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Abstract

The postsynaptic density (PSD) is a protein-rich network important for the localization of 

postsynaptic glutamate receptors (GluRs) and for signaling downstream of these receptors. 

Although hundreds of PSD proteins have been identified, many are functionally uncharacterized. 

We conducted a reverse genetic screen for mutations that affected GluR localization using 

Drosophila genes that encode homologs of mammalian PSD proteins. 42.8% of the mutants 

analyzed exhibited a significant change in GluR localization at the third instar larval 

neuromuscular junction (NMJ), a model synapse that expresses homologs of AMPA receptors. We 

identified the E3 ubiquitin ligase, Mib1, which promotes Notch signaling, as a regulator of 

synaptic GluR localization. Mib1 positively regulates the localization of the GluR subunits 

GluRIIA, GluRIIB, and GluRIIC. Mutations in mib1 and ubiquitous expression of Mib1 that lacks 

its ubiquitin ligase activity result in the loss of synaptic GluRIIA-containing receptors. In contrast, 

overexpression of Mib1 in all tissues increases postsynaptic levels of GluRIIA. Cellular levels of 

Mib1 are also important for the structure of the presynaptic motor neuron. While deficient Mib1 

signaling leads to overgrowth of the NMJ, ubiquitous overexpression of Mib1 results in a 

reduction in the number of presynaptic motor neuron boutons and branches. These synaptic 

changes may be secondary to attenuated glutamate release from the presynaptic motor neuron in 

mib1 mutants as mib1 mutants exhibit significant reductions in the vesicle-associated protein 

cysteine string protein and in the frequency of spontaneous neurotransmission.
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Introduction

Proper formation and maintenance of glutamatergic synapses is required for diverse 

neurobiological processes including movement (Girault, 2012), visual processing (Self et 

al., 2012), and learning and memory (Hu et al., 2007; Matsuo et al., 2008; Sanderson & 

Bannerman, 2012). Once established, these synapses are plastic and modify themselves as a 

result of changes in activity. Synaptic plasticity occurs as a result of changes in presynaptic 

neurotransmitter release probability, the localization and synthesis of synaptic proteins, and 

remodeling of the synaptic cytoskeleton (reviewed in (Huganir & Nicoll, 2013; Padamsey & 

Emptage, 2014)). The localization of postsynaptic ionotropic glutamate receptors (GluRs) 

opposite of presynaptic release sites is particularly important for synaptic transmission as it 

determines the postsynaptic response (Xie et al., 1997; DiAntonio et al., 1999; Franks et al., 

2003; Raghavachari & Lisman, 2004; Lisman et al., 2007).

Excitatory postsynaptic GluRs are components of the postsynaptic density (PSD), a 

specialized network of proteins that links receptors to the cytoskeleton and downstream 

signaling pathways. The PSD, localized to mammalian small postsynaptic protrusions or 

dendritic spines, is estimated to contain hundreds of different proteins (Satoh et al., 2002; 

Jordan et al., 2004; Peng et al., 2004; Yoshimura et al., 2004; Collins et al., 2006; Dosemeci 

et al., 2006; Bayes et al., 2011), many of which are represented by multiple copy numbers 

(Chen et al., 2008; Shinohara, 2011). PSD proteins can be broadly grouped as cell adhesion 

molecules, cytoskeletal proteins, metabolic proteins, transmembrane proteins, trafficking/

motor proteins, scaffold proteins, and enzymes like GTPases and kinases/phosphatases 

(Okabe, 2007). In mammals, dysfunction of the PSD is linked to neurodegenerative diseases 

(for review see (Gong & Lippa, 2010)), autism/autism spectral disorders (Feyder et al., 

2010; Bangash et al., 2011), schizophrenia (Hashimoto et al., 2007; Cheng et al., 2010), 

mental impairments (Raymond & Tarpey, 2006; Zanni et al., 2010), and drug abuse (Moron 

et al., 2007; Okvist et al., 2011).

The composition and size of the PSD are dynamically regulated by synaptic activity. Long-

term potentiation (LTP), a process that enhances synaptic efficacy and is thought to be the 

cellular basis of learning and memory (Neves et al., 2008; Takeuchi et al., 2014), results in 

the redistribution of the AMPA receptor subunit, GluA1, and NMDA receptor subunit, 

GluN1, to dendritic areas of the rat dentate gyrus (Kennard et al., 2014). The increased 

surface localization of GluA1 is mediated by remodeling of the actin cytoskeleton (Gu et al., 

2010; Kerr & Blanpied, 2012) and may be linked to altered localization of scaffolding 

proteins within the PSD (MacGillavry et al., 2013; Bosch et al., 2014; Meyer et al., 2014). 

LTP also results in expansion of the PSD (Chen et al., 2007; Bosch et al., 2014) and 

enlargement of dendritic spines (Matsuzaki et al., 2004; Harvey & Svoboda, 2007), both of 

which require local translation of PSD components (Bramham, 2008; Bosch et al., 2014).

