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Abstract

The retinal pigmented epithelium (RPE) is critically important to retinal homeostasis, in part due 

to its very active processes of phagocytosis and autophagy. Both of these processes depend upon 

the normal functioning of lysosomes, organelles which must fuse with (auto)phagosomes to 

deliver the hydrolases that effect degradation of cargo. It has become clear that signaling through 

mTOR complex 1 (mTORC1), is very important in the regulation of lysosomal function. This 

signaling pathway is becoming a target for therapeutic intervention in diseases, including age-

related macular degeneration (AMD), where lysosomal function is defective. In addition, our 

laboratory has been studying animal models in which the gene (Cryba1) for βA3/A1-crystallin is 

deficient. These animals exhibit impaired lysosomal clearance in the RPE and pathological signs 

that are similar to some of those seen in AMD patients. The data demonstrate that βA3/A1-

crystallin localizes to lysosomes in the RPE and that it is a binding partner of V-ATPase, the 

proton pump that acidifies the lysosomal lumen. This suggests that βA3/A1-crystallin may also be 

a potential target for therapeutic intervention in AMD. In this review, we focus on effector 

molecules that impact the lysosomal-autophagic pathway in RPE cells.
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Lysosomes are cellular organelles that modulate various processes such as autophagy and 

heterophagy, plasma membrane repair, cholesterol homeostasis and cell death (Xu and Ren, 

2015). The number, size and content of lysosomes vary in different cell types. The 

distribution of lysosomes within the cell is determined by the nutrient sensing machinery at 
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the lysosomal membrane, and is an important factor in lysosomal catabolic function. In this 

review, we focus on the effector molecules present in retinal pigmented epithelial (RPE) 

cells that impact the lysosomal-autophagic pathway.

Retinal Pigmented Epithelium (RPE)

The RPE is a single layer of cells interposed between the neurosensory retina and Bruch's 

membrane (Strauss, 2005). En face, RPE cells assume a hexagonal, cobblestone-like 

appearance. The cells are highly polarized and contain abundant melanin granules that 

absorb scattered light, thereby reducing photo-oxidative stress on the retina (Beatty et al., 

1999). In addition, the RPE has several other functions that are crucial to the retina's 

functional integrity. Perhaps its most important function is the phagocytosis of shed 

photoreceptor outer segments (POS) and the subsequent degradation and recycling of their 

molecular components for re-use in the visual cycle (Young and Bok, 1969 and Bok, 1993). 

Apical microvilli of the RPE extend around the POS and ingest shed rod and cone outer 

segment discs into the RPE as membrane bound phagosomes. These phagosomes fuse with 

lysosomes to form phagolysosomes. The acid hydrolases from the lysosomes digest the 

outer segment material, critical components of which are returned to the photoreceptors for 

re-use. In a related process, called autophagy, damaged intra-cellular components including 

organelles, protein aggregates, and membranes are packaged into autophagosomes, which 

like phagosomes, fuse with lysosomes to effect cargo degradation.

Lysosomes and Autophagy

Much is now known about the molecular mechanisms of autophagosome formation 

(Mizushima and Kamatsu, 2011, Yang and Klionsky, 2010 and Rubinsztein et al., 2012), 

however, we know less about the end stages of macroautophagy, particularly the role of 

lysosomes in the degradation of autophagosome contents (Shen and Mizushima, 2014). The 

process is different from microautophagy and chaperone-mediated autophagy, where 

cellular materials to be degraded are directly delivered to the lysosomes, independent of 

autophagosomes (Kaushik and Cuervo, 2012). Therefore, lysosomes are indispensible in the 

degradation and recycling processes of all three major autophagy types.

Lysosomes are the major digestive organelle in eukaryotic cells (Saftig, 2006). They have a 

lipid bilayer membrane with an acidic lumen containing over 60 acidic hydrolases, each 

capable of degrading specific substrates (Settembre et al., 2013). The acidification of 

lysosomes is established by vacuolar-type H+-ATPases (V-ATPase) (Sun-Wada et al., 2003 

and Mindell, 2012) which are multi-subunit complexes, composed of a peripheral V1 

domain that hydrolyzes ATP and an integral V0 domain, that translocates protons from the 

cytoplasm to the lumen (Toei et al., 2010).

