OPEN

Vitamin D Receptor Gene *Fok*l Polymorphism Contributes to Increasing the Risk of Tuberculosis

An Update Meta-Analysis

Liling Huang, MD, Cunxu Liu, MD, Guangfu Liao, MD, Xiaobing Yang, MD, Xiuwen Tang, MD, and Jingjie Chen, MD

Abstract: The association between vitamin D receptor (VDR) *Fok*I polymorphism and tuberculosis (TB) risk remains a matter of debate. Potential selection bias exists in most studies using HIV-positive TB patients.

An update meta-analysis was carried out to derive a more reliable assessment of the association between *FokI* polymorphisms and TB risk, especially in HIV-negative TB patients. All major databases from inception to June 2015 were searched for all publications that studied the association between *FokI* polymorphism and TB risk. The odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) were calculated according to the frequencies of genotypes.

In total, 32 studies with 4894 cases and 5319 controls were included in this meta-analysis. In the overall analysis, the estimated OR was 1.34 (95% CI=1.091-1.646, P = 0.005) in the best genetic model (recessive model, ff vs fF+FF) with moderate heterogeneity ($I^2 = 32.2\%$, P = 0.043). In the subgroup analysis stratified by HIV status, significant associations were found only in the HIV-negative TB group (OR = 1.60, 95% CI=1.180-2.077, P = 0.002; $I^2 = 29.5\%$, and P = 0.141 for heterogeneity). In the subgroup analysis stratified by ethnicity, significant associations were found in the Asian group (OR = 1.65, 95% CI = 1.205-2.261, P = 0.002; $I^2 = 43.9\%$, and P = 0.024 for heterogeneity), but not in the Caucasian group (OR = 1.09, 95% CI = 0.762-1.547, P = 0.649; $I^2 = 0.0\%$, and P = 0.740 for heterogeneity) and African group (OR = 0.99, 95% CI = 0.726-1.341, P = 0.934; $I^2 = 43.9\%$, and P = 0.024 for heterogeneity).

This meta-analysis confirms that VDR *FokI* polymorphism contributes to the risk of TB, especially in HIV-negative TB patients and in the Asian group. Further studies are required to clarify the role of the *FokI* polymorphism in HIV-positive TB and in other ethnic groups.

(Medicine 94(51):e2256)

Editor: Susanna Esposito.

Correspondence: Jingjie Chen, Department of Science and Education, Longtan Hospital of Guangxi Zhuang Automomous Region, 8Yangjiao Shan Road, Liuzhou 545005, Guangxi, People's Republic of China (e-mail: address: zhijiechen8@163.com).

LH and CL contributed equally to the article, so they should be considered as the co-first authors.

JC and CL conceived and designed the experiments, LH and XY performed the experiments. GL and XT analyzed the data. LH and CJ contributed to the writing of the manuscript. CL revised the manuscript.

The authors have no funding and conflicts of interest to disclose.

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

Abbreviations: CIs = confidence intervals, HIV = human immunodeficiency virus, HWE = Hardy–Weinberg equilibrium, MTB = mycobacterium tuberculosis, ORs = odds ratios, PRISMA = Preferred Reporting Items for Systematic Reviews and Metaanalyses, TB = tuberculosis, VDR = vitamin D receptor.

INTRODUCTION

T uberculosis (TB) is a global public health problem and remains a great burden throughout the world.¹ The risk of developing TB ranges from 5% to 10% after infection by *Mycobacterium tuberculosis* (MTB) for individuals, and only a minority of individuals develops clinical disease, even though infected with virulent mycobacteria. Other factors, such as environmental and genetic factors, HIV infection, and diabetes, also play important roles in the process.^{2–5} Likewise, genetic factors are important in determining susceptibility and resistance to MTB and are considered related to the susceptibility to TB.^{5,6}

Vitamin D is now considered to be a key factor in the body's defense against TB, mediated by binding to the vitamin D receptor (VDR) in monocytes, macrophages, and lymphocytes.^{7,8} The VDR gene is located in the chromosomal 12q13 region, and there are 4 classically typed single-nucleotide polymorphisms (SNPs), FokI, BsmI, ApaI and TaqI, which were studied intensively for association with various human traits and were reported to affect risk of various diseases.⁹ The FokI restriction site defines an SNP (rs10735810, C to T) in the first of 2 potential translations-initiation start sites for VDR mRNA. The VDR protein synthesizes full-length (427 amino acids) in the alternate allele form (ATG) (designated f) and has 3 more amino acids than the VDR encoded by the common allele form (ACG) (designated F). The FokI restriction site is a functional polymorphism of the VDR gene.¹⁰ The polymorphisms of FokI can alter the amount of VDR produced ^{9,11} and are related to plasma vitamin D levels in TB patients.12

To date, the polymorphisms of *FokI* have been studied in relation to the risk of TB in many populations; however, the results remained contradictory.^{10,13–15} Recently, Chen et al¹⁶ and Sun and Cai¹⁷ carried out meta-analyses focusing on the associations between *FokI* polymorphisms and TB risk; these 2 meta-analyses missed many studies.^{12,18–23} Moreover, HIV infection status should be adjusted in studies focused on genetic susceptibility to TB since TB is the frequent major opportunistic infection in HIV-infected patients.²⁴ Thus, we carried out an update meta-analysis to derive a more reliable assessment on the association between *FokI* polymorphisms and TB risk, especially in HIV-negative TB patients.

