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Abstract

Background—Individuals with a family history of alcoholism are at much greater risk for
developing an alcohol use disorder (AUD) than youth or adults without such history. A large body
of research suggests that there are premorbid differences in brain structure and function in family
history positive (FHP) individuals relative to their family history negative (FHN) peers.

Methods—This review summarizes the existing literature on neurobiological phenotypes present
in FHP youth and adults by describing findings across neurophysiological and neuroimaging
studies.

Results—Neuroimaging studies have shown FHP individuals differ from their FHN peers in
amygdalar, hippocampal, basal ganglia, and cerebellar volume. Both increased and decreased
white matter integrity has been reported in FHP individuals compared with FHN controls.
Functional magnetic resonance imaging studies have found altered inhibitory control and working
memory-related brain response in FHP youth and adults, suggesting neural markers of executive
functioning may be related to increased vulnerability for developing AUDs in this population.
Additionally, brain activity differences in regions involved in bottom-up reward and emotional
processing, such as the nucleus accumbens and amygdala, have been shown in FHP individuals
relative to their FHN peers.

Conclusions—It s critical to understand premorbid neural characteristics that could be
associated with cognitive, reward-related, or emotional risk factors that increase risk for AUDs in
FHP individuals. This information may lead to the development of neurobiologically informed
prevention and intervention studies focused on reducing the incidence of AUDs in high-risk youth
and adults.
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1. FAMILY HISTORY OF ALCOHOLISM

It is well established that family history of alcoholism is a significant risk factor for the
development of alcohol use disorders (AUDs; Cloninger et al., 1986; Goodwin, 1985;
Schuckit et al., 1972). This evidence comes from the observation that alcoholism is
prevalent among relatives (Schuckit et al., 1972), and there is a higher concordance of the
disorder in both male and female monozygotic twins (Heath et al., 1997), with an estimated
30-50% of individual risk attributed to genetics (Heath et al., 1997; Kaprio et al., 1987;
Knopik et al., 2004). Additionally, adoption studies suggest similar risk in individuals living
apart from biological parents, which provides further support for the heritability of the
disorder (Bohman, 1978; Cloninger et al., 1981; Goodwin et al., 1974). A quarter of youth in
the United States have a family history of alcoholism (Grant, 2000), which increases their
likelihood of developing an AUD three-to-five fold (Cotton, 1979). Greater density of
alcoholism in one’s family is also associated with higher risk of developing an AUD (Hill
and Yuan, 1999). Furthermore, family history of alcoholism increases the risk of alcohol-
related problems among adolescents (Lieb et al., 2002). Given the strong evidence that
family history of alcoholism significantly increases AUD risk, it is critical to understand the
neurobiological underpinnings that contribute towards the heritability of the disorder.
Nonetheless, many individuals with a family history of alcoholism do not go on to develop
AUDs (Werner, 1986), so it is equally important to identify neurobiological mechanisms
that may confer resilience against heavy alcohol use.

Definitions of family history of alcoholism have varied from parental or nonparental
presence of AUDs, examination of maternal and/or paternal sides of the family, uni- or
multigenerational presence of the disorder, or quantification of multiple relatives with the
disorder (Alterman, 1988). Despite these varying definitions, previous neuroimaging
research has largely categorized individuals as having a positive family history of
alcoholism (FHP) if they had at least one biological parent or two or more second degree
relatives diagnosed with AUDs (e.g., Andrews et al., 2011, Cservenka and Nagel, 2012),
while family history negative (FHN) individuals had an absence of familial alcoholism in
first (e.g., Heitzeg et al., 2010) or first and second degree relatives (e.g., Cservenka and
Nagel 2012; Squeglia et al., 2014). While many studies have conducted group-level analyses
using these dichotomous definitions (e.g., Herting et al., 2010; Schweinsburg et al., 2004;
Sjoerds et al., 2013), others discussed in this review have used continuous measures, such as
a quantitative calculation of degree of family history density (FHD; Alterman, 1988) of
AUDs (e.g., Cservenka et al., 2015; Silveri et al., 2011; Spadoni et al., 2008) to examine the
extent to which the presence of the disorder across multiple relatives may contribute to
degree of risk for developing AUDs. Lastly, another common way family history has been
defined is by recruiting participants who are considered high-risk due to multi-generational
presence of AUDs within families with multiplex alcohol dependence where the first
generation in which AUDs were present included two biological brothers with the disorder
(e.g., Hill et al., 2001). For simplicity, FHP and FHN will be used in this review to describe
group differences between individuals with and without a family history of alcoholism,
except in studies of multiplex alcohol dependence where high-risk (HR) and low-risk (LR)
offspring are described as those who do and do not come from families with
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multigenerational alcohol dependence, respectively. Finally, FHD will be used to discuss
findings where density of familial AUDs was examined with a quantitative continuous
variable.

Using the definitions described above, a multitude of studies have examined neurocognitive,
behavioral, and personality characteristics in individuals with familial alcoholism. There is
growing research on the neural correlates that may underlie some of the characteristics that
could increase risk for the development of AUDs as well as markers that could provide
resilience against the development of AUDs, especially in young adult and adult samples
with minimal heavy alcohol use. This review will summarize the neurocognitive and
neurobiological features present in youth and adults with a family history of alcoholism.
Early studies using electroencephalography (EEG) and event-related potentials (ERP)
identified electrophysiological differences between FHP and FHN individuals, while more
recent studies using structural and functional magnetic resonance imaging (fMRI), as well as
diffusion tensor imaging (DTI), have reported a variety of volumetric, functional, and white
matter microstructure differences between FHP and FHN youth and adults.