PSD proteins are remarkably conserved with orthologs across archaeal, bacteria, and 

eukaryote kingdoms (Emes et al., 2008; Alie & Manuel, 2010; Emes & Grant, 2011). We 

have previously identified Drosophila orthologs for approximately 96% of published 

mammalian PSD proteins (Liebl & Featherstone, 2008). The functional role of many of 

these proteins is currently unidentified in any species. Therefore, we performed a reverse 
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genetic screen to determine whether mutations in Drosophila PSD orthologs affect the 

synaptic localization of GluRs at the neuromuscular junction (NMJ) using 

immunocytochemistry. The Drosophila larval NMJ contains ionotropic GluRs that are 

homologous to AMPA receptors (Menon et al., 2013). We uncovered a novel function for 

the E3 ubiquitin ligase, Mind Bomb1 (Mib1), a component of the Notch signaling pathway, 

in the regulation of postsynaptic GluR localization. Mib1 regulates the clustering of 

postsynaptic GluRs, the frequency of spontaneous neurotransmission, and synaptic levels of 

the presynaptic protein cysteine string protein (CSP).

Results

Reverse genetic screen for gene products that regulate GluR localization

The PSD is a dense protein network opposed to presynaptic release sites that helps provide 

the structural basis for synaptic regulation and plasticity (Collins et al., 2006; Dosemeci et 

al., 2006). Hundreds of PSD proteins have been identified and the Drosophila genome 

encodes orthologs for 95.8% of these proteins (Liebl & Featherstone, 2008). Many of these 

genes are functionally uncharacterized. Therefore, we conducted a reverse genetic screen of 

genes that encode homologs of mammalian PSD proteins to identify mutants with altered 

postsynaptic GluR expression and/or localization at the 6/7 NMJ of third instar Drosophila 

larvae. This NMJ is innervated by two glutamatergic motor neurons that arborize on muscles 

by forming a series of distinct swellings or boutons (Jan & Jan, 1976; Johansen et al., 1989; 

Ruiz-Canada & Budnik, 2006). Drosophila NMJ GluRs are similar to non-NMDA receptors 

including AMPA receptors and are tetramers that contain either the GluRIIA or GluRIIB 

subunits along with GluRIIC (Marrus et al., 2004), GluRIID (Featherstone et al., 2005), and 

GluRIIE (Qin et al., 2005).

We examined 130 different mutations that corresponded to 144 mammalian PSD proteins 

(Table S2) for altered synaptic localization of the GluRIIA subunit. 18 mutations (12.5%) 

were lethal prior to the third instar larval stage and, therefore, were not analyzed. Of the 

remaining mutants analyzed, 48 (42.8%) exhibited phenotypes that significantly affected the 

localization of postsynaptic GluRs as indicated by a significant change in relative GluRIIA 

fluorescence intensity. The majority of these mutations (42/48 or 87.5%) resulted in a 

significant reduction in postsynaptic GluRs containing GluRIIA. Conversely, six mutations 

(6/48 or 12.5%) produced an increase in synaptic GluRIIA.

We found that mutations in genes encoding cell adhesion molecules, cytoskeletal proteins, 

metabolic proteins, transmembrane proteins, trafficking/motor proteins, scaffold proteins, 

and enzymes led to significant changes in GluRIIA synaptic fluorescence (Tables 1, S2). To 

further explore these synaptic phenotypes, subsets of mutants were examined for changes in 

GluRIIA cluster sizes. Postsynaptic GluRIIA-containing receptors localize in clusters or 

puncta in apposition to presynaptic active zones (Petersen et al., 1997), sites of 

neurotransmitter release. The size and intensity of these clusters parallels the function of the 

synapse (Featherstone et al., 2002). Although GluRIIA cluster sizes correlated with relative 

GluRIIA fluorescence intensity in the mutants identified in the screeen (Figs. 1A–B, 2A–B), 

there were not consistent changes observed in the morphology of the presynaptic motor 

neuron (Figs. 1C, 2C).
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Mib1 positively regulates GluR clustering

One mutation that led to a reduction in synaptic GluRIIA was in mind bomb1 (mib1), which 

was also identified in a similar forward genetic screen in our lab. Drosophila Mib1 is 66.6% 

identical and 76.9% similar to human Mib1 (http://blast.ncbi.nlm.nih.gov/ using 

NP_678826.2 and NP_065825.1 accession numbers, respectively). Mib1 is an E3 ubiquitin 

ligase localized to the PSD (Choe et al., 2007) that promotes Notch signaling by regulating 

endocytosis of the Notch ligands Delta (Koo et al., 2005a) and Jagged/Serrate (Lai et al., 

2005; Le Borgne et al., 2005; Koo et al., 2007). Although Mib1 is important for neuronal 

differentiation in both the central (Haddon et al., 1998; Ossipova et al., 2009; Yamamoto et 

al., 2010) and peripheral (Kang et al., 2013) nervous systems, we did not observe 

differences in the sizes of the ventral nerve cord or muscles in mib1 mutants (data not 

shown). Similarly, there were no significant differences in synaptic or muscle acetylated 

tubulin levels or the sarcomeric structure of the muscle as indicated by phalloidin labeling in 

mib1 mutants (data not shown). Therefore, we sought to characterize the role of Mib1 in 

GluR localization.

