATTCCT

Reverse primer: GGGAGGCTGAGGCAGTAGAATCG

ChIP, EMSA and promoter reporter assays

Chromatin extracts were prepared from a human thyroid cell line (Nthy-ori 3-1 human Cell 

Line, from Sigma-aldrich, Catalog # 90011609). ChIP experiments were performed with 

p53 antibodies (SANTA CRUZ BIOTECHNOLOGY, Catalog # sc-6243X) using 

established protocols1. The ChIP DNA was analyzed using qPCR with the following 

primers: p53 positive forward primer: GTCATGCGATCTTGGCTCACT, reverse primer: 

CTTGGGAGGCTGAGGCAGTA, probe: CAACCTCCGCCTCCCGGGTTC. Control 

forward primer: CCCCATGCTGTTCTCGTGATA, reverse primer: 

GCAAAGGTGAATCAAGGCATCT, probe: 

TTTATAAGGTTCTCTTCCCCTTTCGCTGGG.

EMSA experiments were performed using nuclear extracts of HeLa cells transfected with a 

p53 expression vector (kindly provided by Dr. Jing Huang). Briefly, the double-stranded 

oligonucleotide probes (Wild type p53 site: CACTCTGTTGCCCGGGCTAGTGTGCAGT; 

Tumor p53 site: CACTCTGTTGCCCGGGCTACTGTGCAGT; p21 promoter p53 site: 

CAGGAACAAGTCAAGACATGTTCAGC) were synthesized and labeled with biotin 

using Biotin 3zeEnd DNA Labeling Kit (Thermo scientific, Catalog # 89818). The EMSA 

assays were conducted by using LightShift Chemiluminescent EMSA Kit (Thermo 

scientific, Catalog # 20148) according to manufacture’s instructions.
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To test the activity of the p53 binding sites to activate a reporter promoter, we cloned the 

wild type p53 binding motif, the motif with the G>C mutation and the p53 motif from the 

p21 promoter into the Xho I + Bgl II upstream of the basal CMV promoter driving a 

luciferase reporter gene (kindly provided by Dr. Jing Huang). The constructs were 

transfected into Nthy-ori 3-1 human Cell Line cells for two days and the luciferase activity 

of whole cell extracts was measured using Dual-Luciferase Reporter Assay kit (Promega, 

Catalog # E1960). The oligo sequences used in the reporter constructs: wild type p53 site: 

TCGAGCTGTTGCCCGGGCTAGTGTGA; Tumor p53 site: 

TCGAGCTGTTGCCCGGGCTACTGTGA; p21 promoter p53 site: 

TCGAGGAACAAGTCAAGACATGTTCA.

Data analysis

Data, reads mapping and filtering—In this study, we constructed a total of 38 Pico-

Seq libraries including 8 NIH3T3 libraries (Supplementary Table S1), 18 ES cell libraries 

(Supplementary Table S6) and 12 FFPE patient libraries (Supplementary Table S12). 

Among these libraries, there are 5 NIH3T3 single cell Pico-Seq libraries and 14 ESC single 

cell Pico-Seq libraries. We also prepared 8 RNA-Seq libraries using cells recovered from the 

FFPE tissue section slides of FTC #440 (Supplementary Table S12). In addition to the Pico-

Seq and RNA-Seq libraries prepared in this study, we integrated the histone modification 

ChIP-Seq data of NIH3T3 from our previous study30. We also downloaded the DNase-Seq 

data of NIH3T3 cells and embryonic stem cells (ESC) from mouse ENCODE project31. 

Reads of DNase-Seq/Pico-Seq/ChIP-Seq were mapped to the mouse genome (mm9) or 

human genome (hg18) using Bowtie232. Iterative alignment, in which the unmapped reads 

were trimmed 5bp and were re-aligned until reads <26bp, were conducted for small cell 

number Pico-Seq libraries and single cell Pico-Seq libraries. The reads with MAPQ <=10 or 

redundant reads that map to the same location with the same orientation were removed from 

further analysis in each library. The mappability of 1000-cell Pico-Seq libraries to the mouse 

or human genome was about 40% while that of the single-cell Pico-Seq libraries was about 

2% due to non-specific amplification of carrier DNA. The tag density at each bin of 200bp 

was calculated by normalizing the number of reads in the bin to the total number of reads in 

the library and the bedgraph were uploaded to the UCSC genome browser.