2. NEUROCOGNITION AND AFFECT

Neurocognitive studies consistently report that individuals with familial alcoholism have
deficits in verbal and language abilities (Drejer et al., 1985; Knop et al., 1985; Tapert and
Brown, 2000), visuomotor, visuospatial, and perception skills (Aronson et al., 1985; Garland
et al., 1993; Ozkaragoz et al., 1997; Schaeffer et al., 1984; Tarter et al., 1989), and in
various domains of executive functioning (Corral et al., 2003; Gierski et al., 2013; Harden
and Pihl, 1995; Hesselbrock et al., 1991). For example, compared with FHN individuals,
FHP adults had greater preservative errors on the Wisconsin Card Sorting Task (WCST),
and slower reaction time during the Trail Making and Arithmetic Switching Tasks, which
reflect weaknesses in set-shifting (Gierski et al., 2013). Similar findings were present in
FHP children, who also showed more perseverative errors on the WCST compared with
their FHN peers (Corral et al., 2003). The authors suggested that this could be reflective of a
developmental delay, as FHP children did not exhibit a reduction in perseverative errors on
the WCST when assessments were conducted 3.5 years apart, while control youth did show
improvements in performance (Corral et al., 2003). Poor planning and abstract problem
solving abilities have also been found in multiple studies of FHP individuals (Drejer et al.,
1985; Schaeffer et al., 1984; Tarter et al., 1989), which may also be indicative of executive
functioning immaturity, thereby leading FHP youth or adults to make poor choices with
regards to alcohol use.

Furthermore, on basic tasks of motor inhibition, FHP individuals were more impulsive and
had difficulties in response inhibition compared with their FHN peers (Acheson et al.,
2011a; Saunders et al., 2008). Inhibitory control problems have also been found on more
cognitively demanding tasks, as FHP adults made more errors than FHN individuals when
performing the Stroop (Lovallo et al., 2006), which requires the maintenance of attention,
conflict monitoring, and response inhibition. Delay discounting paradigms indicate that FHP
adults are also less able to delay reward gratification (Acheson et al., 2011b), perhaps
reflecting heightened impulsivity, which may contribute to alcohol-related problems. It is
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possible that poor decision-making abilities contribute to AUD risk in this population and
may vary by sex, since FHP males were reported to be more attentive to financial gains,
suggesting a greater propensity for reward-driven behavior compared to FHP females or
FHN individuals (Lovallo et al., 2006). These findings also translate to studies of largely
alcohol-naive youth, as poorer response inhibition was present in FHP children and
adolescents compared with their FHN peers (Nigg et al., 2004). Thus, a strong body of
research points to executive functioning abnormalities, including set-shifting weaknesses
and inhibitory control deficits, in FHP individuals in the absence of AUDs. While not all
neuropsychological studies have found performance differences between FHP and FHN
individuals (Alterman et al., 1989; Bates and Pandina, 1992; Hesselbrock et al., 1985),
neuroimaging studies may provide insight into the neurobiological correlates of previously
reported abnormalities in cognitive functions in familial alcoholism.

Not only are there top-down cognitive control weaknesses in FHP individuals, but there are
also differences in emotional processing and reactivity between FHP adults and their FHN
peers, which could be other contributing factors to the emergence of AUDs in this
population. Both physiological and subjective affective responses are altered in FHP
individuals, as they have shown reduced emotion-modulated startle (Miranda et al., 2002),
blunted stress response (Sorocco et al., 2006), and higher rates of internalizing symptoms
(West and Prinz, 1987) relative to their FHN peers. Other studies have reported that FHP
children experience greater emotional dysregulation and affective problems than their FHN
peers (Christensen and Bilenberg, 2000; West and Prinz, 1987). In particular, negative affect
in adolescents mediated the relationship between parental history of alcoholism and risk-
taking, the latter of which was significantly related to substance use (Ohannessian and
Hesselbrock, 2008). These findings suggest that in addition to weaknesses in cognitive
control that may lead to maladaptive behaviors in FHP youth and adults, there are also
affective pathways that can confer risk for AUDs in this population. Thus, studies examining
the neurobiology associated with familial history risk should examine neural markers of risk
associated with top-down cognitive control and bottom-up emotion and reward processing,
their interaction, and importantly, their ability to predict future escalation of heavy drinking.

3. ELECTROENCEPHALOGRAPHY AND EVENT-RELATED POTENTIALS

Over 30 years ago, the first studies to examine neurobiological correlates of familial risk for
alcoholism used EEG and ERP to identify neurophysiological markers of risk for AUDs
(Begleiter et al., 1984; Elmasian et al., 1982). Many of these studies have been extensively
reviewed by Polich and colleagues (1994), as well as Rangaswamy and Porjesz (2014), but
the key findings are described here. The vast majority of these investigations have focused
on P3 potentials during the presentation of auditory or visual stimuli. The P3 component is
linked with attentional and working memory processes when individuals have to attend to a
target stimulus. Initial studies reported lower P3 amplitude in both FHP adult men and FHP
boys compared to FHN peers. A meta-analysis by Polich and colleagues (1994) reviewed
the mixed evidence regarding the amplitude of the P3 component in familial risk studies, but
it appeared that young males show the greatest reduction in amplitude of this component
during difficult visual tasks. The authors of this meta-analysis argued that by examining the
P3 component, researchers can potentially detect both cognitive dysfunction in those at high
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risk for alcoholism, as well as find a neural correlate of vulnerability for developing AUDs
that can inform prevention efforts aimed at identifying individuals at highest risk for the
disorder (Polich et al., 1994). Furthermore, some of the neural markers that may differentiate
FHP vs. FHN individuals appear to also be present at rest, as multiple studies have found
that beta power is higher in FHP individuals than their FHN peers during resting EEG
(Rangaswamy and Porjesz, 2014).

4. BRAIN VOLUME

With the advent of neuroimaging technology, numerous studies have aimed to understand
whether a family history of alcoholism is associated with brain volume alterations that
could, in part, explain the higher vulnerability of FHP individuals to develop AUDs. These
investigations have primarily used region-of-interest analyses to determine whether gray
matter volumes may be atypical in familial alcoholism.