METHODS

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was used in the process of the meta-analysis (Table S1).²⁵

Received: August 10, 2015; revised: November 12, 2015; accepted: November 15, 2015.

From the Department of Clinical Laboratory (LH, XY); Department of Tuberculosis (CL); Department of Central Laboratory (GL, XT); Department of Science and Education, Longtan Hospital of Guangxi Zhuang Automomous Region, Liuzhou, Guangxi, People's Republic of China (JC).

This is an open access article distributed under the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ISSN: 0025-7974

DOI: 10.1097/MD.00000000002256

Search Strategy and Study Selection

A search of the medical literature was conducted using the Embase, PubMed, and Cochrane Library databases through June 30, 2015. The search terms were used as follows: *vitamin D receptor* or *VDR* in combination with *polymorphism, polymorphisms*, and *mutation* or *variant* in combination with *tuberculosis* or *TB*. Two investigators (LH and XY) conducted an extensive literature search independently for all publications. Articles in reference lists were also hand-searched and authors of trial reports published only as abstracts were contacted and asked to contribute full datasets or completed papers. There were no language restrictions and only human studies were searched.

Case-control studies with enough data to calculate odds ratio (OR) were included in our study. We excluded duplicate studies or studies containing overlapping data. Family-based studies were also excluded.

Data Extraction

All data were extracted independently by 2 investigators (LH and XY). The following clinical data were extracted from eligible studies: the baseline characteristics, such as the first author's name, publication year, country, ethnicity, total sample size, genotyping method, and source of control group, and details of TB types and genotype frequencies of cases and controls. Hardy-Weinberg equilibrium (HWE) was calculated from genotype frequencies of controls. Investigators would try to contact the author to get the original data if the literature

could not provide sufficient data. A third reviewer (JC) resolved any discrepancies when the abovementioned reviewers disagreed.

Statistical Analysis

In this study, we considered f is the increasing or risk allele; therefore, an allelic model (f vs F), a codominant model (ff vs FF, fF vs FF), a dominant model (ff+fF vs FF), and a recessive model (ff vs fF+FF) are accessed by calculating the unadjusted odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) according to the frequencies of genotypes. To avoid the problem of multiple comparisons, we applied the method for meta-analysis of molecular association studies to dictate the best genetic model.²⁶

Heterogeneity was assessed with a $\chi^2 Q$ test and I^2 statistics. The heterogeneity was significant if $P_Q < 0.1$ or $I^2 > 50\%$, and a random-effects model was conducted using the DerSimonian and Laird method. Otherwise, the fixed-effects model (the Mantel-Haenszel method) was performed.^{27,28} A subgroup analysis of ethnicity was carried out considering that the same gene polymorphism plays different roles in the risk of diseases among different ethnic subpopulations. HIV-negative TB patients who were studied were also considered a subgroup and pooled in this meta-analysis. Galbraith plots analysis was performed for further exploration of the heterogeneity.

HWE in the controls was tested with the χ^2 test for goodness of fit, and a *P* value <0.05 was considered out of

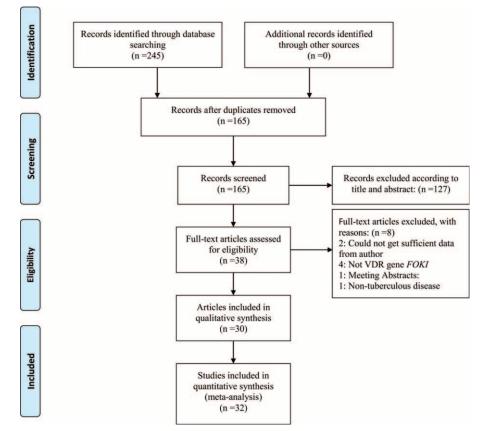


FIGURE 1. Flow diagram of included studies for this meta-analysis.

	Group	No. of Studies	Te	Heterogeneity			
Comparison			OR	95% CI	Р	$I^2 \%$	Р
ff vs FF	Overall	32	1.34	1.036-1.730	0.026	47.5	0.002
fF vs FF	Overall	32	0.96	0.827-1.110	0.566	58.4	0.000
ff vs fF	Overall	32	1.34	1.122-1.599	0.001	8.0	0.338
ff vs FF+fF							
Overall	32	1.34	1.091-1.646	0.005	32.2	0.043	
Enthnicity							
-	Asian	18	1.65	1.205-2.261	0.002	43.9	0.024
	Caucasian	8	1.09	0.762-1.547	0.649	0.0	0.740
	African	6	0.99	0.726-1.341	0.934	0.0	0.994
HIV status							
	HIV-	14	1.60	1.180 - 2.077	0.002	29.5	0.141
	Other	18	1.16	0.876-1.541	0.298	28.0	0.131