Peak calling for DNase-Seq/Pico-Seq and correlation between different 
libraries—The DHS (DNase I Hypersensitive sites) in mouse ENCODE DNase-Seq data 

and small cell number Pico-Seq data were identified using MACS33 by setting a p-value to 

1e-5. The peaks identified in the ENCODE data were extended ±1Kb from the summit of 

the peak if the peak size is <2Kb and overlapping peaks were merged. Then the number of 

reads in each DHS for all DNase-Seq libraries and Pico-Seq libraries was counted. The tag 

density at each DHS was calculated by normalizing the number of reads in the DHS to the 

total number of reads in the library (possibility of a tag located on a base-pair per million 

reads). Pearson product-moment correlation coefficient (r) of tag densities at genome-wide 

DHS between two libraries was calculated to indicate the correlation between different Pico-

Seq libraries. For single cell libraries, the reads out of DHS were filtered and the number of 

reads in each 1000bp size bin was counted for generating the heatmaps. Any DHS region in 

a single cell with a reads located in was treated as open accessibility thus a DHS in this 
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single cell. For the pooled 5 single cells, any DHS region with ≥2 reads located in was 

treated as the DHS in the pooled 5 single cells.

The false discovery rate of the DHS detected in single cells—In a NIH3T3 single 

cell Pico-Seq library, the total number of observed DHSs and false positive (type I error) 

DHSs were denoted by NDHS and NFP, respectively. On the other hand, any reads that 

located out of the DHSs detected in ENCODE data must be caused by noise generated 

during library preparation. The noise level (σ) should be the total number of reads that 

located out of the DHS in ENCODE data dividing total length of the regions that are not 

DHS. The false positive are genome-wide noise level (σ) multiply the total length of the 

DHS. Thus, the false discovery rate (FDR) should be the false positive DHSs dividing all the 

detected DHS in single cell:

Based on this formula, we calculated the FDR for each NIH3T3 and ESC single cell Pico-

Seq library (Supplementary Table S2, S7).

Differentially expressed genes and tissue-specific genes—The reads from RNA-

Seq libraries were mapped to the mouse genome (mm9) or human genome (hg18) using 

bowtie232. The gene expression level was measured by RPKM (Reads per kilobase per 

million mapped reads) and number of reads in each gene. The cell specific genes between 

ESC and NIH-3T3 were identified using EdgeR (FDR < 0.05; Fold change > 1.5 or < 2/3)34.

We used tissue specificity index τ35 to measure the tissue specificity of each gene, which is 

defined as the heterogeneity of its expression level across all the tissues. Assuming there are 

n tissues, the expression level of a gene in the jth tissue is E(j) and the highest expression 

level of the gene across all tissues is Emax. Thus τ is calculated by

The values of τ range from 0 to 1, with higher value indicating higher variation of 

expression across tissues and thus higher tissue specificity, while the lower value indicated 

the lower variation of expression across tissues. The genes with the lowest τ were could be 

considered as housekeeping genes. In this study, we calculated the τ based on gene atlas data 

from bioGPS. The 2000 genes with the highest τ and the 2000 genes with the lowest τ were 

treated as the tissue specific genes and housekeeping genes, respectively.