Since reward and emotion-serving brain regions may be one pathway of risk towards AUDs,
a number of studies have measured amygdalar volume in FHP and HR individuals
(Cservenka et al., 2015; Dager et al., 2015; Hill et al., 2001, 2013c), as reductions in
amygdalar volume have been shown in alcoholics (Wrase et al., 2008). Hill and colleagues
(2001) were the first to report reduced right amygdalar volume in HR adolescents and young
adults relative to LR controls. Both this study and subsequent studies by Hill and colleagues
(2007a, 2013a, 2007h, 2013b, 2013c, 2011, 2009), compared brain volume between HR and
LR individuals, but included some adolescents and adults with alcohol/substance abuse or
dependence, so family history and alcohol use effects cannot be completely dissociated. A
subsequent study of amygdalar volume with a larger sample showed reduced volume
(bilaterally) — a phenotype that was moderated by genetics (Hill et al., 2013c). HR
individuals and carriers of the short “S” allele for the serotonin transporter (5-HTTLPR)
gene had smaller amygdalar volume compared to those with the long “L” allele. Since the S
allele is associated with vulnerability to stress and risk for alcohol dependence, these
findings suggest that genotyping those with familial alcoholism is critical to understanding
the interplay of gene x family environment interactions that could contribute to AUD risk. A
recent study that examined a number of subcortical brain regions implicated in affect and
reward, found reduced amygdalar volume in individuals with first degree biological relatives
diagnosed with an AUD (Dager et al., 2015), a study in which only 3-4% of individuals had
a lifetime diagnosis of substance abuse/dependence across groups, which minimized any
alcohol-related effects on brain structure. Thus, there now appears to be compelling
evidence that smaller amygdalar volume is present in FHP individuals, even in the absence
of personal AUDs. However, when characterizing risk based on FHD of AUDs, no
significant relationship was shown between degree of risk and amygdalar volume in a group
of adolescents with no heavy alcohol use experience (Cservenka et al., 2015). These
discrepancies could be due to participant age, experience with alcohol use even in the
absence of abuse or dependence, dichotomous measures of familial risk vs. FHD, or type of
amygdalar segmentation used. Nevertheless, it is important to consider the alternative
explanation that smaller amygdalar volume in adults largely free of alcohol or substance
dependence may be a marker of resilience against the development of AUDs. Thus, it will
be important for future studies to examine whether these results can be replicated in alcohol-

Drug Alcohol Depend. Author manuscript; available in PMC 2017 January 01.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Cservenka

Page 6

naive FHP adolescents, thereby confirming the specific contribution of familial alcoholism
to premorbid limbic brain region morphometric alterations.

While hippocampal morphology appears susceptible to the neurotoxic effects of alcohol (De
Bellis et al., 2000; Medina et al., 2007; Nagel et al., 2005; Ozsoy et al., 2013), both a study
of FHP adults with very low alcohol-related problems (Sjoerds et al., 2013) and a study of
FHP adolescents with minimal to no previous substance use (Hanson et al., 2010) indicated
significantly different volume of the parahippocampus and hippocampus, respectively, in
FHP compared with FHN individuals. The right parahippocampal gyrus showed
significantly smaller grey matter density in FHP relative to FHN adults (Sjoerds et al.,
2013), while a group-by-gender interaction was present in alcohol-naive adolescents, such
that FHP males had larger left hippocampal volumes relative to FHN males (Hanson et al.,
2010). However, the latter study included a small sample of adolescents, so strong
conclusions cannot be made. Given a number of studies that have reported memory
impairments (Brown et al., 2000) and altered hippocampal volume in AUDs (De Bellis et
al., 2000; Medina et al., 2007; Nagel et al., 2005; Ozsoy et al., 2013), future investigations
should examine whether familial AUD risk may be contributing to these impairments, and
whether there is a sex-specific pattern.

Since several studies have implicated basal ganglia structure and function in AUDs (Beck et
al., 2009; Camchong et al., 2013; Makris et al., 2008; Wrase et al., 2007), a few
investigations have also begun to examine volume of this region in at-risk individuals. For
example, a positive relationship between FHD of alcoholism and nucleus accumbens
volume was present in adolescent girls without personal heavy alcohol use (Cservenka et al.,
2015), suggesting that larger volume of an incentive processing region may be associated
with reward-related behaviors that confer risk for the development of AUDs, as FHD of
alcoholism is believed to represent degree of risk. It is possible that mesolimbic circuitry
may be atypical in HR individuals, as orbitofrontal cortex (OFC) volume laterality was
reported to be reduced in this population — a phenotype that was related to greater
impulsivity (Hill et al., 2009), albeit in a sample in which about 20% of individuals had an
alcohol or substance abuse/dependence diagnosis. Future studies should also consider
assessing the presence of externalizing disorders in adolescents and adults from multiplex
families with alcohol dependence, as these diagnoses accounted for volumetric differences
in other basal ganglia structures such as the caudate, which was smaller in volume in those
at-risk individuals with externalizing disorders relative to those without these diagnoses
(Hill et al., 2013a). Thus, future studies need to carefully consider psychiatric comorbidities
when examining the contribution of family history risk to brain morphology.

Altered cerebellar morphometry, which has been associated with AUDs, was also found in
two studies of HR individuals with some previous history of alcohol and/or substance abuse/
dependence (Hill et al., 2007b, 2011). While cerebellar volume was found to be smaller in
alcoholics (Sullivan et al., 2000, 2010), two studies found that HR individuals have larger
cerebellar volumes relative to LR controls (Hill et al., 2007b, 2011). Altered postural sway
reported in familial alcoholism (Hill et al., 2000) could be related to these morphometric
findings. It is still uncertain if altered cerebellar volume may be due to delayed synaptic
pruning in FHP individuals, or whether this phenotype could potentially be protective for
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those with familial alcoholism. Longitudinal investigations of cerebellar volume change are
needed in at-risk youth and adults to know if altered cerebellar volume increases risk for or
protects against alcoholism.