Two mutant alleles were employed to assess the synaptic role of Mib1 including 

mib1EY09780, which contains a transposable element in the 5’ end of the mib1 coding 

sequence, and mib13, which is a null mutation that introduces an early stop codon (Le 

Borgne et al., 2005). The latter causes early larval lethality. Therefore, mib13/ mib1EY09780 

transheterozygous mutants were used in our experiments. Both mib1EY09780 and mib13/ 

mib1EY09780 mutants exhibited a significant reduction in GluRIIA cluster sizes compared 

with controls (Fig. 3A–B). The reduction in cluster sizes corresponded to a reduction in 

relative GluRIIA fluorescence intensity in both mutant genotypes but this was not 

significant. Although there were slight, consistent increases in the number of motor neuron 

branches and boutons, these increases were not significant (Fig. 3C). Similar to GluRIIA, 

there were significant reductions in GluRIIB (Fig. 4A–B) and GluRIIC (Fig. 4C–D) cluster 

sizes in mib1EY09780 and mib13/ mib1EY09780 mutants and this corresponded to a significant 

reduction in relative fluorescence for each subunit.

Notch signaling is initiated by Notch binding to its ligand on adjacent cell surfaces. This 

leads to the proteolytic cleavage of Notch at two sites (van Tetering & Vooijs, 2011) and 

endocytosis of both the Notch intracellular domain and the ligand in the adjacent cell 

(Chitnis, 2006; Brou, 2009). The intracellular domain of Notch translocates into the nucleus 

and binds to transcription factors of the CBF1/Su(H)/Lag1 (CSL) family thereby activating 

transcription of hundreds of target genes (Borggrefe & Liefke, 2012). To investigate the 

possibility that Mib1 may influence GluR transcript levels by regulating the transcriptional 

activity of the Notch signaling pathway, we assessed relative mRNA levels using qRT-PCR. 

GlurIIA, glurIIB, and glurIIC transcript levels were not significantly altered in mib1 mutants 

(Fig. 4E). These data indicate that Mib1 likely regulates the localization or postsynaptic 

stabilization of GluRs but does not affect transcription of glur subunits.
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Overexpression of mib1 increases GluR cluster sizes while deleting the mib1 ring finger 
domain decreases GluR cluster sizes

To confirm the role of Mib1 in GluR clustering, we first expressed a mib1 transgene that 

lacks the region encoding the C-terminal RING finger domains (UAS-mib1Δ3RF). Mib1 

contains three RING finger domains (Itoh et al., 2003) that mediate ubiquitination of the 

Notch ligands Delta (Chen & Casey Corliss, 2004) and Serrate (Lai et al., 2005). Mib1Δ3RF 

interacts with Delta and Serrate but does not endocytose these ligands thereby inhibiting 

Notch signaling (Lai et al., 2005). Similar to mib1 mutants, expression of the UAS-mib1Δ3RF 

transgene in all cells using the Actin5c-Gal4 driver resulted in a significant reduction in 

GluRIIA cluster sizes and relative fluorescence (Fig. 5A–B) compared with outcrossed 

controls. Although there was a significant increase in branching of the presynaptic motor 

neuron in animals expressing mib1Δ3RF in all tissues compared with outcrossed controls, 

there was no significant change in the number of boutons (Fig. 5C).

Next, we overexpressed wild type Mib1 using a transgene previously shown to enhance 

Notch signaling (Lai et al., 2005). There were significant increases in both GluRIIA cluster 

sizes and relative fluorescence in animals overexpressing mib1 in all tissues compared with 

outcrossed controls (Fig. 6A–B). Overexpression of mib1 also led to a reduction in the size 

of the presynaptic motor neuron as indicated by a significant decrease in motor neuron 

boutons and branches (Fig. 6C). These results collectively suggest that Notch signaling 

positively correlates with GluR levels at the synapse but negatively correlates with the size 

of the presynaptic motor neuron.

Mib1 Regulates Synaptic Levels of CSP and FasII

We next examined the levels of several synaptic proteins to determine if Mib1 may 

influence the localization of other proteins important for synaptic function. Mutations in 

mib1 did not affect the density of Bruchpilot (Brp; Fig. 7A), which is localized to 

presynaptic active zones where it helps to organize Ca2+ channels (Kittel et al., 2006; Wagh 

et al., 2006) and synaptic vesicles (Matkovic et al., 2013). Similarly, the loss of Mib1 did 

not affect synaptic levels of the scaffold protein discs large (DLG, Fig. 7C), which acts as an 

adaptor protein required for GluRIIB clustering in embryos (Chen & Featherstone, 2005). 