TABLE 1. Meta-Analysis of Fokl Polymorphism and TB Risk

TABLE 2. Study Characteristics

			Total	Sample		G .		a		Cases		0	Control		
Study	Year	Country	Cases	Control	Tuberculosis	Source of Control	HIV Status	Genotyping method	F/F	F/f	f/f	F/F	F/f	f/f	<i>P</i> * (HWE)
Alagarasu	2009	India	105	144	РТВ	РВ	HIV-	SSP-PCR	65	31	9	81	59	4	0.076
Alagarasu	2009	India	82	144	PTB	PB	HIV+	SSP-PCR	51	27	4	81	59	4	0.076
Alagarasu	2009	India	112	144	PTB, EPTB	PB	HIV+	SSP-PCR	73	35	4	81	59	4	0.076
Ates	2011	Turkey	128	80	PTB, EPTB,	HB	N/A	RFLP-PCR	58	60	10	35	37	8	0.694
Babb	2007	South African	352	249	PTB	PB	HIV-	RFLP-PCR	203	129	20	132	104	13	0.192
Banoei	2010	Iranian	60	62	PTB	PB	HIV-	SSP-PCR	30	21	9	29	27	6	0.937
Bbornman	2004	West African	416	718	PTB	HB	Mixed	SSP-PCR	258	138	20	444	242	32	0.893
Joshi	2014	India	110	115	PTB	PB	N/A	RFLP-PCR	51	46	13	63	41	11	0.266
Kang	2011	Korean	105	103	PTB	PB	N/A	RFLP-PCR	41	43	21	30	58	15	0.126
Liu	2004	China	120	240	PTB	PB	HIV-	RFLP-PCR	29	63	28	85	120	35	0.482
Lombard	2006	South African	104	117	PTB, MTB	HB	HIV-	SSP-PCR	68	33	3	90	24	3	0.373
Mahmoud	2014	Egyptian	40	25	PTB	PB	N/A	RFLP-PCR	12	20	8	10	10	5	0.405
Marashian	2010	Iran	164	50	ТВ	HB	N/A	RFLP-PCR	97	57	10	15	30	5	0.077
Merza	2009	Iranian	117	60	PTB	PB	N/A	RFLP-PCR	67	46	4	35	25	0	0.042
Olesen	2007	West African	320	344	ТВ	HB	Mixed	TagMan	198	106	16	207	118	19	0.686
Rashedi	2014	Iran	84	90	PTB	HB	N/A	SSP-PCR	44	33	7	50	32	8	0.388
Rathored	2012	India	712	205	PTB	PB	N/A	RFLP-PCR	329	308	75	118	80	7	0.136
Roth	2004	Peru	100	100	PTB	HB	HIV-	RFLP-PCR	9	32	59	7	36	57	0.689
SALIMI	2015	Iran	120	131	PTB	HB	HIV-	RFLP-PCR	65	44	11	93	31	7	0.054
Selvaraj	2003	India	120	80	PTB	HB	N/A	RFLP-PCR	78	36	6	43	29	8	0.355
Selvaraj	2004	India	64	103	spinal-TB	HB	N/A	RFLP-PCR	47	15	2	55	39	9	0.583
Selvaraj	2008	India	51	60	PTB	PB	HIV-	RFLP-PCR	31	16	4	27	33	0	0.003
Selvaraj	2009	India	65	60	PTB	PB	HIV-	RFLP-PCR	33	29	3	33	26	1	0.102
Sharma	2011	India	123	575	ТВ	HB	N/A	RFLP-PCR	66	49	8	396	166	13	0.364
Sinaga	2014	Indonesia	76	76	PTB	HB	HIV-	RFLP-PCR	27	42	7	30	34	12	0.650
Singh	2011	India	101	225	PTB	HB	HIV-	RFLP-PCR	55	40	6	96	110	19	0.107
Søborg	2007	Tanzania	435	416	PTB	HB	Mixed	SSP-PCR	288	128	19	267	128	21	0.273
Vidyarani	2009	India	40	49	PTB	PB	N/A	RFLP-PCR	23	14	3	20	29	0	0.003
Wilbur	2007	Mexico	54	125	PTB	HB	N/A	RFLP-PCR	35	19	0	82	42	1	0.077
Wilkinson	2000	Asian-UK	91	116	TB	HB	HIV-	RFLP-PCR	52	31	8	74	39	3	0.418
Wu	2013	China	213	211	PTB	HB	HIV-	RFLP-PCR	72	96	45	101	88	22	0.664
Zhang	2010	China	110	102	spinal-TB	HB	HIV-	RFLP-PCR	16	43	51	26	47	29	0.433

HB = hospital-based, HIV - = HIV-negative, HIV + = HIV-positive, HWE = Hardy-Weinberg equilibrium in control population, Mixed = HIV-negative and HIV-positive, MTB = meningeal tuberculosis, N/A = not applicable, PB = population-based, PTB = pulmonary tuberculosis, RFLP-PCR = restriction fragment length polymorphism-Polymerase chain reaction, SSP-PCR = sequence-specific primer, PCR = Polymerase chain reaction, TaqMan = Probe-based quantitative polymerase chain reaction.

HWE. Sensitivity analysis was conducted to examine such influence by removing studies one by one and by recalculating the pooled OR and 95% CI. The Begg rank correlation method and the Egger weighted regression method were used to statistically assess publication bias.

Ethical approval was not necessary, as this study is a metaanalysis, which is based on the published data.

All the tests in this meta-analysis were conducted with STATA software (version 12.0; Stata Corporation, College Station, TX); P < 0.05 indicated that the result was statistically significant.

