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Abstract

The concept of immunological tolerance has guided and permeated much of modern immunology. 

Ray Owen’s ground-breaking observations in twin cattle provided the first mechanistic 

explanation for tolerance to self-molecules and established tolerance as a beneficial process that 

protects the host against autoreactivity. However, his studies also opened the door to 

understanding that tolerance may be detrimental, such as occurs when cancer cells induce 

tolerance/immune suppression resulting in inhibition of anti-tumor immunity. This article briefly 

traces the early history of the field of tumor immunology with respect to tolerance, and then 

focuses on a relatively recently identified population of cells called myeloid-derived suppressor 

cells (MDSC). MDSC are instrumental in causing tolerance/immune suppression in individuals 

with cancer. They are present in most individuals with cancer and because of their potent immune 

suppressive activity are a major deterrent to natural anti-tumor immunity and a significant obstacle 

to immunotherapy.
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1. Ray Owen

As a graduate student in Ray Owen’s laboratory in the 1970’s, one quickly became aware of 

having the privilege of training in the lab or a truly remarkable individual. Ray’s 

groundbreaking studies demonstrating that twin cattle sharing a common placenta do not 

immunologically respond to their co-twin’s genetically disparate red cell antigens 

established the concept of immunological tolerance [1], and set the framework for much of 

future immunology. Although I didn’t realize it at the time, and many contemporary 

immunologists may not appreciate it now, Ray’s work also profoundly impacted the field of 

tumor immunology, a research area in which he did not directly participate.
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2. Origins of cancer immunology/immunotherapy

The concept that the immune system has the ability to surveil and destroy malignant cells is 

not new. Its roots originated in the late 1800’s/early 1900’s with the German pathologist 

Paul Ehrlich. In his “magic bullet” theory Ehrlich proposed that proteins targeting specific 

molecules on cancer cells could be used as a delivery mechanism for lethal payloads, and 

that in the absence of an immune response, cancers would be much more prevalent [2]. In 

the same era, the oncologist William Coley demonstrated that a small percentage of patients 

with advanced cancer experienced tumor regression following immunization with bacterial 

toxins [3]. Thus, the first consideration that the immune system could be exploited as a 

cancer therapeutic, and the first attempt at cancer immunotherapy occurred over 100 years 

ago. Not surprisingly these results were largely ignored by oncologists since Coley’s 

treatment was accompanied by significant toxicity and only helped ~10% of sarcoma 

patients, and Ehrlich’s concept wasn’t tested experimentally. However, this early work 

formed the basis for what became known as the “cancer immunosurveillance” theory. The 

forerunner of this theory was set out by Lewis Thomas [4], but it was Sir Macfarlane Burnet 

who coined the term “immunosurveillance” [5] and formulated the concept that the immune 

system eliminates abnormal and malignant cells before they form clinically detectable 

tumors [6]. The concept of immunosurveillance remained credible until the early 1970’s 

when Stutman and colleagues demonstrated that both immunocompetent and nude (T cell 

deficient) mice equally rejected transplanted tumors, supposedly indicating that the immune 

system played no role in tumor progression [7, 8]. Immunosurveillance made a partial 

recovery in the mid 1980’s when it was realized that nude mice have both functional T cells 

and NK cells [9]. From the early 1970’s to the early 1990’s investigators in the field of 

tumor immunology were mostly ignored by mainstream immunologists and oncologists, 

although considerable progress was made in identifying tumor-associated antigens that 

served as immunological target moieties. Then, in 2002, Schreiber and colleagues published 

the first of a series of ground-breaking papers introducing the concept of “immunoediting” 

and demonstrating unequivocally that the repertoire of tumor cells is sculpted by the host’s 

immune system [10]. These latter studies not only resurrected the concept that the immune 

system could eliminate tumor cells, but also set the stage for explaining why the immune 

system was not always effective in mediating tumor rejection. As demonstrated by Schreiber 

and colleagues, immunoediting involves multiple rounds of selecting for tumor cells that 

evade anti-tumor immunity, and includes selection by both anti-tumor and pro-tumor 

immune cells. Anti-tumor immune cells include a variety of cells (e.g. effector and helper 