The histone modification ChIP-seq data and peak calling—Since the peaks of 

some histone marks such as H3K36me3 and H3K27me3 are very broad, we identified the 

tag-enriched peaks using SICER36, which takes advantage of the enrichment information 

from neighboring bins to identify spatial clusters of signals that are unlikely to appear by 
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chance. We set the window size to 200bp and FDR =0.01 for each histone modification 

ChIP-Seq library, while we set the gap to 200bp for H3K4me3, H3K9ac; 400bp for H2A.Z; 

and 600bp for the H3K4me1, H3K9me2, H3K27ac and H3K27me3. We calculated the tag 

densities of each active histone modification peak and identified whether the peak is a DHS 

in each single cell in order to find whether the enrichment of an active histone mark is 

correlated with the number of cells with DHS at the same locus. We calculated the tag 

densities of each single cell Pico-Seq library at each DHS and examined whether a DHS co-

occurs with these active histone modification in order to find whether the chromatin 

accessibility in each single cell is correlated with the number of histone modification in the 

same locus. Two peaks from different libraries were considered co-occurrence if the 

overlapped region accounts for >10% length of a peak.

Reads around promoters and subpeaks of super-enhancers—The RefSeq genes 

(mm9 and hg18) were downloaded from the UCSC website. The regions ±1Kb around the 

TSS were treated as promoters in this study. The number of Pico-Seq reads located in a 

promoter was used to measure the chromatin accessibility of the promoter. We searched the 

super-enhancer in NIH3T3 via ROSE15 based on H3K27ac ChIP-Seq data and Pico-Seq 

data, respectively. We obtained a total of 275 high-confidence super-enhancers in NIH3T3 

by identifying super-enhancers showed in both H3K27ac data and DNase-Seq data. In 

addition, the 231 super-enhancers in ESC reported by Whyte et al.15 were used in this study. 

Subpeaks in super-enhancers were identified by MACS and average reads densities around 

these subpeaks of super-enhancer were calculated.

Single-cell specific DHS and Gene Set Enrichment Analysis (GSEA)—For each 

DHS detected in ENCODE data, the number of reads in each NIH3T3 and ES cells were 

counted. To examine whether the chromatin accessibility between NIH3T3 and ES cells are 

significant different, Wilcoxon signed-rank test was performed on the number of reads in the 

5 the NIH3T3 and 14 ES cells at each DHS. A DHS was active (indicated by 1) in a single 

cell if there are ≥1 reads located on the DHS region in the cell, while the alternative is not 

active (indicated by 0). The Fisher’s exact test on each locus was performed on the number 

of cells with active DHSs and number of cells without active DHSs between the 5 NIH3T3 

and 14 ES cells. The DHSs with p value <0.05 by both Wilcoxon test and Fisher’s test were 

treated as cell type specific. Finally, we identified 1,735 single-cell NIH3T3-specific DHSs 

and 2,180 single-cell ESC-specific DHSs. We employed GSEA37 to determine whether the 

priori defined genes in or vicinity of single cell-specific DHSs showed statistically 

significant differences between NIH3T3 and ESC based on the gene expression data.

Gene ontology of single-cell NIH3T3-specific and ESC-specific DHSs—In order 

to predict the function of single-cell NIH3T3-specific or ESC-specific DHSs, we performed 

gene ontology analysis using GREAT38 with the 1,735 NIH3T3-specific and 2,180 ESC-

specific DHSs. It is obvious that the single cell ESC-specific DHSs are enriched with stem 

cell development and differentiation genes and the single-cell NIH3T3-specific DHSs are 

enriched with in genes with different functions (Extended Data Fig. 6g,h). These results 

indicated that the ESC-specific and NIH3T3-specific DHSs identified in the single-cell Pico-

Seq libraries predict important enhancers critical for tissue-specific gene expression.
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Identifying tumor-specific mutation—We generated Pico-Seq libraries using tumor or 

their neighboring cells recovered from formalin-fixed paraffin-embedded tissue section 

slides. The sequence reads were mapped by bowtie2 to the human reference genome (hg18). 

The paired reads with distance <500bp were kept if pair-end sequencing was performed. 

Then reads with MPAQ<20 and possible duplication were removed by SAMtools39. 