Both cysteine string protein (CSP) and Fasciclin II (FasII) levels, however, were 

significantly affected in mib13/ mib1EY09780 mutants. CSP, a vesicle-associated protein 

important for evoked neurotransmitter release (Bronk et al., 2005) and presynaptic protein 

folding (Donnelier & Braun, 2014), was significantly reduced at mib13/ mib1EY09780 mutant 

NMJs (Fig. 7B). Although there was a slight reduction in CSP levels in mib1EY09780 

mutants, it was not significant. Conversely, mib13/ mib1EY09780 but not mib1EY09780 mutants 

exhibited a significant increase in synaptic levels of the homophilic cell adhesion molecule 

FasII (Fig. 7D), which regulates synaptic growth (Schuster et al., 1996) and postsynaptic 

organization during synaptogenesis (Kohsaka et al., 2007). Collectively, these data indicate 

that, in addition to GluRs, Mib1 is important for the synaptic localization of CSP and FasII.

Mib1 regulates the frequency of spontaneous neurotransmission

The change in the synaptic localization of GluRs, CSP, and FasII could affect the function of 

the synapse. Therefore, we assessed the function of mib1 mutant NMJs using two-electrode 
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voltage clamp electrophysiology. Both mib1EY09780 and mib13/ mib1EY09780 mutants 

exhibited a significant decrease in the frequency of miniature endplate junctional currents 

(mEJCs) but not in mEJC amplitudes compared with controls (Fig. 8). Although mib1 

mutants also exhibited decreased evoked endplate junctional current (eEJC) amplitudes and 

quantal content, these reductions were not significant. Based on these data, we conclude that 

the function of mib1 mutant NMJs is affected likely as a result of altered localization of 

synaptic proteins.

Discussion

The functions of many PSD proteins are poorly characterized. To better understand the 

relationship between PSD components and the localization of postsynaptic GluRs, we 

conducted a reverse genetic screen to identify mutations that affected the synaptic 

localization of GluRs. Drosophila orthologs were previously identified for 95.8% of genes 

that encode mammalian PSD proteins (Liebl & Featherstone, 2008) and mutations in 130 of 

these orthologs were examined here. We next focused on one ortholog, mib1, to better 

understand how it influences the structure and function of synapses.

GluRs are shuttled in and out of the synaptic membrane as a result of changes in synaptic 

activity ultimately altering the strength of the synapse (Chater & Goda, 2014; Shipton & 

Paulsen, 2014; Sihra et al., 2014). The synaptic localization of GluRs is directly mediated by 

components of the PSD including transmembrane proteins associated with GluRs and 

scaffolding proteins (Jackson & Nicoll, 2011; Verpelli et al., 2012). Other components of 

the PSD including the actin cytoskeleton and many enzymes that regulate protein 

interactions influence the localization of GluRs without directly binding to them (Okabe, 

2007). 42.8% of the mutations we examined showed significant changes in synaptic 

GluRIIA localization (Table S2). Given the role of the PSD in GluR localization, we might 

expect that percentage to be higher. It is important to note, however, that we did not examine 

GluRIIB localization in these same mutants. The GluRIIA and GluRIIB subunits are 

mutually exclusive in the GluR tetramer (Marrus et al., 2004; Featherstone et al., 2005; Qin 

et al., 2005), differentially localized to the synapse (Marrus et al., 2004; Schmid et al., 

2008), and are stabilized by unique PSD proteins (Chen & Featherstone, 2005; Chen et al., 

2005). Thus, some mutations could affect the localization of GluRIIB without also affecting 

GluRIIA. In addition, we used P-element mutants in our screen. Because these transposon 

insertions typically result in hypomorphic mutations (Spradling et al., 1995; LaFave & 

Sekelsky, 2011), we may have missed phenotypes that would have resulted from the use of 

null alleles.

Most mutations that affected GluR localization resulted in the loss of synaptic GluRIIA and 

this is consistent with previous screens (Liebl & Featherstone, 2005). These data suggest 

that most regulatory proteins promote the trafficking and localization of GluRIIA-containing 

receptors. Indeed, the PSD proteins KRIP6 and S-SCAM have been shown to be important 

for the membrane localization of the Kainate receptor subunit GluR6 and the AMPA 

receptor subunit GluA2 (Laezza et al., 2008; Danielson et al., 2012). Mutations in the 

Drosophila orthologs diablo (dbo) and magi produce a significant reduction in the synaptic 

localization of GluRIIA (Fig. 1). The loss of GluRIIA in moesin (moe) mutants may be due 
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to the proposed role of Moe in binding and stabilizing the actin cytoskeleton. Moe and 

radixin are important for the actin-dependent processes of growth cone extension in rat 

cultured neurons (Paglini et al., 1998) and Moe is localized specifically to polymerized actin 

at the Drosophila NMJ (Khuong et al., 2010).