Lysosomal dysfunction may result from abnormal functioning of any of the myriad of 

proteins required for maintaining lysosomal homeostasis. However, in each case, the disease 

phenotype and tissue (s) affected can be different. Therefore, the mechanisms by which 

lysosomal function is regulated in the RPE may be unique. RPE cells are not only among the 

most active phagocytic cells in the body, continuously phagocytosing shed POS, but also are 

post-mitotic cells with high metabolic activity, where a high rate of autophagy would be 
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expected. Therefore, lysosomal-mediated removal of waste products in the RPE is essential 

to insure functional integrity of the neural retina. The lysosomal degradation pathway 

declines with age in the human brain, contributing to the pathogenesis of neurodegenerative 

diseases (Cuervo and Dice, 2000 and Nixon, 2013). While RPE lysosomal dysfunction is 

now thought to be a significant risk factor for age-related macular degeneration (AMD), our 

knowledge of how such abnormalities contribute to the disease process remains limited 

(Kaarniranta et al., 2013). In 1 year old rats with a spontaneous mutation in the Cryba1 gene 

(encoding for βA3/A1-crystallin) (Sinha et al., 2008), electron microscopy (EM) showed 

large aggregates of lipofuscin-like material (arrows in Figure 1A) and large vacuoles 

containing many degenerated cellular organelles (arrowheads in Figure 1A) indicative of 

inefficient lysosomal clearance (Zigler et al., 2011). Interestingly, similar structures are also 

seen in EM sections of the fovea from a 95-year old male patient with geographic atrophy 

(Figure 1B). Therefore, understanding the lysosomal-mediated clearance mechanisms in the 

RPE may help to understand the pathophysiology of AMD.

In the RPE, lysosomes degrade both extracellular (POS) and intracellular (autophagy) 

material. Recently, it has become very clear that lysosomes and mTORC1 signaling are 

interconnected (Bar-Peled and Sabatini, 2014, Betz and Hall, 2013 and Puertollano, 2014). 

An elegant study demonstrated that lysosomal positioning within the cell regulates 

mTORC1 signaling (Korolchuk et al., 2011) while another showed that long starvation 

periods lead to mTORC1 reactivation and, thereby, formation of proto-lysosomes that 

develop into mature lysosomes (Yu et al., 2010).

mTOR Signaling and Autophagy

The mammalian target of rapamycin (mTOR), now officially known as the mechanistic 

TOR, is an atypical serine/threonine kinase that has been conserved throughout evolution. It 

interacts with many other proteins to form at least two distinct multiprotein complexes, 

namely mTORC1 and mTORC2 (Laplante and Sabatini, 2013). The mTOR complexes have 

different upstream inputs and downstream outputs (Zoncu et al., 2011). mTORC1 integrates 

multiple signals either to promote cellular growth when growth factors, nutrients and energy 

are available, or to induce catabolic processes during stress. Active mTORC1 has a number 

of downstream biological effects, including suppression of autophagy (Zoncu et al., 2011).

Several studies have shown that inhibition of mTORC1 activity is crucially important for 

autophagy induction in eukaryotic cells subjected to nutrient deprivation (Yang and 

Klionsky, 2010 and Laplante and Sabatini, 2012). Although mTORC1 is inhibited by both 

glucose/growth factor and amino acid deprivation, the signalling mechanisms involved are 

different. In the presence of glucose and growth factors, the TSC1/2 (tuberous sclerosis 

complex), a heterodimeric complex, which is a negative regulator of mTORC1 is 

phosphorylated and inactivated by several growth factor effector kinases such as Akt/PKB 

(protein kinase B) and ERK1/2 (extracellular-signal-regulated kinase 1/2). This leads to 

activation of mTORC1 (Wullschleger et al., 2006), and inhibition of de novo 

autophagosome formation (Kim et al., 2011 and Ganley et al., 2009). In contrast, glucose 

starvation activates AMPK (5′-AMP-activated protein kinase), which inhibits mTORC1 by 

phosphorylation and activation of its negative regulator, TSC1/2 (Inoki et al., 2003b).
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Recent studies showed that amino acid- mediated activation of mTORC1 is dependent on 

formation of a four component super complex with V-ATPase, Ragulator and members of 

the Rag family of GTPases (Sancak et al., 2010 and Efeyan et al., 2013). V-ATPase is 

crucial to this process, functioning as a sensing device that responds to the lysosomal amino 

acid content by activating the Rag family GTPases. Upon activation, the Rag GTPases 

regulate the translocation and activation of mTORC1 on the lysosomal surface (Settembre et 

al., 2012).