CD8+ and CD4+ T cells, respectively, NK cells, anti-tumor macrophages, etc.); however, 

there are also immune cells that facilitate tumor progression by functionally inhibiting 

immune effector cells (e.g. T regulatory cells, pro-tumor macrophages, mast cells, myeloid-

derived suppressor cells). Therefore, the concept that the immune system can reject resident 

cancer cells is alive and well. However, it is also now obvious that immune-mediated tumor 

rejection is not simply a matter of activating a host’s immune response since there are also 

multiple cellular and molecular mechanisms that suppress anti-tumor immunity.
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3. Owen’s discovery of tolerance and its impact on the field of tumor 

immunology

Using the red blood cell reagents he and colleagues had developed, Owen discovered that 

genetically disparate fraternal cattle twins sharing a common placenta are tolerant to their 

co-twins’ allogeneic red blood cells [1]. This was the first report of immunological 

tolerance, and Owen concluded that the tolerance was because the common placenta enabled 

the sharing of red blood cells during gestation, and therefore that tolerance was established 

during embryogenesis. This concept was formalized by Burnet [11] and experimentally 

confirmed by Medawar and colleagues [12]. Initially, the neonatally-induced tolerance 

appeared to be at odds with the concept of immunosurveillance because tumor cells were 

thought to be “self.” However, as tumor antigens were discovered to be mutated self-

proteins that arose during tumorigenesis [13], self-tolerance was no longer perceived as an 

issue. Owen’s studies focused on neonatal tolerance; however, they also brought the general 

topic of tolerance to the forefront of immunology research. Subsequent studies have 

elegantly shown that tolerance can be induced centrally via negative selection in the thymus, 

as well as peripherally by a multitude of immune cells and secreted factors. When we speak 

of “tolerance to tumors” we are actually including a variety of mechanisms that prevent 

efficacy of anti-tumor immunity. These mechanisms include T regulatory cells that inhibit 

cytotoxic T cell function, tolerogenic antigen presenting cells, immune suppressive factors 

such as TGFβ and IL-10, as well as the more recently described myeloid-derived suppressor 

cells (MDSC). The following sections focus on MDSC, a potently immune suppressive cell 

population that is elevated in most cancer patients and is a significant obstacle to both 

induced and natural anti-tumor immunity. When my lab started working in this area circa 

2000, I didn’t realize we were returning to my “roots” and working on issues of immune 

tolerance.

4. MDSC are profoundly immune suppressive/tolerogenic cells that are 

present in virtually all cancer patients

Immune suppressive so-called “natural suppressors” were originally identified in tumor-free 

mice [14], and were subsequently also found in tumor-bearing mice [15]. They were 

considered unusual cells because they were neither MHC-restricted nor antigen-specific and 

were of myeloid, rather than lymphoid, origin. A decade later, comparable cells were 

identified in the circulation of head and neck cancer patients [16–18], non-small cell lung 

and breast cancer patients [19], and mice with tumors [20, 21]. Biochemical studies 

demonstrated that the cells’ suppressive potency was the result of their expression of 

reactive oxygen species (ROS)1 [22]. Because of their suppressive function and myeloid 

origin, the cells were named “myeloid-derived suppressor cells” [23]. Subsequent clinical 

studies have revealed that MDSC accumulate within the blood of virtually all cancer 

1Abbreviations used in this article: Arg1, arginase 1; Bregs, regulatory B cells; COX2, cyclooxygenase 2; Gr-MDSC, granulocytic 
MDSC; HMGB1, high mobility group box protein 1; iNOS or NOS2, inducible nitric oxide synthase; L-arg, L-arginine; MDSC, 
myeloid-derived suppressor cells; MO-MDSC, monocytic MDSC; NO, nitric oxide; NOX2, NADPH oxidase; NSAIDS, non-steroidal 
anti-inflammatory drugs; PMN-MDSC, polymorphonuclear MDSC; PGE2, prostaglandin E2; ROS, reactive oxygen species; TAM(s), 
tumor-associated macrophage(s); TME, tumor microenvironment; Tregs, Regulatory T cells
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patients, and parallel studies in mice have demonstrated that MDSC arise in the bone 

marrow and traffic via the circulatory system on their way to homing in solid tumors [24].