RESULTS

Study Excluded and Characteristics of Included Studies

Thirty-eight articles were initially evaluated for the metaanalysis, of which 8 studies were excluded. Two studies were excluded because, even though an attempt was made to contact the study authors, no sufficient data were obtained.^{29,30} Four studies were excluded for not focusing on *FokI* polymorphism.^{31–34} In addition, a meeting abstract ³⁵ and a study about nontuberculous mycobacterial lung disease ³⁶ were also excluded. The study by Alagarasu et al¹³ was separated into 3 studies for different TB types and HIV status. Finally, 32 studies with 4894 cases and 5319 controls met inclusion criteria. Details of the study flow are documented in Figure 1.

Table 2 shows a summary of the characteristics of the included studies. There were 18 studies involving Asians, ^{13–15}, ^{19,21–23,37–45} 8 studies involving Caucasians, ^{12,18,43,46–50} and 6 studies involving Africans.^{20,51–55} Fourteen studies included HIV-negative TB patients, ^{10,13–15,19,22,37,39,45,47,50,51,53,56} but only the study by Alagarasu et al¹³ included HIV-positive TB patients, and the other 16 studies did not offer detailed information. The genotype distributions among the controls of all studies were consistent with HWE, with the exception of 3 studies.^{39,44,49} TB types, genotyping methods, and genotype numbers are shown in Table 2.

Quantitative Data Synthesis

The evaluations of the association of *FokI* polymorphisms and TB risk are shown in Table 1. According to the method for dictating the best genetic model,²⁶ the estimated OR₁(ff vs FF), OR₂(fF vs FF), and OR₃(ff vs fF) were 1.34 (95% CI = 1.036– 1.730), 0.96 (95% CI = 0.827–1.110), and 1.34 (95% CI = 1.122–1.599). These indicated that OR₁ and OR₃ were significant (P < 0.05) and OR₂ was not significant (P = 0.566); the genetic model was most likely recessive.

Study	Year	OR (95% CI)	% Weigh
Asian	·		
Alagarasu	2009	3.28 (0.98, 10.96)	2.28
Alagarasu	2009	1.79 (0.44, 7.38)	1.74
Alagarasu	2009	1.30 (0.32, 5.30)	1.75
Joshi	2014	1.27 (0.54, 2.96)	3.94
Kang	2011	1.47 (0.71, 3.03)	4.88
Liu	2004	1.78 (1.02, 3.10)	6.69
Selvaraj	2003	0.47 (0.16, 1.42)	2.66
Selvaraj	2004	0.34 (0.07, 1.61)	1.45
Selvaraj	2008	→ 11.46 (0.60, 218.22)	0.44
Selvaraj	2009	2.85 (0.29, 28.22)	0.72
Sharma	2011	3.01 (1.22, 7.42)	3.61
Sinaga	2014	0.54 (0.20, 1.46)	3.13
Singh	2011	0.68 (0.26, 1.77)	3.35
Vidyarani	2009	9.24 (0.46, 184.37)	0.43
Wilkinson	2000	3.63 (0.93, 14.10)	1.87
Wu	2013	2.30 (1.33, 3.99)	6.74
Zhang	2010	2.18 (1.23, 3.85)	6.49
	squared = 41.7%, p = 0.037)	1.56 (1.13, 2.15)	52.17
Caucasian			
Ates	2011	0.76 (0.29, 2.02)	3.21
Banoei	2010	1.65 (0.55, 4.95)	2.65
Marashian	2010	0.58 (0.19, 1.80)	2.57
Merza	2009	4.80 (0.25, 90.60)	0.45
Rashedi	2014	0.93 (0.32, 2.69)	2.81
Roth	2004	1.09 (0.62, 1.90)	6.60
SALIMI	2015	1.79 (0.67, 4.77)	3.18
Wilbur	2007	- 0.76 (0.03, 18.99)	0.37
	squared = 0.0%, p = 0.740)	1.09 (0.76, 1.55)	21.85
African	11		
Babb	2007	1.09 (0.53, 2.24)	4.96
Bbornman	2004	1.08 (0.61, 1.92)	6.47
Lombard	2006	1.13 (0.22, 5.72)	1.36
Mahmoud	2014	1.00 (0.29, 3.49)	2.15
Olesen	2007	0.90 (0.45, 1.78)	5.28
Soborg	2007	0.86 (0.45, 1.62)	5.76
	squared = 0.0%, p = 0.994)	0.99 (0.73, 1.34)	25.98
Overall (I-s	equared = 25.9%, p = 0.095)	1.29 (1.06, 1.58)	100.0
NOTE: Wei	ghts are from random effects analysis		
	.00458 1	218	
		210	

FIGURE 2. Forest plot for the association between Fok polymorphisms and TB risk stratified by ethnicity in recessive model (ff vs fF+FF).