Although the mTOR signaling pathway is highly conserved and ubiquitously expressed, its 

regulation is cell and tissue specific. RPE cells express both mTORC1 and mTORC2 

complexes that are functionally active (Chen et al., 2010). Increased mTORC1 activation in 

senescent RPE cells leads to age-related decline in RPE cell function and rapamycin-

mediated inhibition of mTORC1 prevents replicative senescence in cultured RPE cells (Yu 

et al., 2014 and Chen et al., 2010). In mouse models of retinal degeneration, rapamycin 

treatment prevented photoreceptor dysfunction (Zhao et al., 2011). In our Cryba1 cKO 

(conditional knockout) mouse model, where Cryba1 is knocked out specifically in the RPE, 

we have recently shown that mTORC1 activation leads to impaired lysosomal function and 

decreased autophagy in the RPE (Valapala et al., 2014). We demonstrated that βA3/A1-

crystallin regulates lysosome-mediated degradation in the RPE by modulating V-ATPase via 

the AKT/mTORC1 signaling cascade. We also reported that βA3/A1-crystallin binds to the 

V0 domain of V-ATPase, the first such binding partner in a mammalian system (Valapala et 

al., 2014). V-ATPase is a master regulator for amino acid sensing in lysosomes and for 

translocation of amino acids into the lumen, a requirement for mTORC1 activation (Zoncu 

et al., 2011). These findings suggest that βA3/A1-crystallin is essential for mTORC1 

signaling in the lysosomes of RPE (Figure 2). Our mouse models, both Cryba1 cKO 

(Valapala et al., 2014b) and Cryba1 KO develop a slowly progressive AMD-like pathology 

that is associated with inefficient lysosomal clearance (Figure 3).

Oxidative Stress and Autophagy

Postmitotic RPE cells in the macula are constantly exposed to a high metabolic and 

oxidative stress environment (Bok 1993 and Decanini et al., 2007). During RPE cell aging, 

the capacity to neutralize mitochondrial-derived ROS diminishes due to decreased anti-

oxidant production, reduced ability to repair DNA or protein damage, and disturbed 

proteolysis (Kaarniranta et al., 2009 and Blasiak et al., 2013). The inadequately neutralized 

ROS damage cellular proteins, leading to detrimental protein aggregation. Lipofuscin is one 

consequence of this aggregation because oxidized PUFAs are not efficiently digested in 

lysosomes of aged RPE cells (Schutt et al., 2002, Bergman et al., 2004, Vives-Bauza et al., 

2008, Krohne et al., 2010 and Valapala et al., 2014). Lipofuscin is an autofluorescent 

heterogeneous mixture of lipid–protein aggregates, which sensitizes RPE cells to light 

induced oxidative stress, ultimately evoking further protein misfolding (Figure 4). In all 

cells, the heat-shock protein (Hsp) stress response is capable of refolding misfolded proteins, 

thereby improving cellular survival under oxidative stress (Ryhänen et al., 2009). 

Upregulation of Hsps has been detected in RPE homogenates isolated from human donor 

AMD samples (Schutt et al., 2002 and Decanini et al., 2007). This is an indication of 

stressed RPE cells, but importantly, it also reveals dysfunction in proteasomal clearance 
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(Kapphahn et al., 2007, Li et al., 2008, Fernandes et al., 2008 and Ryhänen et al., 2009). 

Once Hsp repair capacity is exceeded, individual polypeptides can be degraded by either the 

proteasome or by chaperone-mediated autophagy, while aggregates are degraded by 

selective macroautophagy, also called aggrephagy (Hyttinen et al., 2014). In aggrephagy, 

cellular organelles and protein aggregates are encapsulated from the cytoplasm into 

autophagosomes, which then fuse with lysosomal vesicles for degradation (Lamark and 

Johansen, 2012). However, autophagy activity decreases with aging in RPE cells 

(Rodríguez-Muela et al., 2013, Viiri et al., 2013, Ferguson and Green, 2014 and Toops et al., 

2015). One explanation for this decreased autophagy might be the accumulation of 

lipofuscin, a hallmark of aging, because it suppresses lysosomal function and autophagic 

clearance in RPE cells (Ryhänen et al., 2009, Krohne et al., 2010, Viiri et al., 2013, Mitter et 

al., 2014 and Valapala et al., 2014). Lipofuscin components have also been shown to inhibit 

V-ATPase, thereby elevating lysosomal pH and impairing the digestion of phagocytosed 

POS (Finnemann et al., 2002, Bergmann et al., 2004, Lamb and Simon 2004, Vives-Bauza 

et al., 2008 and Guha et al., 2014).