A study of brain volume and neuropsychological functioning in FHP and FHN early
adolescents found that white matter volume as a ratio to intracranial volume (ICV) was
significantly related to better performance on reaction time for the Stroop task and correct
responses on a Digit symbol task (Silveri et al., 2008). However, this effect was only present
in FHN females, suggesting that FH-by-sex interactions may be related to maturation of
executive functioning skills, and supports other findings of FH-by-sex effects reported in
gray matter volume studies (Cservenka et al., 2015; Hanson et al., 2010).

Further, it should be noted that overall intracranial volume (ICV) may also be affected by
familial alcoholism. FHP alcoholics were found to have smaller ICVs than FHN alcoholics
or healthy controls (Gilman et al., 2007), suggesting that hereditary or environmental risk
factors for AUDs can contribute to overall brain maturation. This finding supports the
hypothesis of delayed maturation in alcohol-naive FHP youth that could put them at risk for
maladaptive behaviors. On the other hand, in a different population of adult heavy drinkers
and light drinkers, heavy drinkers who had a family history of problem drinking in at least
one parent, had smaller cerebrospinal fluid volumes than their FHN peers - effects that were
not present in the light drinking group (Cardenas et al., 2005). Thus, it is plausible that the
interaction of heavy alcohol use and familial alcoholism as well as the age of onset of use
could determine if neurobiological features represent risk for or resilience against AUDs.

Most previous volumetric studies (Table 1) suggest that FHP and HR individuals have
altered subcortical brain morphology in reward and affect-related brain regions, including
smaller amygdalar volume (Dager et al., 2015; Hill et al., 2001, 2013c), increased NAcc
volume in females with higher familial density of the disorder (Cservenka et al., 2015), and
display differences in hippocampal volume from their FHN peers (Hanson et al., 2010;
Sjoerds et al., 2013). It is possible that decreases in amygdalar volume coupled with
increases in NAcc volume could be related to altered emotional processing (Christensen and
Bilenberg, 2000; Miranda et al., 2002) and heightened risky drinking (LaBrie et al., 2009)
that contributes to vulnerability for developing AUDs in FHP individuals. Furthermore, HR
individuals have larger cerebellar volume (Hill et al., 2007b, 2011), a finding opposite to
what has been seen in heavy alcohol users (Sullivan et al., 2000, 2010), which could be a
risk marker for as opposed to a consequence of alcohol use, or could be indicative of
neuroprotective resilience against future cerebellar damage. Further research will need to
examine the extent to which cortical areas show alterations in volume in FHP youth or
adults as these regions remain understudied.

5. WHITE MATTER MICROSTRUCTURE

White matter integrity, or more restricted diffusion of water along axons, increases over the
course of development (Bava et al., 2010; Lebel et al., 2012) and relates to improvements in
executive functioning across adolescence (Treit et al., 2014). Thus, decreased white matter
integrity could be related to functional deficits in cognition and thereby increase risk for
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AUDs. Various studies have reported that relative to FHN adolescents, FHP youth without
personal heavy alcohol use have decreased fractional anisotropy (FA) of white matter in
pathways that include long-range association tracts, connecting frontal and parietal lobes,
such as the superior longitudinal fasciculus (SLF; Acheson et al., 2014c; Herting et al.,
2010). Some studies also suggest that degree of risk is negatively related to white matter
integrity, such that those with the highest FHD have the lowest FA values (Acheson et al.,
2014c). Unfortunately, it is unclear whether this reduced integrity of white matter is a stable
characteristic in familial alcoholism or whether lower FA in FHP youth represents
developmental delays in white matter maturation. These findings suggest that prevention
efforts could focus on strategies to strengthen cognitive functioning prior to the initiation of
heavy alcohol use in FHP youth in cognitive domains that are related to reductions in white
matter integrity in these adolescents. This is critical, as other studies suggest that interactions
between alcohol use and family history of alcoholism may be detrimental to white matter
integrity once heavy alcohol use is initiated (Hill et al., 2013b).

Contrary to previous findings, a recent study reported that association, projection, and
interhemispheric white matter tracts showed higher FA in alcohol-naive FHP youth
compared with their FHN peers (Squeglia et al., 2014). This could represent compensatory
increases in FA in certain pathways, or as the authors hypothesize, could be a marker of
more advanced maturation of white matter in FHP adolescents that may increase their
susceptibility towards engaging in risky behaviors (Squeglia et al., 2014). Finding
associations between white matter integrity and cognitive functioning, as well as assessing
risky behaviors, including alcohol use, over the course of adolescence will be needed to
answer these questions. Further, many of these studies only included high functioning youth
who generally come from affluent families, warranting further research to increase the
generalizability of these findings.

Thus, while white matter microstructure has not been extensively explored in studies of
familial alcoholism (Table 2), research to date suggests mostly lower FA in FHP relative to
FHN youth in white matter tracts connecting fronto-parietal regions, including the SLF,
which could explain previous neuropsychological findings of executive functioning deficits
in FHP children and adolescents (Corral et al., 2003; Hesselbrock et al., 1991).