Variation calling on each normal-tumor pair was conducted using SAMtools mpileup, with 

diploid model, mapQ>=20 and phred-like score (BAQ)>=30. The variations that only 

normal and tumor show different genotypes were kept. Then the low quality variations were 

filtered (QUAL <20, MQ<20, FQ<0, VDB<0.01 and minor allele <3). We obtained 31 

variation candidates in FTC #440 (Supplementary Table S13) and many of them were 

located on the predicted TF binding motifs.

Tumor and normal cell specific DHS—The genome-wide DHSs were obtained by 

peak calling of the normal cell Pico-Seq and tumor cell Pico-Seq libraries, respectively. The 

DHSs in normal cells and tumor cells were pooled and reads in each library among the 

pooled DHS were counted. The normal cell and tumor cell specific DHSs were identified 

using EdgeR.

Extended Data

Extended Data Fig. 1. Scatter plots showing the high correlation of DHSs detected in a small 
number of cells or single cells
Each dot represents the tag density of one DHS or more DHSs with the same value. a–c, 

Correlation of DHS between ENCODE data and small cell number libraries. d–i, 
Correlation of DHSs between the 5 single cells.
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Extended Data Fig. 2. Venn diagrams showing DHSs detected in single cell significantly overlap 
with that detected in 1000-cells or the other single cells
The total number of DHSs in each library was indicated outside of the Venn diagrams. a–d, 

Overlapping DHSs between single cell and 1000-cells data. e–m, Overlapping DHSs 

between two single cells.
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Extended Data Fig. 3. Detectability of single cell DHSs at promoters is positively correlated with 
gene expression
a–d, Detection of DHSs around TSSs is correlated with higher gene expression in each 

single cell. Genes were sorted according to the number of Pico-Seq reads within −/+ 1Kb 

region of TSSs and plotted against their expression on Y-axis. e–h, Pico-Seq tag density is 

positively correlated with gene expression in each single cell. Genes were sorted to four 

groups according to their expression levels. Box plots show Pico-Seq tag density around 

TSSs (Y-axis). i–l, The proportion of open promoters detected by Pico-Seq in each single 

cell is positively correlated with gene expression.
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Extended Data Fig. 4. The DHSs on the promoter of highly expressed genes are more 
reproducible
The percentage of overlapping between DHSs detected in 1K cells and each single cell 

positively correlated with gene expression. The total number of silent genes, lowly 

expressed, intermediately expressed and highly expressed genes showing DHSs were 

indicated outside of the Venn diagrams. The numbers in red indicate that percentages of 

DHSs detected in a single cell that overlapped with the DHSs detected in 1K cells.
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Extended Data Fig. 5. The high variations of distal DHSs and detectability of single-cell DHSs 
correlated the number of active histone modifications
a–d, Distal DHSs showing lower tag density and higher variation than that of proximal 

DHSs among single cells. The average tag densities of the proximal DHSs among single 

cells are higher than that of distal DHSs (a). The proximal DHSs showed much higher 

variation (b) and noise (c) compared with that of distal DHSs. The fraction of proximal 

DHSs highly correlated with the number of cells with the DHSs (d). e–h, The histone 

modification levels (H3K4me3, H3K4me1, H3K9ac and H2A.Z) correlated with the 

detectability of DHSs in single cells. Histone modification peaks were sorted according to 

the number of single cells where they were detected by Pico-Seq. The active histone 

modification enrichment levels of each group are displayed using Box plots. i–l, The Pico-

Seq density in each NIH3T3 single cell positively correlated with the number of active 

histone modifications at the DHS. Tag density of each Pico-Seq was sorted according to the 

number of histone modifications measured on a population of cells using ChIP-Seq. The 
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Pico-Seq tag densities for each group are shown by Box plots. m, The DHS detectability in 

single cells is correlated with the tag density of DHS peaks in the 1000 cells library. The 

DHSs obtained from the 1000 cells library were binned to 100 groups based on the tag 

density (or peak height) (x-axis). Y-axis indicates the fraction of DHS detected in a single 

cell or pooled 5 single cell Pico-Seq libraries for each bin.