Using a recessive model, data for the fF and FF group were collapsed and compared to the ff group (ff vs fF+FF). The estimated OR was 1.34 (95% CI = 1.091 - 1.646, P = 0.005). There was moderate heterogeneity in the pooled results $(I^2 = 32.2\%, P = 0.043)$. Therefore, we performed subgroup analysis according to ethnicity and HIV status. In the subgroup analysis by ethnicity (Fig. 2 and Table 1), significant associations were found in the Asian group (OR = 1.65, 95%) CI = 1.205 - 2.261, P = 0.002; $I^2 = 43.9\%$, and P = 0.024 for heterogeneity), but not in the Caucasian group (OR = 1.09, 95%CI = 0.762 - 1.547, P = 0.649; $I^2 = 0.0\%$, and P = 0.740 for heterogeneity), and the African group (OR = 0.99, 95% CI = 0.726 - 1.341, P = 0.934; $I^2 = 43.9\%$, and P = 0.024 for heterogeneity). The HIV status was stratified as the HIVnegative TB group and the other group (HIV-positive or no information). As shown in Figure 3 and Table 1, significant associations were found in the HIV-negative TB group $(OR = 1.60, 95\% CI = 1.180 - 2.077, P = 0.002; I^2 = 29.5\%,$ and P = 0.141 for heterogeneity). To further explore the sources of heterogeneity, we carried out a Galbraith plot analysis to confirm the outliers that might cause the heterogeneity (Fig. 4). The results showed that Rathored et al^{38} and Wu et al^{22} were the outlier studies. Therefore, we excluded these 2 studies and reran the meta-analysis; the heterogeneity decreased significantly in the recessive model, but the pooled results were not changed significantly (OR = 1.24, 95% CI = 1.016-1.509, P = 0.034; $I^2 = 19.7\%$, and P = 0.170 for heterogeneity).

Sensitivity Analysis

First, sensitivity analysis was performed by omitting 1 study at a time, and there were no statistically significant changes in all ORs. We then omitted the 3 studies, which were out of HWE, and the statistical significance of the pooled result did not change (OR = 1.31, 95% CI = 1.068-1.604, P = 0.010).

Publication Bias

As shown in Figure 5, the funnel plot was symmetrical. The Begg's funnel plot and the Egger test also confirmed the absence of publication bias among the included studies ($P_{\text{Egger test}} = 0.841$).

DISCUSSION

This meta-analysis with 32 case-control studies indicates that VDR *FokI* polymorphism contributes to the risk of TB. The results suggest that people who had genotype ff had a 34% higher risk of developing TB than people who had genotypes fF/FF, and the risk effect was confirmed in HIV-negative TB patients (OR = 1.60). In addition, results from subgroup analysis stratified by ethnicity indicate that TB risk was

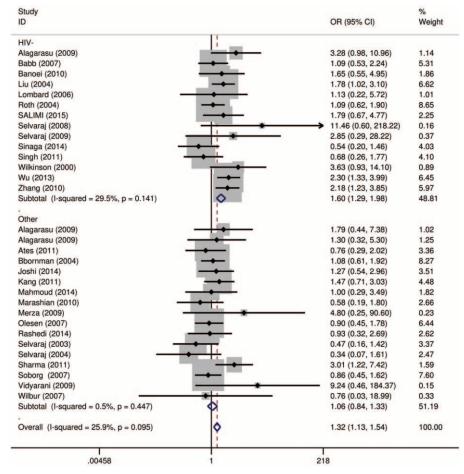


FIGURE 3. Forest plot for the association between Fokl polymorphisms and TB riskstratified by HIV status in recessive model (ff vs fF+FF).

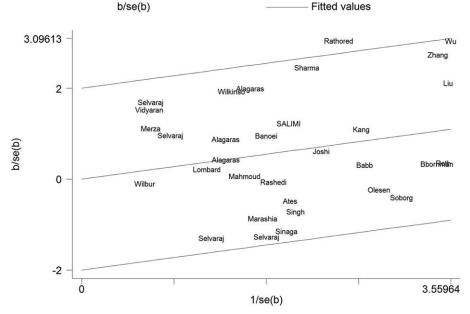
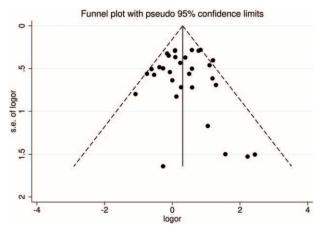



FIGURE 4. Galbraith plot analysis to evaluate heterogeneity: Rathored et al and Wu et al were the outlier studies in recessive model (ff vs fF+FF).

increased in Asians with ff genotype (OR = 1.65), but not in Caucasians and Africans.

The results of the present meta-analysis are consistent with a similar meta-analysis performed by Chen et al¹⁶ in 2013. Compared with the previous study, our meta-analysis included 7 additional studies on the *FokI* polymorphism.^{12,18–23} Recently, a meta-analysis missed 11 studies^{12,18–20,22,23,39,42–44,47} according to the specific combinations of search terms and their inclusion and exclusion criteria. In addition, some comparison genetic models in this study were incorrect (eg, the recessive model should be ff vs FF+fF but not ff+fF vs FF). Therefore, this update meta-analysis has more statistical power than the 2 previous studies. Likewise, considering TB is the frequent

FIGURE 5. Funnel plot for studies of the association between in recessive model (ff vs fF+FF). The horizontal and vertical axes correspond to the OR and 95% CI. CI = confidence interval; OR = odds ratio.

major opportunistic infection in HIV-infected patients, we carried out a subgroup analysis stratified by HIV status. Interestingly, the risk effect was found only in HIV-negative TB patients. As expected, the heterogeneity decreased significantly, which not only strongly confirms the conclusion that FokI polymorphism contributes to the risk of TB, but also indicates that HIV status was the main source of heterogeneity in the previous meta-analysis. This may be a reason for controversial results from previous studies. Indeed, HIV infection is associated with a greater risk for disease than HIV-negative individuals.⁵⁷ Of note, a study by Xu et al⁵⁸ also focused on this topic; nevertheless, our study is more comprehensive than this study and we found the risk effect only in HIV-negative TB patients but not observed in HIV-positive or not clearly identified group. Therefore, our results suggest it is crucial to avoid selection bias in such genotype association studies.