Half of the mutations that produced an increase in synaptic GluRIIA were in genes encoding 

proteins and GTPases important for remodeling of the actin cytoskeleton. Sra-1 interacts 

with Abelson interacting protein (Abi-1) (Steffen et al., 2004), which activates WAVE2 to 

promote actin nucleation (Leng et al., 2005) in non-neuronal cells. Similarly, the Rho family 

GTPase, Rac2, enhances actin nucleation by activating cofilin (Sun et al., 2007). 

Remodeling of the actin cytoskeleton is essential for structural changes to the dendritic spine 

(Fortin et al., 2012) and the stabilization of newly incorporated AMPA receptors (Rudy, 

2014). Mutations in abi, rac2, and sra-1 may inhibit actin dynamics such that GluRs are 

retained in the synapse as we observed (Fig. 2). In support of this, several proteins required 

for clathrin-dependent endocytosis interact with WASP, WAVE, and Cdc42, proteins that 

enhance nucleation of the actin cytoskeleton (Saheki & De Camilli, 2012). AMPA receptors 

are endocytosed during long-term depression (LTD) by clathrin-dependent endocytosis 

(Anggono & Huganir, 2012; Hanley, 2014).

The Notch signaling protein, Mib1, was one of 42 mutations that resulted in a significant 

decrease in synaptic levels of GluRIIA. The importance of Notch signaling in cell fate 

determination is well established in many cell types including neurons (Louvi & Artavanis-

Tsakonas, 2006). More recent studies have identified roles for Notch in cell division, axon 

guidance and synaptogenesis (Giniger, 2012). We sought to better characterize the role of 

Mib1, which promotes Notch signaling by regulating the endocytosis of the Notch ligands 

Delta (Koo et al., 2005a) and Jagged/Serrate (Lai et al., 2005; Le Borgne et al., 2005; Koo 

et al., 2007), in terminally differentiated neurons. We found that, in addition to GluRIIA, 

Mib1 positively regulates the localization of the GluR subunits GluRIIB and GluIIC. Our 

data indicate that attenuation of Notch signaling by expressing a ligase-deficient Mib1 

(Mib1Δ3RF; (Lai et al., 2005)) in all tissues (Fig. 5) or as a result of mutations in mib1 

(Figs. 3–4) produces a loss of synaptic GluRs. Further, mutations in polychaetoid (pyd), 

which promotes Notch signaling in sensory organ precursors (Chen et al., 1996), 

significantly reduced synaptic GluRIIA levels (Fig. 1). Conversely, enhanced Notch 

signaling as a result of overexpressing Mib1 in all tissues (Lai et al., 2005) led to increased 

synaptic levels of GluRIIA (Fig. 6).

One potentially confounding variable exists in interpreting our overexpression data. 

Ubiquitous expression of Mib1 could lead to misexpression phenotypes as Mib1 may only 

be localized to one cell type at the NMJ. Mib1 is expressed in cells containing Notch 

ligands, which are localized adjacent to cells that express the Notch receptors (Itoh et al., 

2003). Notch receptors were previously detected in presynaptic motor neuron cell bodies at 

the Drosophila NMJ (de Bivort et al., 2009). Expression of Mib1Δ3RF in all tissues, 

however, would only affect the phenotype of Mib1-expressing cells because the RING 

finger domains are required Mib1 ubiquitin ligase activity (Lai et al., 2005). The similarity 

of the phenotypes in mutants deficient in Notch signaling strongly suggests that Notch 

signaling and Mib1 regulate the localization of GluRs at the NMJ.
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This is the first report to show that Notch signaling alters the synaptic levels of glutamate 

receptors. Although conditional knockout of mib1 impaired memory for hippocampal-

dependent tasks and attenuated late LTP and LTD, it did not alter synaptic levels of several 

GluR subunits including GluA1, GluA2/3, GluN1, GluN2A, or GluN2B (Yoon et al., 2012). 

Conversely, mib1 mutant zebrafish showed significant reductions in GluR subunit mRNAs 

for AMPA 2a and AMPA 2b and the glutamate metabolizing gene product, glutamate 

decarboxylase, as indicated by microarray analyses (Hortopan et al., 2010). Our data 

suggest that Mib1 likely regulates GluR subunits posttranscriptionally as we did not detect 

appreciable differences in glur mRNA levels in mib1 mutants (Fig. 4E).

Mib1 may directly regulate the localization of GluRs. AMPA receptor subunits localized to 

the cell membrane are ubiquitinated after enhanced synaptic activity (Widagdo et al., 2015). 

The Mib1 paralog, Mib2 (Koo et al., 2005b), directly binds and ubiquitinates the GluN2B 

but not the GluN1 subunit of the NMDA receptor in an activity-dependent manner. This 

ultimately decreased NMDA-mediated synaptic currents (Jurd et al., 2008). Our data, 

however, suggest that Mib1 indirectly regulates the localization of GluR subunits. If Mib1 

functioned similar to Mib2 to directly regulate the localization of non-NMDA receptors, we 

would expect to see an increase in GluR subunits in mib1 mutants and after ubiquitous 

expression of Mib1Δ3RF. Instead we observe a reduction in synaptic levels of GluRIIA 

(Fig. 3), GluRIIB, and GluRIIC (Fig. 4) in mib1 mutants. Therefore, we favor the hypothesis 

that Mib1 attenuates the presynaptic release of glutamate, which, over developmental time, 

leads to a reduction in synaptic GluR subunit levels.