6. BRAIN FUNCTIONING
6.1 Inhibitory Control

Multiple studies indicate that inhibitory control brain activity is altered in FHP youth and
adults relative to their FHN peers (Acheson et al., 2014a, 2014b; DeVito et al., 2013; Hardee
et al., 2014; Heitzeg et al., 2010; Schweinsburg et al., 2004; Silveri et al., 2011), which
could explain impulsive characteristics seen in FHP individuals (Nigg et al., 2004; Saunders
et al., 2008). Go NoGo tasks, which assess motor impulsivity and engage fronto-striatal
circuitry, have been commonly used to study inhibitory control in FHP individuals. While
not all studies have reported behavioral differences between FHP individuals and their FHN
peers on laboratory Go NoGo tasks, brain response differences have been observed.
Reduced brain activity was demonstrated among fronto-parietal regions in 12-14 year old
alcohol-naive FHP adolescents during response inhibition (NoGo vs. Go activity), despite
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similar behavioral performance to their FHN peers (Schweinsburg et al., 2004).
Additionally, response inhibition may further be derailed in emotionally heated situations,
which could exacerbate risk for alcohol abuse, since frontal lobe brain response was reduced
during NoGo trials to a greater extent within affective vs. non-affective contexts (Cservenka
et al., 2014b). Given alterations in association tracts connecting frontal and parietal areas,
such as the SLF, in FHP youth (Herting et al., 2010), functional deficits in these areas could
be related to reduced white matter integrity of pathways connecting these regions — tracts
that are involved in the maturation of executive functions, such as inhibitory control.

Multiple studies have also found that FHP individuals may exert greater neural effort to
perform on par with their FHN peers. Regardless of problem drinking behavior, FHP youth
did not deactivate ventral caudate brain response when successfully inhibiting during a Go
NoGo task, while FHN youth did deactivate this region (Heitzeg et al., 2010). It is possible
that greater neural effort is required in some brain regions for successful performance on this
task. In FHP and FHN adults matched on drinking characteristics, family history-by-sex
interactions on neural activation during Go NoGo tasks were present. Specifically, in task-
positive brain regions such as the anterior insula and inferior frontal gyrus, FHP males had
the highest activity during NoGo vs. baseline brain response, which was related to both
discounting of rewards and self-reported impulsivity (DeVito et al., 2013). It is possible that
increased activity in these brain regions is a function of increased cognitive control effort
required for FHP males during successful inhibitions as a result of greater impulsivity in
these individuals, or it may be that this neural phenotype provides protection against
cognitive control weaknesses.

Furthermore, a longitudinal study of inhibitory control indicated that there are altered
trajectories of brain activity during Go NoGo tasks in FHP youth prior to the onset of an
AUD. FHP youth showed increased cingulate activity over time, while their FHN peers had
reduced fronto-striatal response from baseline to follow-up (Hardee et al., 2014). The
authors believed that these findings suggest greater recruitment of inhibitory control regions
in FHP youth over time in order to override prepotent responses, which is thought to reflect
an altered neurodevelopmental trajectory. Correlating these differing trajectories of brain
response during cognitive control to risk-related behaviors that change between childhood
and adolescence may help identify patterns of brain activity that predict the onset of heavy
alcohol use in FHP youth.

Brain activity differences have also been found between FHP youth and their FHN peers
during more complex inhibitory control tasks, such as the counting Stroop or Color-Word
Stroop. When contrasting incongruent vs. congruent trials on a counting Stroop task, higher
temporo-parietal activity was present in FHP youth (Acheson et al., 2014a). FHD of
alcoholism was related both positively and negatively to blood oxygen level-dependent
(BOLD) response during a Stroop task in fronto-limbic regions (Silveri et al., 2011).

Overall, these findings indicate both decreased and increased BOLD response during
inhibitory control tasks in FHP youth that differs as a function of sex, is related to FHD of
alcoholism, changes over the course of development, and is associated with measures of
impulsivity (Table 3). Furthermore, in studies of adults with minimal to no alcohol abuse or
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dependence, increased BOLD activity during successful inhibition in frontal (DeVito et al.,
2013) and parietal regions (Acheson et al., 2014a) could be indicative of a protective neural
mechanism against the development of AUDs that is reflective of efficient cognitive control
functioning in these individuals.

6.2 Working Memory

Poor working memory skills are associated with AUDs (Ambrose et al., 2001), and
deficiencies in working memory functioning could lead to poor decision-making skills,
thereby increasing vulnerability for alcohol abuse in FHP individuals (Nagel et al., 2012).
Specifically, FHN youth showed significantly more frontal lobe engagement during verbal
working memory (VWM) relative to a vigilance control condition than FHP youth who
showed comparable activity between those conditions (Cservenka et al., 2012). These
findings were also present during spatial working memory (SWM; Mackiewicz Seghete et
al., 2013). Thus, while FHN youth showed expected disengagement of frontal regions
during vigilance, FHP youth activated these areas, indicating that they still utilize neural
resources during a relatively simple attentional and motor response condition, which could
explain visuospatial and visuomotor deficits reported in this population (Aronson et al.,
1985; Garland et al., 1993; Ozkaragoz et al., 1997; Schaeffer et al., 1984; Tarter et al.,
1989). Furthermore, working memory relevant brain areas may not be functioning in
synchrony in substance-naive FHP youth, as these adolescents showed weaker fronto-
parietal connectivity during visual working memory than their FHN peers (Wetherill et al.,
2012), which complements other reports of lower fronto-parietal activity in FHP adults
(Rangaswamy et al., 2004). In both of the aforementioned tasks, visual working memory
consisted of maintaining and updating information that occurred in the same spatial location
on a computer screen, such as remembering if the color array of dots was the same as the
previous screen (Wetherill et al., 2012), or silently counting the total number of target
stimuli that occurred infrequently during an experiment, and reporting the total number at
the end (Rangaswamy et al., 2004). However, the findings above are opposite to those of
Spadoni and colleagues (2013), who reported increased connectivity during SWM between
the right superior parietal lobe and left middle frontal gyrus in FHP youth relative to their
FHN age-matched peers and an older group of adolescents. During the SWM task,
participants had to determine if a nonsense design appeared in the same location on a
computer screen as previously presented, and there could be one, two, or three distracters
between the two stimuli of the same location. Spadoni and colleagues (2013) describe that
differences between their study and previous ones may be due to different neural substrates
that are relevant to a visual vs. SWM task, although this remains speculative.