Our results are also consistent with the functional studies on the VDR genepolymorphisms⁵⁹; the active form of vitamin D (1,25(OH)2D3) is an important immunoregulatory hormone and moves into the nucleus by binding to the VDR complex.⁶ Low vitamin D levels have been found to contribute to the risk of TB infection.⁶¹ VDR gene polymorphisms are related to vitamin D-related disease,¹¹ and significant interaction between vitamin D status and VDR gene polymorphisms has also been observed.¹⁰ Indeed, VDR polymorphism may influence susceptibility to infectious diseases, such as hepatitis B virus infection⁶² and leprosy.⁶³ With respect to FokI polymorphisms, the short 424 amino acid VDR protein variant (corresponding with the C-allele or "big F" allele) has been found to be more active than the long 427 ff variant.⁵⁹ Hence, the f allele of *FokI* might decrease the activity of the VDR protein, and then block the binding of active vitamin D and VDR. In summary, VDR polymorphism may influence the function of vitamin D and, therefore, contribute to the susceptibility to TB infection.

The present study has some advantages compared with previous studies. First, this update meta-analysis has more

statistical power than the 2 previous studies. We also selected the best genetic model to avoid multiple comparisons. Second, we confirmed the conclusion in the HIV-negative TB group, which would further reveal the association between FokI polymorphism and TB. Likewise, our results were relatively reliable for no significant heterogeneity, and some results were given in the sensitivity analysis. However, having some limitations is a required consideration in this study. We should note the potential publication biases when explaining the results, although no significant publication biases were found in this study; positive results mainly come from the Asian region, especially China. In addition, we did not stratify or analyze the other factors, such as sex or clinical and environmental variables, because of a lack of original data from authors. Also, our HIV status-specific analysis included only 2 studies from HIV-positive TB patients, and HIV positive or no information were together as a subgroup in metaanalysis would represent a bias in the analysis and conclusions; additional studies are warranted to explore the relationship between HIV-positive TB and FokI polymorphisms.

CONCLUSIONS

In conclusion, this meta-analysis confirms that VDR *FokI* polymorphism contributes to the risk of TB, especially in HIV-negative TB patients and the Asian group. Further studies are required to clarify the role of the *FokI* polymorphism in HIV-positive TB and in other ethnic groups.

ACKNOWLEDGMENTS

We thank Yifan Sun for assistance with the statistics analysis and valuable discussion. We acknowledge the editors and the anonymous reviewers for insightful suggestions on this work.

REFERENCES

- 1. WHO. Global Tuberculosis Report 2014[M]. World Health Organization, 2014.
- Pawlowski A, Jansson M, Skold M, et al. Tuberculosis and HIV coinfection. *PLoS Pathog.* 2012;8:e1002464.
- Frieden TR, Sterling TR, Munsiff SS, et al. Tuberculosis. Lancet (London, England). 2003;362:887–899.
- Martinez N, Kornfeld H. Diabetes and immunity to tuberculosis. *Eur J Immunol.* 2014;44:617–626.
- 5. Bellamy R. Genetic susceptibility to tuberculosis. *Clin Chest Med.* 2005;26:233–246.
- Bellamy R. Susceptibility to mycobacterial infections: the importance of host genetics. *Genes Immun.* 2003;4:4–11.
- Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. *Science*. 2006;311:1770–1773.
- Deluca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J. 2001;15:2579–2585.
- Nejentsev S, Godfrey L, Snook H, et al. Comparative high-resolution analysis of linkage disequilibrium and tag single nucleotide polymorphisms between populations in the vitamin D receptor gene. *Hum Mol Genet.* 2004;13:1633–1639.
- Wilkinson RJ, Llewelyn M, Toossi Z, et al. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. *Lancet*. 2000;355:618–621.
- Uitterlinden AG, Fang Y, van Meurs JB, et al. Vitamin D receptor gene polymorphisms in relation to Vitamin D related disease states. *J Steroid Biochem Mol Biol.* 2004;89:187–193.