The p62 protein sorts proteins between the proteasomal and autophagic clearance pathways 

(Kirkin et al., 2009). In this process, p62 selectively targets ubiquitinated protein aggregates 

for autophagic degradation. First, it binds to the perinuclear protein aggregates and 

undergoes autophagic clearance, making it a useful biomarker of autophagy activity 

(Bjørkøy et al., 2006, Clausen et al., 2010, Larsen et al., 2010 and Viri et al., 2013). Its 

accumulation in macular RPE cells rather than in the cells of the periphery suggests that 

autophagy activity declines in AMD (Viiri et al., 2013 and Valapala et al., 2014). Second, 

p62 interacts with the Nrf2/ARE (nuclear factor-erythroid 2-related factor-2/antioxidant 

response element) pathway by disrupting the cytoplasmic Nrf2-Keap1 complex to regulate 

antioxidant production (Jain et al., 2010 and Wang et al., 2014). A functional ARE element 

is located in the p62 gene promoter (Jain et al., 2010 and Hirotsu et al., 2012). Nrf2 and p62 

create a regulatory loop where Nrf2 activates p62 expression, while Nrf2 nuclear 

localization is facilitated by p62 (Lau 2010). In addition, Keap1 elimination is processed by 

p62 dependent autophagy (Taguchi et al., 2012). Nrf2 signaling dysfunction plays an 

important role in the oxidative stress response (Sachdeva et al., 2014) of RPE cells, and been 

found to decline in the RPE of AMD samples (Wang et al, 2014). With decreased Nrf2 

signaling, p62 can decrease and thus, impair aggrephagy during AMD.

Autophagy in Retinal Diseases

Autophagy clearly plays a protective role against disease in the retina and RPE. It has 

recently been found that the retina, and in particular the photoreceptors and RPE, of wild-

type mice have constitutive autophagic events and that light exposure induces an additional 

autophagic response (Chen et al., 2013). Mice deficient in Beclin 1 or Atg7 develop severe 

retinal degeneration upon light exposure, indicating that autophagy is important for 

maintaining retinal homeostasis. Furthermore, impaired mitophagy, with Park2 deficiency, 

results in mitochondrial dysfunction and retinal degeneration. Given the highly abundant 

mitochondria in photoreceptors, mitophagy in addition to macroautophagy, plays an 

essential role in photoreceptor homeostasis. Since autophagy in photoreceptors is covered in 

another review in this issue, we will not discuss it further here.
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In general, autophagy decreases with aging (Cuervo and Dice, 2000); further, decreased 

autophagy with aging in retinas of C57BL6 mice has recently been described (Rodriguez-

Muela et al, 2013). The aging retinas did not have an increase in autophagy related 

compartments, suggesting that the defect occurs during autophagosomal formation and not 

during degradation. The decline in macroautophagy was partially compensated by 

chaperone-mediated autophagy, where several rate-limiting components were upregulated, 

such as Lamp2A and Hsc70. Similarly, in mice deficient of Atg5 specifically in rod 

photoreceptors, retinas displayed increased TUNEL positive rods, coincident with decreased 

scotopic vision. Because the decreased rod mediated vision with impaired autophagy mirrors 

that of age-related vision loss, the authors speculated that impaired autophagy contributes to 

decreased vision with aging. The reduction in retinoids from impaired autophagy is perhaps 

a specific aspect of autophagy that explains the decreased vision during aging (Kim et al., 

2013), especially because the visual function can be recovered to some extent, with vitamin 

A supplementation (Owsley et al, 2006).