Not only is altered task-positive activity present during working memory tasks in FHP
youth, but ineffective disengagement of the default mode network (DMN), brain regions
including the medial prefrontal cortex and posterior cingulate gyrus, which display
functional synchrony at rest (Greicius et al., 2003), has also been related to degree of
familial alcoholism (Table 3). During the resting state, the DMN has been associated with
introspective, autobiographical thought processes (Gusnard et al., 2001), but active
suppression of DMN areas is critical during task engagement to limit intrusion of task-
irrelevant thoughts (McKiernan et al., 2003). The increased suppression of DMN activity
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during SWM relative to vigilance was present to a weaker extent in those with higher FHD
of alcoholism (Spadoni et al., 2008). Ineffective DMN modulation during working memory,
which is critical for adaptive decision-making, may contribute to risky decisions in FHP
youth. Since working memory is important for maintaining and updating information, poor
modulation of the DMN during working memory, could result in difficulties with making
adaptive decisions, which could subsequently increase risky decision-making in FHP
adolescents (Nagel et al., 2012).

6.3 Reward Processing and Decision-making

Alterations in mesolimbic circuitry and reward-related response in AUDs, particularly in the
nucleus accumbens (NAcc; Beck et al., 2009; Makris et al., 2008; Wrase et al., 2007), has
warranted many investigations of reward-related functioning during fMRI tasks in familial
alcoholism. As the NAcc is a major site of dopamine release in the mesolimbic pathway
(Oades and Halliday, 1987), a preexisting phenotype that increases risk for reward-driven
behaviors could be present in familial alcoholism. Despite numerous studies on this
question, there is still mixed evidence for premorbid differences in reward-related
functioning between FHP and FHN individuals (Table 3). Several studies have implemented
the Monetary Incentive Delay (MID) task to examine neural response to reward anticipation
and reward feedback. For example, findings by Bjork and colleagues (2008) and Muller and
colleagues (2015) suggested that there are no differences in reward anticipation or reward
outcome-related response in the NAcc between FHP and FHN youth for monetary or food
rewards, respectively. This is in contrast to studies of adults that used the MID task, where
less NAcc activation was present during monetary reward anticipation in FHP adults relative
to their FHN peers (Andrews et al., 2011). It is possible this blunted response is related to
less incentive motivational processing, as FHP young adults showed this pattern whether or
not they were anticipating rewards or losses (Yau et al., 2012). However, it is proposed that
this phenotype could be a resilience mechanism against future alcohol abuse as this pattern
was only present in FHP young adults with no problematic drinking behavior (Yau et al.,
2012), while similarly it was present in adults with no past or current alcohol or drug abuse
(Andrews et al., 2011).

While the above studies implemented the MID task as their paradigm, another study used a
more socially interactive decision-making task, known as the Domino Game task. In this
task participants are told they are playing a competitive game against another human
opponent, while they play the game against a computer, in which they have to make risky or
safe decisions to dispose of all of their domino chips. This study found that risk-taking on
the Balloon Analog Risk Task was positively related to reward-associated NAcc activity
during the Domino Game task, but not related to family history status (Yarosh et al., 2014).
Thus, future studies should attend to whether personality phenotypes or behavior may
account better for reward-related brain activity patterns compared with family history status
or whether they may potentially mediate the effects of family history status on reward-
associated brain response.

Importantly, more research is needed on whether neural activity to rewards is differentially
modulated by monetary rewards or primary rewards, such as food or beverages, in FHP
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individuals. Research has indicated greater dorsolateral prefrontal cortex and putamen
response to monetary reward anticipation in FHP youth compared to their FHN peers, while
differences in brain activity to reward receipt were only present during delivery of primary
rewards, such as food, and showed that midbrain response was greater in FHP youth than
their FHN peers (Stice and Yokum, 2014). However, many of these studies are still
confounded by factors that prevent knowing whether family history effects are specific to
familial alcoholism or whether lifetime substance use histories of the participants account
for some of the findings, as there are frequently subjects with parental histories of multiple
substances or an absence of alcohol or substance-naive participants.

Interestingly, a positron emission tomography (PET) study indicated that tasting beer as
opposed to Gatorade induced significantly greater release of dopamine in the striatum in
FHP adults than their FHN peers, suggesting inherent differences in striatal dopamine
release in response to alcohol in FHP individuals (Oberlin et al., 2013). However, these
family history effects were not present when amphetamine was used to stimulate dopamine
release in the NAcc (Munro et al., 2006), indicating that inherent risk in FHP individuals
may be specific to alcohol-related brain response. Further, the response to alcohol vs.
control odors in FHP heavy drinking adults was significantly greater in the medial PFC than
in FHN heavy drinking adults — an effect that was absent under intoxication (Kareken et al.,
2010). This provides support for the hypothesis that FHP individuals respond differently to
rewarding cues than their FHN peers, and that alcohol modulates this response differently in
FHP vs. FHN adults. Even visual stimuli themselves, such as the contrast of alcoholic
beverages with control images, induced greater BOLD response in visual attention and
memory-related brain areas in FHP young adults than their FHN peers, regardless of
drinking history (Dager et al., 2013). This could reflect increased sensitivity to rewarding
stimuli that may lead to a general predisposition towards risk-related behaviors, including,
but not limited to alcohol use.