Extended Data Fig. 6. Biological variations contributed to cell-to-cell variation and DHSs 
detected in single-cell Pico-Seq can predict cell-type specific enhancers
a–b, Single cell chromatin accessibilities and single cell gene expressions are positively 

correlated. Average (a) and variation (b) of tag density in single cell Pico-Seq at gene 

promoters correlated with that of gene expression level in single cells, respectively. c–d, 

Biological variations contributed to cell-to-cell variations because correlation coefficient 

between technical repeats are significantly higher than that of other pairs of libraries (non-

technical repeat pairs). Two NIH3T3 cells were sorted into one tube, which were digested 

with DNase I and then split to two tubes. Thus each tube contained the amount of DNA that 

should be similar to that of one cell. By doing this, the two libraries prepared using the two 

tubes could be treated as technical repeats. Correlations coefficient between technical 

repeats are higher than that of other pairs of libraries(c). Scatter plot of a pair of technical 

repeat (d). e–f, Genes associated with NIH3T3-specific DHSs and ESC-specific DHSs 
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correlated with NIH3T3 and ESC specific expressed genes, respectively. g–h, Genes 

associated with NIH3T3-specific DHS or ESC-specific DHSs are enriched in distinctive 

gene ontology terms.

Extended Data Fig. 7. The Pico-Seq libraries for FFPE tissues slide showing expected patterns
a, DNA fragments of the Pico-Seq libraries from both cultured cells and FFPE tissues 

showed periodical cut patterns expected from DNase I digestion of nucleosomal DNA. b, 

The Pico-Seq reads from both cultured cells and FFPE tissues are enriched around TSSs. c. 

The reads enrichments around TSS of FTC #440 normal and FTC #440 tumor are similar.
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Extended Data Fig. 8. Tumor specific DHS in FTC #440 enriched GO terms and pathways
a–b, Normal-specific and tumor-specific DHSs account a small fraction of the total DHS. c, 

GO biological process terms significantly enriched in the tumor specific DHS. d, Pathways 

significantly enriched in the tumor specific DHS. e, Pathways significantly enriched in the 

tumor specific DHS with relaxed threshold. f, Gene sets that represent gene expression 

signatures of genetic and chemical perturbations significantly enriched in tumor specific 

DHS.
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Extended Data Fig. 9. Tumor-specific DHSs are correlated with increased expression in the 
tumor cells
a, Genome Browser image showing the increased chromatin accessibility of two tumor-

specific DHS regions at the PIP4K2A gene locus (left panel). The ENCODE H3K4me1 and 

H3K4me3 peaks are shown at the bottom of the panel. The PIP4K2A mRNA levels in 

normal and tumor cells, respectively, determined by quantitative RT-PCR and normalized to 

GAPDH (Right panel). b, Genome Browser image showing the increased chromatin 

accessibility of the TIAM1 promoter in thyroid tumor cells (left panel). TIAM1 mRNA 

levels in normal and tumor cells, respectively, determined by quantitative RT-PCR and 

normalized to GAPDH (Right panel).
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Extended Data Fig. 10. The tumor-specific DHSs in each individual usually are unique
a, The vast majority of DHSs are unique to each individual tumor case. b, Genome Browser 

image showing the two tumor-specific DHSs at the HMGA2 locus in three FTC patients. c, 

The normal cell-specific DHSs are enriched in multiple disease ontologies in PTC #131.
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Figure 1. Genome-wide detection of DNase I hypersensitive sites of single cells using Pico-Seq
a. Schema of Pico-Seq. FACS-sorted single cells were digested with DNase I, followed by 

end-repair, adaptor ligation, PCR amplification in the presence of circular carrier DNA and 

sequencing.

b. Genome Browser displays showing the DHS in ENCODE data and Pico-Seq data (black 

tracks). The red tracks show Pico-Seq read densities in DHSs of 5 single NIH3T3 cells and 

14 single mouse ES cells.

c–f. Scatter plots showing the tag density correlation of DHSs between two libraries. Each 

dot represents one or more DHSs.