In support of this hypothesis, we observe a significant reduction in CSP at mib1 mutant 

NMJs (Fig. 7B). Mouse CSP-α knock out NMJs exhibit deficient presynaptic vesicle 

endocytosis and a reduction in the size of the readily releasable pool followed by reduced 

synaptic vesicle exocytosis (Rozas et al., 2012). Similarly, we observe a significant 

reduction in mEJC frequency in mib1 mutants (Fig. 8C) indicating a reduction in 

presynaptic glutamate release. Although it may seem counterintuitive that loss of a PSD 

protein could result in altered levels of CSP, which is primarly localized presynaptically 

(Kohan et al., 1995), and neurotransmitter release, Mib1 activates Notch signaling in 

neighboring cells (Koo et al., 2005a; Lai et al., 2005; Le Borgne et al., 2005; Koo et al., 

2007). Thus, Mib1 localized to the PSD would activate Notch signaling in the adjacent 

presynaptic cell. Altered presynaptic Notch signaling resulting from loss of Mib1 activity, 

could then affect the expression of Notch target genes thereby affecting cellular function.

In summary, we have found that mutations in several genes that encode orthologs of 

mammalian PSD proteins are important for the proper localization of GluRs at the 

Drosophila NMJ. The PSD protein, Mib1, positively regulates the synaptic localization of 

GluRIIA, GluRIIB, and GluRIIC. The localization of GluRs may be secondary to Mib1’s 

role in localizing presynaptic CSP and regulating the spontaneous release of 

neurotransmitter.
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Experimental Methods

Fly Stocks

Fly stocks were raised at 25°C on Jazz Mix food (Fisher Scientific, St. Louis, MO). 

Drosophila orthologs and corresponding mammalian PSD proteins were previously 

identified (Liebl & Featherstone, 2008). Mutant stocks for the reverse genetic screen were 

identified using FlyBase (http://flybase.org/) and obtained from the Bloomington 

Drosophila Stock Center (http://flystocks.bio.indiana.edu/). Identities of the stocks can be 

found in Table S2. Most of the lines used (65.9%) were homozygous adult viable. However, 

the remaining lines (34.1%) were homozygous adult lethal and balanced using chromosome-

specific GFP-balancers or the TM6 Tb balancer to enable identification of homozygous 

mutants. Both mib13 and mib1EY09780 alleles and all Gal4 drivers were obtained from the 

Bloomington Drosophila Stock Center. Stocks containing the UAS-mib1Δ3RF and UAS-

mib1wt transgenes were generous gifts from Eric Lai (Lai et al., 2005). Control stocks 

included w1118 and w1118 outcrossed to Actin5c-Gal4, 24B-Gal4, elav-Gal4, UAS-mib1Δ3RF, 

and UAS-mib1wt.

Immunocytochemistry and Confocal Microscopy

Third instar larvae were filet dissected on Sylgard-containing petri dishes at room 

temperature in Roger’s Ringer solution (135 mM NaCl, 5 mM KCl, 4 mM MgCl2, 1.8 mM 

CaCl2, 5 mM TES, 72 mM sucrose) supplemented with 2 mM glutamate (Augustin et al., 

2007). Larval preparations were fixed for 30 min with either Bouin’s fixative (Fisher 

Scientific, St. Louis, MO) for Brp or GluR antibodies or 4% paraformaldehyde in PBS for 

all other antibodies. Primary antibodies were diluted in PBTX (PBS + 0.1% Triton and 1% 

Bovine Serum Albumin) and applied overnight at 4°C after larvae were washed PTX (PBS + 

1% Triton). Mouse α-Brp (aka nc82, 1:50), mouse α-CSP (1:200), mouse α-DLG (1:1000), 

mouse α-FasII (1:5), and mouse α-GluRIIA (1:100) were obtained from the Iowa 

Developmental Studies Hybridoma Bank (Iowa City, IA). Rabbit α-GluRIIB (1:2000) and 

rabbit α-GluRIIC (1:5000) were generous gifts from Aaron DiAntonio (Marrus et al., 2004). 

Mouse α-acetylated tubulin and phalloidin (1:200) were obtained from Sigma Aldrich (Cat 

#, St. Louis, MO) and Invitrogen (Cat #, Carlsbad, CA), respectively. Additional antibodies 

including HRP (1:125) and species-specific FITC (1:250) were obtained from Jackson 

Immunolabs (West Grove, PA), diluted in PBTX, and applied for 2 h at room temperature. 

Larval preparations were mounted on slides and covered with Vectashield (Vector Labs, 

Burlingame, CA).