Autophagy appears to have a biphasic response in AMD. Autophagy is increased in the RPE 

in aging and early AMD to compensate for oxidative stress and damaged organelles (Mitter 

et al., 2014). In two AMD mouse models and human AMD samples, LC3, ATG7 and ATG9 

were increased in the RPE and retinal layers. Likewise, Wang et al. reported that Atg12 

immunolabeling and Atg12-Atg5 and LC3 proteins were increased in the RPE/Bruch's 

membrane of elderly mice (Wang et al., 2009). However, LC3, ATG7, and ATG9 are 

decreased in advanced AMD samples, suggesting that autophagy failure contributes to late 

disease (Mitter et al., 2014).

Dysregulated inflammation contributes to AMD pathology. In addition to genetic variants in 

multiple complement factors being associated with AMD risk (Edwards et al., 2005, Haines 

et al., 2005, Klein et al., 2005, Yates et al., 2007, Maller et al., 2007 and Kondo et al., 2010), 

the NLRP3 inflammasome has been implicated in geographic atrophy development (Tarallo 

et al, 2012). A decrease in Dicer causes an increase in Alu RNAs, oxidative stress, 

mitochondrial dysfunction, oxidized mitochondrial DNA, and lysosomal permeability, all of 

which can activate the inflammasome and are relevant stimulants in AMD (Halle et al., 

2008, Hornung et al., 2008, Tschopp et al., 2010, Zhou et al., 2011, Kauppinen et al., 2012 

and Shimada et al., 2012). Autophagy controls NLRP3 inflammasome activation by 

degrading inflammasome components and effector molecules (Shi et al., 2012 and Harris et 

al., 2011). With an autophagy decline, inflammasome control can be compromised, resulting 

in excessive activation and potential tissue injury (Zhou et al., 2011 and Nakahira et al., 

2011). Given the role of the inflammasome in AMD, impaired inflammasome control by 

decreased autophagy in the RPE may contribute to an exaggerated inflammatory response 

during late AMD.

Perspective

Lysosomes are a heterogeneous collection of distinct organelles, specialized for intracellular 

digestion. mTORC1 regulates the biogenesis, distribution, and activity of lysosomes. In 

neurodegenerative diseases, such as Alzheimer's and Parkinson's, several studies suggest 

that defective lysosomal clearance is involved in disease pathogenesis (Bergamini et al., 
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2004, Keller, 2004 and Shintani and Klionsky, 2004). We believe that prolonged impairment 

of lysosomal clearance in the RPE, as seen in our Cryba1 genetic animal models, can lead to 

pathological changes reminiscent of AMD. The mTORC1 pathway regulates many major 

cellular processes and is implicated in an increasing number of pathological conditions, 

including cancer, obesity, type 2 diabetes and neurodegeneration (Efeyan et al., 2012). A 

multicenter study (Interventions Testing Program) conducted by the National Institute of 

Aging, reported that mTOR inhibition with rapamycin extends the life span of mice 

(Harrison et al., 2009). While rapamycin or rapalogs (Lamming et al., 2013) have shown 

therapeutic efficacy for age-related pathologies in animal models, significant side effects 

limit their use in humans. Therefore, selective targeting of the mTORC1 signaling pathway 

may offer a safe mode for the treatment of age-related diseases, such as AMD. A better 

understanding of the functions of the mTOR interacting proteins would allow for the 

development of novel modulators of mTOR complexes that perturb their function in specific 

ways. The mTORC1 signaling pathway in the lysosome is becoming a legitimate target for 

developing therapeutic approaches for human diseases, such as AMD, where dysfunction of 

the lysosomal–autophagic pathway is apparent. We are optimistic that βA3/A1-crystallin 

represents a potential avenue of targeting the autophagic-lysosomal process in RPE in an 

effort to restore or maintain normal lysosomal function in human AMD disease.
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• In the RPE, lysosomes modulate both heterophagy and autophagy to maintain 

retinal homeostasis.

• The mTORC1 signaling pathway regulates the biogenesis, distribution and 

activity of lysosomes.

• βA3/A1-crystallin is a novel target for restoring normal lysosome function in 

human AMD disease.
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Figure 1. Effects of Lysosomal dysfunction on RPE cell ultrastructure
Transmission electron microscopy (TEM) was used to compare the cellular ultrastructure of 

the RPE in the Nuc1 rat (A) and a 95-year old human subject with geographic atrophy (B). 