Moreover, not only is it necessary to understand reward-related brain response in FHP
individuals, but it is also critical to know whether risk taking-associated brain activity differs
between FHP and FHN youth and adults. Alterations in risky decision-making-related
BOLD activity in familial alcoholism would indicate that neural evaluations in the context
of risky situations may differ between FHP and FHN individuals, which could explain
altered decision-making processes that heighten vulnerability for alcohol abuse in this
population. During the lowa Gambling Task, FHP adults had heightened anterior cingulate
cortex (ACC) and caudate activity compared with their FHN peers (Acheson et al., 2009).
However, there was no evidence that these differences were related to decision-making
components of the task. A study of FHP and FHN youth without a history of personal heavy
alcohol or substance use indicated that risky decision-making-related brain response was
weaker in FHP youth relative to their FHN peers in key decision-making-related brain
regions, such as the DLPFC and cerebellum (Cservenka and Nagel, 2012), which may
provide insight into related deficits of planning and problem solving reported on
neuropsychological exams in these individuals (Drejer et al., 1985; Schaeffer et al., 1984;
Tarter et al., 1989) and help explain maladaptive decisions regarding alcohol use. These
findings are relevant as weaker fronto-cerebellar connectivity was also present in FHP youth
(Herting et al., 2011), a possible feature or risk that has previously been associated with
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AUDs (Sullivan et al., 2003). Thus, it is equally important to focus efforts on clarifying
whether decision-making or reward-related neural response (or both) may be atypical in
FHP individuals, and if these patterns are present prior to the onset of any heavy alcohol use.

Investigating the connectivity of the NAcc with other brain regions is a new avenue of
research that could reveal brain network organization of reward-related brain regions and the
integration or segregation of NAcc activity with other neural networks in familial
alcoholism. For example, during the MID task, increased coupling of the NAcc with
sensorimotor regions involved in habit formation mediated the relationship between
sensation seeking and drinking in FHP, but not FHN young adults (Weiland et al., 2013).
Thus, perhaps the neural risk profile in FHP individuals is more related to the interaction of
the NAcc with other brain regions involved in addiction risk, rather than just the response of
the NAcc per se. This interpretation is supported by a study that reported differences in
resting state connectivity of the NAcc with other brain regions in FHP vs. FHN adolescents.
In FHP youth, the NAcc was less integrated with reward evaluation brain regions, such as
the OFC, but also less segregated from brain areas involved in top-down cognitive control
processing (Cservenka et al., 2014a). Therefore, altered communication within reward-
related networks and between the NAcc and networks involved with top-down cognitive
control or motor functioning could be preexisting features of brain organization in FHP
youth. Additional studies will be needed to assess structural and functional connectivity
between pathways connecting the NAcc with the OFC to investigate the coherence of
mesolimbic circuitry in FHP individuals.

6.4 Emotional Processing

Studies in alcoholism report that emotional systems, including limbic brain regions, such as
the amygdala show altered responses to affective stimuli in those with AUDs (Marinkovic et
al., 2009), and alcoholics also have difficulties with socio-affective communication (Thoma
et al., 2013). A premorbid phenotype may exist by which atypical emotional processing
could lead to coping related reasons for drinking or deficits in emotional processing could
lead to the escalation of socio-emotional problems in FHP individuals. Blunted BOLD
response was present to positively valenced emotional faces in brain regions associated with
socio-emotional processing, such as the temporal lobe, in largely alcohol-naive FHP youth
compared with their FHN peers (Cservenka et al., 2014b). Similarly, HR adolescents/young
adults (some of whom met criteria for alcohol dependence or other psychiatric disorders)
displayed blunted right middle temporal gyrus activity during a theory of mind task
requiring emotional judgments based on pictures of eyes (Hill et al., 2007a). These findings
suggest that socio-emotional systems and processing of affective information may be altered
in familial alcoholism, and since similar responses have been seen across a variety of
emotional facial stimuli, social cues themselves may be processed differently in this
population.

Amygdalar activity may also be associated with disinhibited temperament, as response to
fearful stimuli in this region is thought to reflect a “breaking” mechanism, by which risk-
taking may be curtailed (Ernst et al., 2006). Hyporesponsive amygdalar activity to fearful
faces in FHP young adults, which was correlated with impulsive temperament, indicates that
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reduced limbic response to negatively valenced stimuli could drive engagement with risky
behaviors (Glahn et al., 2007). However, blunted amygdalar response to negatively valenced
emotional faces was not present in largely alcohol-naive FHP youth (Cservenka et al.,
2014b), which could be due to differences in tasks used, age of participants, or analytical
strategies. However, this also begs the question of alcohol-induced alterations that could be
driving findings in adult studies, as blunted amygdalar response to emotional words was
present in vulnerable (problem drinkers), but not resilient children of alcoholics (Heitzeg et
al., 2008).

Importantly, some of the differences in emotional processing between FHP and FHN
adolescents (Table 3) are subtle. During a task with presentation of subliminal emotional
faces, FHN youth deactivated regions associated with attentional control, such as the
superior parietal lobe, in the presence of both fearful and neutral subliminal faces (Peraza et
al., 2015). However, FHP youth only deactivated this region during the presentation of
fearful subliminal faces. While neutral faces are considered salient during adolescence
(Thomas et al., 2001), they may be less salient for FHP youth, which thereby leads them to
not deactivate attention-related brain regions in their presence (Peraza et al., 2015).

More studies are necessary to examine the extent to which emotional processing and
regulation deficits may be atypical in fMRI studies of FHP individuals. These studies may
discover unique neural characteristics of risk towards AUDs in familial alcoholism that are
related to stress, coping, and affect regulation, which would not be captured by solely
examining brain activity during top-down executive functioning processing tasks.