- Rashedi J, Asgharzadeh M, Moaddab SR, et al. Vitamin d receptor gene polymorphism and vitamin d plasma concentration: correlation with susceptibility to tuberculosis. *Adv Pharm Bull.* 2014;4(Suppl 2):607–611.
- Alagarasu K, Selvaraj P, Swaminathan S, et al. 5' regulatory and 3' untranslated region polymorphisms of vitamin D receptor gene in south Indian HIV and HIV-TB patients. *J Clin Immunol.* 2009;29:196–204.
- Selvaraj P, Prabhu Anand S, Harishankar M, et al. Plasma 1,25 dihydroxy vitamin D3 level and expression of vitamin d receptor and cathelicidin in pulmonary tuberculosis. *J Clin Immunol.* 2009;29:470–478.
- Singh A, Gaughan JP, Kashyap VK. SLC11A1 and VDR gene variants and susceptibility to tuberculosis and disease progression in East India. *Int J Tuberc Lung Dis.* 2011;15:1468–1474.
- Chen C, Liu Q, Zhu L, et al. Vitamin D receptor gene polymorphisms on the risk of tuberculosis, a meta-analysis of 29 case-control studies. *PLoS One.* 2013;8:e83843.
- Sun YP, Cai QS. Vitamin D receptor FokI gene polymorphism and tuberculosis susceptibility: a meta-analysis. *Genet Mol Res.* 2015;14:6156–6163.
- Salimi S, Farajian-Mashhadi F, Alavi-Naini R, et al. Association between vitamin D receptor polymorphisms and haplotypes with pulmonary tuberculosis. *Biomed Rep.* 2015;3:189–194.
- Sinaga BY, Amin M, Siregar Y, et al. Correlation between Vitamin D receptor gene FOKI and BSMI polymorphisms and the susceptibility to pulmonary tuberculosis in an Indonesian Batak-ethnic population. *Acta Med Indones*. 2014;46:275–282.
- Mahmoud AA, Ali AHK. Vitamin D receptor gene polymorphism and 25 hydroxy vitamin D levels in Egyptian patients with pulmonary tuberculosis. *Egyptian J Chest Dis Tuberculosis*. 2014;63:651–655.
- Joshi L, Ponnana M, Penmetsa SR, et al. Serum vitamin D levels and VDR polymorphisms (BsmI and FokI) in patients and their household contacts susceptible to tuberculosis. *Scand J Immunol.* 2014;79:113–119.
- Wu F, Zhang W, Zhang L, et al. NRAMP1, VDR, HLA-DRB1, and HLA-DQB1 gene polymorphisms in susceptibility to tuberculosis among the Chinese Kazakh population: a case-control study. *BioMed Res Int.* 2013;2013:484535.
- Kang TJ, Jin SH, Yeum CE, et al. Vitamin D receptor gene TaqI, BsmI and FokI polymorphisms in Korean patients with tuberculosis. *Immune Netw.* 2011;11:253–257.
- Raghavan S, Alagarasu K, Selvaraj P. Immunogenetics of HIV and HIV associated tuberculosis. *Tuberculosis (Edinb)*. 2012;92:18–30.
- Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Internal Med.* 2009;151:264–269.
- Thakkinstian A, McElduff P, D'Este C, et al. A method for meta-analysis of molecular association studies. *Stat Med.* 2005;24:1291–1306.
- Higgins J, Thompson SG. Quantifying heterogeneity in a metaanalysis. Stat Med. 2002;21:1539–1558.
- Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. *BMJ*. 2003;327:557–560.
- Arji N, Busson M, Iraqi G, et al. Genetic diversity of TLR2, TLR4, and VDR loci and pulmonary tuberculosis in Moroccan patients. *J Infect Dev Ctries*. 2014;8:430–440.
- Motsinger-Reif AA, Antas PRZ, Oki NO, et al. Polymorphisms in IL-1(beta), vitamin D receptor Fok1, and Toll-like receptor 2 are associated with extrapulmonary tuberculosis. *BMC Med Genet*. 2010;11:37.

- Bellamy R. Identifying genetic susceptibility factors for tuberculosis in Africans: a combined approach using a candidate gene study and a genome-wide screen. *Clin Sci (Lond)*. 2000;98:245–250.
- Bellamy R, Ruwende C, Corrah T, et al. Tuberculosis and chronic hepatitis B virus infection in Africans and variation in the vitamin D receptor gene. J Infect Dis. 1999;179:721–724.
- Delgado JC, Baena A, Thim S, et al. Ethnic-specific genetic associations with pulmonary tuberculosis. *J Infect Dis.* 2002;186:1463–1468.
- Ahmad Z, Arrahmanda K, Ergan D, et al. Effect of Taqi vitamin D receptor gene polymorphism on the incidence of pulmonary tuberculosis. *Respirology*. 2011;16:78.
- Kim J, Ahn JH, Park CK, et al. Influence of vitamin d receptor polymorphism on tuberculosis among south Korean. *CHEST Journal*. 2011;140:780A–780A.
- Park S, Kim EJ, Lee SH, et al. Vitamin D-receptor polymorphisms and non-tuberculous mycobacterial lung disease in Korean patients. *Int J Tuberc Lung Dis.* 2008;12:698–700.
- 37. Liu W, Cao WC, Zhang CY, et al. VDR and NRAMP1 gene polymorphisms in susceptibility to pulmonary tuberculosis among the Chinese Han population: a case-control study. *Int J Tuberc Lung Dis.* 2004;8:428–434.
- Rathored J, Sharma SK, Singh B, et al. Risk and outcome of multidrug-resistant tuberculosis: vitamin D receptor polymorphisms and serum 25(OH)D. Int J Tuberc Lung Dis. 2012;16:1522–1528.
- Selvaraj P, Vidyarani M, Alagarasu K, et al. Regulatory role of promoter and 3' UTR variants of vitamin D receptor gene on cytokine response in pulmonary tuberculosis. *J Clin Immunol.* 2008;28:306–313.
- 40. Selvaraj P, Chandra G, Jawahar MS, et al. Regulatory role of vitamin D receptor gene variants of Bsm I, Apa I, Taq I, and FokI polymorphisms on macrophage phagocytosis and lymphoproliferative response to mycobacterium tuberculosis antigen in pulmonary tuberculosis. J Clin Immunol. 2004;24:523–532.
- Selvaraj P, Chandra G, Kurian SM, et al. Association of vitamin D receptor gene variants of BsmI, ApaI and FokI polymorphisms with susceptibility or resistance to pulmonary tuberculosis. *Current Sci.* 2003;84:1563–1564.
- 42. Sharma PR, Singh S, Jena M, et al. Coding and non-coding polymorphisms in VDR gene and susceptibility to pulmonary tuberculosis in tribes, castes and Muslims of Central India. *Infect Genet Evol.* 2011;11:1456–1461.
- Wilbur AK, Kubatko LS, Hurtado AM, et al. Vitamin D receptor gene polymorphisms and susceptibility M. tuberculosis in native Paraguayans. *Tuberculosis (Edinb)*. 2007;87:329–337.
- 44. Vidyarani M, Selvaraj P, Raghavan S, et al. Regulatory role of 1, 25-dihydroxyvitamin D3 and vitamin D receptor gene variants on intracellular granzyme A expression in pulmonary tuberculosis. *Exp Mol Pathol.* 2009;86:69–73.
- 45. Zhang HQ, Deng A, Guo CF, et al. Association between FokI polymorphism in vitamin D receptor gene and susceptibility to spinal tuberculosis in Chinese Han population. Arch Med Res. 2010;41:46–49.
- Ates O, Dolek B, Dalyan L, et al. The association between BsmI variant of vitamin D receptor gene and susceptibility to tuberculosis. *Mol Biol Rep.* 2011;38:2633–2636.