Larval A3 or A4 6/7 NMJ were imaged using a Fluoview 1000 Olympus confocal laser 

scanning microscope. Imaging parameters were set for controls and subsequently used for 

all experimental animals. Equal numbers of control and experimental animals were imaged 

each day. Compressed images of the z-series were used for data analyses.

Electrophysiology

Third instar larvae were filet dissected and secured using VetBond glue (World Precision 

Instruments, Sarasota, FL) at room temperature in Roger’s Ringer on Sylgard-coated 

coverslips. Two-electrode voltage clamp recordings were obtained from muscle 6 of A3 or 
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A4 after clamping the muscle membrane potential at −60 mV using an Axoclamp 900A 

amplifier (Molecular Devices, Sunnyvale, CA). Both the clamp and recording electrodes 

were filled with 3 M KCl and used if their resistances were 10–20 MΩ. The stimulating 

electrode was filled with bath saline. For evoked recordings, a 1 Hz, 10V stimulus was 

delivered by a Grass S88 stimulator with a SIU5 isolation unit (Grass Technologies, 

Warwick, RI) to recruit both motor neuron axons as previously described (Ehmann et al., 

2014). Recordings were digitized with a Digidata 1443 digitizer (Molecular Devices, 

Sunnyvale, CA). PClamp software (v. 10.4) was used for data analyses. Quantal content was 

calculated by dividing the eEJC area (nA*ms) by the mEJC area (nA*ms).

qRT-PCR

RNA was extracted with Trizol (Invitrogen, Carlsbad, CA) from 8–12 third instar larvae as 

previously described (Jowett, 1998). qRT-PCR was performed in single-plex reactions using 

the iTaq Universal SYBR Green One-Step Kit (Bio-Rad, Hercules, CA), gene-specific 

primers for gluRIIA, gluRIIB, gluRIIC, and GAPDH, and the Stratagene Mx3000P qPCR 

System (Agilent Technologies, Santa Clara, CA). 100 ng of total RNA was added to each 

reaction. Three technical replicates and two biological replicates were performed for each 

reaction. Relative gluR mRNA levels were obtained by subtracting the GAPDH C(t) value 

from the GluR C(t) value.

Data Analysis and Statistics

The number of boutons and branches were obtained by manually counting these features 

using 6/7 NMJs of hemisegments A3 or A4. Branches were defined as an extension of the 

presynaptic motor neuron with more than one bouton. The density of Brp labeling was 

quantified by counting the total number of Brp puncta and dividing by the total NMJ area as 

indicated by HRP labeling using ImageJ (NIH) software. GluR cluster sizes were measured 

by manually tracing around the GluR puncta overlapping and immediately adjacent to HRP 

immunloabeling and measuring the area with Image J software as previously described 

(Featherstone et al., 2002). For all other immunolabeling, immunoreactivity was quantified 

by measuring the mean fluorescence intensity of the NMJ using Adobe Photoshop software 

(v. CS2) and subtracting the mean non-NMJ background over an identical area of the 

neighboring muscle membrane. For DLG and muscle acetylated tubulin, the average 

background from a non-synaptic, non-muscle area was used. 8–12 animals per genotype 

were used for analyses for the reverse genetic screen.

Data analyses were conducted with GraphPad Prism (v5.01). Student’s t-tests were used for 

experiments with a single control. For experiments with more than one control, an ANOVA 

was performed with a Tukey post hoc test. In figures, p<0.0001 is designated by ***, 

p<0.001 is designated by **, and p<0.05 is designated by *. Error bars are representative of 

standard error of the mean values. Summary statistics for all data are reported in Table S1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Identified Drosophila PSD homologs important for glutamate receptor 

localization.

• Further characterized the Notch signaling protein, Mib1.

• Mib1 positively regulates glutamate receptor localization at the Drosophila 

NMJ.

• Mib1 may secondarily affect glutamate receptors by influencing glutamate 

release.
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Figure 1. Mutations in Drosophila genes encoding homologs of mammalian PSD proteins lead to 
a reduction in GluRIIA cluster sizes
(A) Confocal images of third instar larval 6/7 NMJs immunolabeled with α-HRP to label 

presynaptic motor neurons (magenta) and α-GluRIIA (green) to label postsynaptic 

glutamate receptor clusters containing the GluRIIA subunit. Inset panels show high 

resolution terminal boutons. Scale bar = 20 µm. (B) Histogram showing GluRIIA cluster 

sizes for genotypes represented in A. (C) Quantification of the number of boutons (left) and 

branches (right) indicative of presynaptic motor neuron morphology.
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Figure 2. Mutations in Drosophila genes encoding homologs of mammalian PSD proteins lead to 
an increase in GluRIIA cluster sizes
(A) Representative confocal micrographs of 6/7 NMJs immunolabeled with α-HRP to label 

presynaptic motor neurons (magenta) and α-GluRIIA (green) to label GluRIIA-containing 

glutamate receptor clusters. Inset panels show high resolution terminal boutons. Scale bar = 