6.5 Magnetic Resonance Spectroscopy

Only a few studies to date have examined whether brain metabolites differ by family history
status (Table 3), with one of these being in a sample of adolescents and young adults with
minimal and light alcohol use, respectively (Cohen-Gilbert et al., 2015). Glutamine/
glutamate (GIn/Glu) amino acid ratio is believed to represent metabolic turnover that can be
used as a marker for neurotransmission (Ongur et al., 2011), and has been shown to be
altered as a function of alcohol use (Meyerhoff, 2014). Unexpectedly, GIn/Glu ratios in the
anterior cingulate cortex (ACC) were higher in FHN young adults relative to adolescents,
but this pattern was not observed in the FHP groups (Cohen-Gilbert et al., 2015). The
authors described that these differences were largely due to FHP adolescents already
resembling young adults in GIn/Glu ratio. Interestingly, motor impulsivity was negatively
related to GIn/Glu ratio in the ACC among FHP adolescents, which was believed to reflect a
neuroprotective mechanism (Cohen-Gilbert et al., 2015). Another spectroscopy study, albeit
in FHP and FHN adults with alcohol abuse and dependence, found that N-acetylaspertate
(NAA), used to infer axonal or neural damage, was not lost to a greater extent in FHP heavy
drinkers compared with FHN heavy drinkers, suggesting another potential mechanism of
resilience conferred by familial alcoholism, even in adults who have years of alcohol misuse
(Meyerhoff et al., 2004). Given the sparsity of research in this area, significantly more work
is needed to understand the neurochemical profile related to familial alcoholism.
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7. CONCLUSIONS

While there is no conclusive evidence for which neural markers of risk in FHP and HR
individuals are most related to the higher rates of AUDs seen in this population, many
findings have been replicated (Figure 1). Smaller amygdalar volume (Dager et al., 2015; Hill
etal., 2001, 2013c) and larger cerebellar volume (Hill et al., 2007b, 2011) have been found
in FHP and HR individuals relative to their FHN peers. Future studies that correlate
neuropsychological, behavioral, and/or personality variables to these volumetric findings are
needed to better understand the functional consequences of altered brain morphometry in
familial alcoholism.

Long-range association tracts, such as the SLF, have shown reduced white matter integrity
in FHP and HR youth and young adults (Acheson et al., 2014c; Herting et al., 2010; Hill et
al., 2013b), while fronto-parietal brain activity has been reduced in largely alcohol-naive
adolescents during inhibitory control in both affective (Cservenka et al., 2014b) and non-
affective (Schweinsburg et al., 2004) Go NoGo tasks. FHP adolescents showed comparable
activity during both verbal (Cservenka et al., 2012) and spatial working memory
(Mackiewicz Seghete et al., 2013) and vigilance in the frontal lobe, while FHN youth
showed differences in brain activity between those conditions. Fronto-parietal connectivity
(Wetherill et al., 2012) and brain activity (Rangaswamy et al., 2004) was also reduced in
FHP individuals during working memory and a visual oddball task compared with their
FHN peers. Together, these functional and structural findings suggest executive functioning
systems may be compromised in those with familial risk for alcoholism.

It is uncertain whether reward processing is altered in FHP individuals. Previous studies
reported both null effects (Bjork et al., 2008; Muller et al., 2015) and reduced NAcc brain
activity during reward anticipation and/or reward receipt (Andrews et al., 2011; Yau et al.,
2012), but most research has utilized paradigms with monetary rewards. Studies that use
alcohol as a reward either by administering its taste (Oberlin et al., 2013), or odor (Kareken
et al., 2010), or presenting alcohol-related cues (Dager et al., 2013), have all indicated
increased brain response to alcohol, and this was present across many brain areas, including
frontal, reward-related, visual attention, and memory-associated regions. Finally, in response
to emotional stimuli, temporal lobe response was reduced in FHP and HR individuals
compared with their FHN peers (Cservenka et al., 2014b; Hill et al., 2007a), which is
indicative of alterations in socio-affective processing.

Future studies will need to better understand brain network organization in FHP individuals.
Is connectivity of brain regions atypical in this population, and which structural and/or
functional neural markers are predictive of the development of AUDs? Longitudinal study
designs will be critical for answering these questions. Continued efforts towards identifying
neural markers that are most predictive of AUD risk will allow for the implementation of
neurobiologically informed prevention efforts to reduce the prevalence of AUDs in FHP
individuals. Specifically, information gleaned from the studies discussed in this review and
future neuroimaging studies of familial alcoholism could be helpful in identifying neural
structures, connections, or functions that could be strengthened, modified, or altered with
neurobehavioral methods to promote healthy brain functioning and reduce the incidence of
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AUDs. Similar strategies have recently been examined in neuroimaging studies on the
mechanisms of behavior change, which utilize information on brain activity to predict the
success of psychosocial interventions (Feldstein Ewing et al., 2011). Developing tasks that
promote strong executive functioning skills, such as increased inhibitory control, may be
one of many methods that could minimize potential risks associated with reductions in white
matter integrity of fronto-parietal pathways (Acheson et al., 2014c; Herting et al., 2010) and
altered prefrontal functioning (Cservenka et al., 2012; Cservenka and Nagel, 2012;
Schweinsburg et al., 2004) that may be related to elevated risk for AUDs in familial
alcoholism.
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Highlights
e Family history of alcoholism (FHP) is associated with premorbid subcortical

and cerebellar brain volumetric alterations.

« FHP individuals have both increased and decreased white matter microstructure
integrity relative to their peers (FHN).

»  Brain activity differences are present between FHP and FHN individuals during
executive functioning, reward, and emotion processing tasks.

e Understanding premorbid neural characteristics in familial alcoholism may help
inform studies focused on reducing the incidence of alcohol abuse in at-risk
youth and adults.
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This figure illustrates volumetric, white matter microstructure, and functional brain imaging
findings that have been replicated in neuroimaging studies of family history of alcoholism.
FA = fractional anisotropy, SLF = superior longitudinal fasciculus, Vig = vigilance, WM =
working memory, *for monetary rewards, | smaller/decreased, 1 larger/increased, <+ no

change
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