Nuc1 is a spontaneous mutation in Cryba1, the gene encoding βA3/A1-crystallin, a 

lysosomal protein in RPE cells that participates in lysosomal-mediated clearance. The Nuc1 

RPE at 1 year of age shows a large vacuole containing both partially degraded cellular 

organelles (arrowheads) and lipofuscin-like aggregates (arrows). The RPE from the foveal 

region of a 95-year old geographic atrophy subject (B) shows similar changes in the fibro-

cellular formation located above Bruch's membrane near the area of atrophy. Scale bar= 

500nm.

Sinha et al. Page 14

Exp Eye Res. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. A schematic diagram showing activation of mTORC1 and a possible role for βA3/A1-
crystallin
mTORC1 has been shown to integrate inputs from extracellular signal proteins, such as 

growth factors as well as amino acids and other nutrients. It is now known that V-ATPase 

interacts in an amino acid sensitive manner with pentameric Ragulator, a scaffolding 

complex that anchors the heterodimeric Rag GTPases to the lysosomes. This leads to the 

translocation of the inactive mTORC1 to the lysosomal surface. Once mTORC1 is on the 

surface of the lysosomes, it is activated by Rheb that is also localized to the lysosomal 

surface. It has been postulated that amino acids are probably translocated to the lysosomal 

lumen by V-ATPase and that amino acid signaling from the lysosomal lumen plays an 

important role in the complex process of recruiting mTORC1 to the lysosomal surface and 

activating it. We have recently shown that βA3/A1-crystallin is localized to the lysosomal 

lumen of RPE cells and is a binding partner of V-ATPase. It is also known that in the 

presence of growth factors or insulin, Akt inhibits Tsc, which releases its inhibitory activity 

on Rheb, thus allowing the activation of mTORC1. We have previously shown that βA3/A1-

crystallin regulates cell survival in astrocytes through PI3K/Akt/mTOR. Further, following 

autophagy induction both in vivo and in vitro, phospho-Akt and phospho-Raptor decrease, 

while phospho mTOR increases in RPE cells, inhibiting autophagy and Akt/mTORC1. 

mTORC1 also regulates lysosomal function by directly preventing autophagy and 

Transcription factor EB (TFEB) activation. Unphosphorylated TFEB accumulates in the 
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nucleus, where it activates genes in the Coordinated Lysosomal Expression and Regulation 

(CLEAR) network (such as V-ATPase) that act to support lysosomal function. Once TFEB 

is phosphorylated by mTORC1, TFEB transiently binds to the lysosomal surface and is also 

retained in the cytoplasm. It is possible that upstream inputs, such as from βA3/A1-crystallin 

to mTORC1 can contribute to novel regulation of TFEB in RPE cells. βA3/A1-crystalin 

produces two closely related proteins, βA3 and βA1, differing only in 17 amino acids in their 

amino termini from a single Cryba1 mRNA using an alternative translation by leaky 

scanning. It is possible that βA3- and βA1-crystallins exert their functions independently in 

the activation of mTORC1 in RPE, e.g. via modulation of V-ATPase/mTOR and PI3K/Akt/

mTOR.
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Figure 3. Lysosomal dysfunction inhibits organelle clearance by selective autophagy
Transmission electron microscopy showing RPE in a 20 month old Cryba1 floxed (wild 

type) mouse (A). The Cryba1 knockout mouse at the same age shows degenerative changes 

in the RPE (C), including accumulation of undigested material (D is higher magnification of 

C). Inefficient lysosomal clearance affects mitophagy as seen in (B). Damaged mitochondria 

are enclosed by an autophagosome (arrow), but not cleared.

Sinha et al. Page 17

Exp Eye Res. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Multifunctional p62 in the regulation of proteolysis
RPE cells in the macula are constantly exposed to the daily heterophagy. The capacity to 

defend against oxidative stress decreases in aged RPE cells. The simultaneous oxidative 

stress and impaired defense systems damage cellular proteins and evoke detrimental protein 

aggregation. Prior to aggregation, heat-shock proteins (Hsps) attempt to refold misfolded 

proteins. Once Hsp repair capacity is exceeded, individual polypeptides can be degraded by 

the ubiquitin (Ub) targeted proteasome, while aggregates are degraded by autophagy. p62 

sorts proteins between proteasomal and autophagic clearance pathways. It binds to Ub 

cargoes and to LC3. p62 interacts with the Nrf2/ARE by disrupting the cytoplasmic Nrf2-

Keap1 complex and thereby regulates antioxidant production. A functional ARE element is 

located in the regulatory region of the p62 gene.
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