20 µm. (B) Quantification of GluRIIA cluster sizes for genotypes shown in A. (C) 

Quantification of characteristics representative of presynaptic motor neuron morphology 

including the number of boutons (left) and branches (right).
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Figure 3. Mib1 is important for the clustering of GluRIIA-containing receptors
(A) Control and mib1 mutant confocal images showing representative 6/7 NMJs from third 

instar larvae. Preparations were immunolabled with α-HRP to label presynaptic motor 

neurons (magenta) and α-GluRIIA (green) to label GluRIIA-containing glutamate receptor 

clusters. Inset panels show high resolution terminal boutons. Scale bar = 20 µm. (B) 

Histograms showing quantification of GluRIIA cluster sizes (left) and GluRIIA relative 

fluorescence intensity (right) for genotypes shown in A. (C) Quantification of characteristics 

representative of presynaptic motor neuron morphology including the number of boutons 

(top) and branches (bottom).
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Figure 4. Mib1 positively regulates synaptic levels of GluRIIB and GluRIIC but does not affect 
glur transcript levels
High resolution confocal micrographs showing third instar larvae terminal boutons of the 

6/7 NMJ immunolabeled with α-HRP to label presynaptic motor neurons (magenta) and α-

GluRIIA (green) to label GluRIIB-containing glutamate receptor clusters (A) or GluRIIC-

containing glutamate receptor clusters (C). Scale bar = 5 µm. (B) Quantification of GluRIIB 

cluster sizes (left) and relative fluorescence intensities (right) for genotypes shown in A. (D) 

Quantification of GluRIIC cluster sizes (left) and relative GluRIIC fluorescence intensity 

(right) for genotypes shown in B. (E) Quantification qRT-PCR ΔΔC(t) values normalized to 

the control, w1118, using gene-specific primers for glurIIA (left), glurIIB (middle), and 

glurIIC (right).
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Figure 5. Expression of Mib1 lacking the RING finger domains leads to the loss of synaptic 
GluRIIA
A mib1 transgene lacking the region encoding the three C-terminal RING finger domains, 

UAS-mib1Δ3RF, was expressed in all tissues using the Actin5c-Gal4 driver. (A) 

Representative third instar larvae 6/7 NMJs immunolabeled with α-HRP to label presynaptic 

motor neurons (magenta) and α-GluRIIA (green) to label postsynaptic glutamate receptor 

clusters containing the GluRIIA subunit. Inset panels show high resolution terminal boutons. 

Scale bar = 20 µm. (B) Quantification of GluRIIA cluster sizes (left) and GluRIIA 

fluorescence intensities (right) for genotypes represented in A. (C) Characterization of 

presynaptic motor neuron morphology by quantification of the number of boutons (top) and 

branches (bottom).
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Figure 6. Overexpression of Mib1 leads to an increase in synaptic GluRIIA and a reduction in 
the size of the presynaptic motor neuron
Overexpression of mib1 was achieved by expressing UAS-mib1wt in all tissues using the 

Actin5c-Gal4 driver. (A) Confocal micrographs showing 6/7 NMJs immunolabeled with α-

HRP to label presynaptic motor neurons (magenta) and α-GluRIIA (green) to label 

postsynaptic GluRIIA-containing glutamate receptor clusters. Inset panels show high 

resolution terminal boutons. Scale bar = 20 µm. (B) Histograms showing quantification of 

GluRIIA cluster sizes (left) and GluRIIA fluorescence intensities (right) for genotypes 

represented in A. (C) Histograms showing quantification of the number of boutons (top) and 

branches (bottom).
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Figure 7. Mib1 is important for the localization of CSP and FasII at the synapse
High resolution confocal micrographs showing terminal boutons of 6/7 NMJs from third 

instar larvae immunolabeled with α-HRP (magenta) and α-Brp (green, A), α-CSP (green, 

B), α-DLG (green, C), or α-FasII (green, D). Scale bar = 5 µm. Right histograms show 

quantification of mean normalized fluorescence intensities.
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Figure 8. Mib1 negatively regulates spontaneous synaptic transmission
Spontaneous (mEJCs) and evoked junctional currents (eEJCs) were recorded from third 

instar larvae after voltage clamp of muscle 6 at −60 mV. (A) Representative mEJCs from 

control and mib1 mutants. (B) Quantification of mEJC frequency and amplitudes (top) and 

eEJC amplitudes and quantal content (bottom).
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Table 1

Classification of mutations identified in the reverse genetic screen that significantly affected synaptic GluRIIA 

levels

Function of Gene Product Percentage

Cell adhesion molecules 8.3%

Cytoskeleton and related 18.8%

GTPases and regulators 25.0%

Kinases and phosphatases 10.4%

Metabolic 4.2%

Other 8.3%

Receptors/channels and transmembrane proteins 6.3%

Scaffold protein 16.7%

Trafficking/motor proteins 2.1%
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