g–i. Venn diagrams showing the significant overlaps of DHSs between two libraries.
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Figure 2. Detectability of single-cell DHSs is positively correlated with gene expression and 
number of active histone modifications
a. Number of tags within −/+ 1Kb of TSSs correlated with higher gene expression in single 

cell #1.

b. Pico-Seq tag density in single cell #1 is positively correlated with gene expression in a 

population of cells.

c. The proportion of open promoters detected by Pico-Seq in single cell #1 is positively 

correlated with gene expression.

d. Housekeeping genes (red) show higher tag density and lower variation than tissue-specific 

genes (green).

e. Genes with open promoter in more single cells are associated with higher expression 

levels.

f. The percentage of overlaps between DHSs detected in 1K NIH3T3 cells and single cell #1 

positively correlated with gene expression. The total number of genes with DHSs for each 

group was indicated outside of the Venn diagrams. The number in red indicate that 

percentages of DHSs detected in single cell #1 that overlapped with the DHSs detected in 

1K cells.

g. Active histone modifications (H3K4me1, H3K4me3, H3K9ac, H3K27ac and H2A.Z) are 

associated with higher Pico-Seq tag density than the repressive H3K27me3 and H3K9me2 

modifications in single cells.

h. The H3K27ac level effectively predicts the detectability by Pico-Seq.

i. The Pico-Seq density in cell #1 correlated with the number of histone active 

modifications.

j. The detection of DHSs across multiple single cells is positively correlated with the number 

of histone modifications.
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k. The DHS detectability in single cells is correlated with the tag density of DHS peaks in 

the ENCODE data.
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Figure 3. Single-cell Pico-Seq DHS data can predict cell-specific enhancers
a. Genes with DHS in fewer single cells (x-axis) exhibit much higher variation of gene 

expression across different single cells (y-axis).

b. Genes with DHS in fewer single cells (y-axis) are expressed in fewer single cells (x-axis).

c. The NIH3T3-specific and ESC-specific DHSs identified in single cells showed expected 

cell specificity in all libraries.

d. The subpeaks of NIH3T3-specific super-enhancers showing much higher tag density in 

NIH3T3 cells than that in ES cells.

e. The subpeaks of ESC-specific super-enhancers showing much higher tag density in ES 

cells than that in NIH3T3 cells.
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Figure 4. Application of Pico-Seq to FFPE patient tissue sections reveals novel 
pathophysiological information on thyroid cancers
a. A full view of a Hematoxylin and Eosin stained slide of FTC #440. Cells recovered from 

the highlighted areas were subject to Pico-Seq analysis.

b. Typical periodic DNase cleavage patterns of nucleosomes were detected for both the 

normal and tumor cells by Pico-Seq.

c. Genome Browser image displaying the Pico-Seq profiles of the normal (blue) and tumor 

(red) cells from two thyroid carcinomas #440 and #131.

d. Genome Browser image showing the increased chromatin accessibility of the HMGA2 

promoter in the tumor cells of FTC #440 (left panel). qRT-PCR analysis shows the increased 

HMGA2 mRNA level in the tumor cells (right panel).

e. A single nucleotide variation (SNV) was identified at a DHS near the 3′ end of the 

TXNL1 gene in the tumor cells of FTC #440. The SNV location is indicated by the red 

square. The SNV was confirmed by Sanger sequencing (highlighted region).

f. The G to C change in tumor cells negatively impacts p53 target motif. The SNV in the p53 

motif logo is indicated by a red arrowhead.

g. The G to C change in the tumor cells is correlated with decreased expression of TXNL1 

by qRT-PCR analysis.

h. p53 is bound to the SNV region in a human thyroid cell line by ChIP-qPCR analysis.

i. The G-to-C change decreases p53 binding affinity in vitro by gel shift assay.

j. The G-to-C change reduces the activity of the p53 motif to activate a reporter promoter in 

vivo. The p53 motif from the p21 promoter was used as a positive control.
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