- Banoei MM, Mirsaeidi MS, Houshmand M, et al. Vitamin D receptor homozygote mutant tt and bb are associated with susceptibility to pulmonary tuberculosis in the Iranian population. *Int J Infect Dis.* 2010;14:e84–e85.
- Marashian SM, Farnia P, Seyf S, et al. Evaluating the role of vitamin D receptor polymorphisms on susceptibility to tuberculosis among iranian patients: a case-control study. *Tuberk Toraks*. 2010;58:147–153.
- Merza M, Farnia P, Anoosheh S, et al. The NRAMPI, VDR and TNF-alpha gene polymorphisms in Iranian tuberculosis patients: the study on host susceptibility. *Braz J Infect Dis.* 2009;13:252–256.
- Roth DE, Soto G, Arenas F, et al. Association between vitamin D receptor gene polymorphisms and response to treatment of pulmonary tuberculosis. J Infect Dis. 2004;190:920–927.
- Babb C, van der Merwe L, Beyers N, et al. Vitamin D receptor gene polymorphisms and sputum conversion time in pulmonary tuberculosis patients. *Tuberculosis (Edinbur)*. 2007;87:295–302.
- Bornman L, Campbell SJ, Fielding K, et al. Vitamin D receptor polymorphisms and susceptibility to tuberculosis in West Africa: a case-control and family study. J Infect Dis. 2004;190:1631–1641.
- Lombard Z, Dalton DL, Venter PA, et al. Association of HLA-DR, -DQ, and vitamin D receptor alleles and haplotypes with tuberculosis in the Venda of South Africa. *Hum Immunol.* 2006;67:643–654.
- Olesen R, Wejse C, Velez DR, et al. DC-SIGN (CD209), pentraxin 3 and vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans. *Genes Immun.* 2007;8:456–467.
- Soborg C, Andersen AB, Range N, et al. Influence of candidate susceptibility genes on tuberculosis in a high endemic region. *Mol Immunol.* 2007;44:2213–2220.
- Salimi S, Farajian-Mashhadi F, Alavi-Naini R, et al. Association between vitamin D receptor polymorphisms and haplotypes with pulmonary tuberculosis. *Biomed Rep.* 2015;3:189–194.
- Ciesla JA, Roberts JE. Meta-analysis of the relationship between HIV infection and risk for depressive disorders. *Am J Psychiatry*. 2001;158:725–730.
- Xu C, Tang P, Ding C, et al. Vitamin D receptor gene FOKI polymorphism contributes to increasing the risk of HIV-negative tuberculosis: evidence from a meta-analysis. *PLoS One*. 2015;10:e0140634.
- 59. Arai H, Miyamoto KI, Taketani Y, et al. A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. *J Bone Miner Res.* 1997;12:915–921.
- Manolagas SC, Yu XP, Girasole G, et al. Vitamin D and the hematolymphopoietic tissue: a 1994 update. *Seminars in nephrology*. 1994;14:129–143.
- Facchini L, Venturini E, Galli L, et al. Vitamin D and tuberculosis: a review on a hot topic. J Chemother. 2015;27:128–138.
- Suneetha PV, Sarin SK, Goyal A, et al. Association between vitamin D receptor, CCR5, TNF-alpha and TNF-beta gene polymorphisms and HBV infection and severity of liver disease. *J Hepatol.* 2006;44:856–863.
- Neela VSK, Suryadevara NC, Shinde VG, et al. Association of Tag I, Fok I and Apa I polymorphisms in Vitamin D Receptor (VDR) gene with leprosy. *Hum Immunol.* 2015;76:402–405.