MDSC also accumulate in non-cancerous diseases including infectious conditions such as 

toxoplasmosis [25], candidiasis [26], and leishmaniasis [27]. They are also elevated in HIV-

infected patients [28], in individuals with Staphylococcus aureus biofilms [29], under 

conditions of sepsis [30, 31], and in individuals undergoing stress [32, 33]. Elevated levels 

of MDSC are also associated with normal aging [34, 35].

Most of the information about MDSC function has been derived from studies in which 

MDSC develop in response to malignancy so the following sections are focused on tumor-

induced MDSC.

5. MDSC share markers with other myeloid cells and are distinguished by 

their unique suppressive properties

MDSC are a mixture of cells of myeloid origin that have been halted in various stages of 

differentiation. Since the maturation of myeloid lineage cells is a continuum of 

differentiation stages, and the different stages can be identified by cell surface proteins, 

MDSC can express a variety of plasma membrane markers. However, there are two basic 

categories of mature MDSC: monocytic MDSC (MO-MDSC) and granulocytic or 

polymorphonuclear MDSC (Gr-MDSC or PMN-MDSC). MO-MDSC are mononuclear and 

Gr-MDSC are polymorphonuclear. In the mouse, all MDSC express the granulocytic marker 

Gr1 and the monocyte/macrophage marker CD11b. Gr1 includes both Ly6G and Ly6C and 

MO-MDSC are CD11b+Ly6C+Ly6G−/low, while Gr-MDSC or CD11b+Ly6C−Ly6G+. Other 

markers have also been attributed to mouse MDSC, including F4/80, IL-4Rα (CD124), 

CSF-1 (CD115), and CCR2 [36–40]. Expression of these latter markers varies from 

individual to individual since their expression is regulated by tumor secreted factors which 

can differ from tumor-to-tumor and within different stages of tumor progression.

The same two subclasses of MDSC are also present in patients with cancer. Human MO-

MDSC are phenotypically CD11b+CD14+CD15−IL-4Rα+MHC−/low and Gr-MDSC are 

CD11b+CD14−CD15+MHC−/low (reviewed by [41]).

Since these markers are also expressed by other cell types, the defining characteristics of 

MDSC are their suppressive and pro-tumor functions which impact both innate and adaptive 

immunity, as well as non-immune mechanisms. They inhibit innate anti-tumor immunity by 

polarizing macrophages towards a tumor-promoting phenotype [42–45], and by blocking the 

cytotoxic activity of NK cells and NK cell production of IFNγ [46–48]. They suppress 

adaptive anti-tumor immunity by preventing T cell activation, inhibiting the function of 

activated T cells, and by perturbing T cell trafficking (reviewed in [49]. In addition to their 

immunological effects, MDSC also facilitate tumor growth by supporting neoangiogenesis 

and tumor cell invasion and metastasis through their production of matrix 

metalloproteinase-9 [50, 51], VEGF [52], and MCP-1 [53], and they may enhance the 

epithelial-mesenchyme transition by their production of TGFβ [54].
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6. MDSC tolerize the host through a variety of immune suppressive 

mechanisms

MDSC mediate tolerance through multiple mechanisms that are active in the periphery. 

They produce arginase 1 (Arg1) which deprives T cells of the essential amino acid L-

arginine (L-arg) and thereby causes a down-regulation of the CD3-associated ζ chain and 

loss of ability to signal through the TcR and down-stream signal transduction events that 

result in T cell proliferation [55, 56]. MDSC also sequester cystine/cysteine which T cells 

cannot de novo synthesize since they lack the enzyme cystathionase which is needed to 

convert intracellular methionine to cysteine [57]. Their production of inducible nitric oxide 

synthase (iNOS or NOS2) degrades L-arg to nitric oxide (NO) which, in turn, prevents the 

activation of transcription factors needed to stabilize IL-2 mRNA and IL-2 receptor 

expression [58].

In addition to the mechanisms involving amino acid deprivation, MDSC also tolerize/

suppress by their production of reactive oxygen species (ROS). STAT3 phosphorylation in 

MDSC activates two subunits of NADPH oxidase (NOX2) (p47phox and gp91phox) which 

increases the intracellular levels of ROS including nitric oxide (NO) and superoxide (O2−) 

[59, 60]. NO and O2− subsequently form peroxynitrite (ONOO−) which is a potent inhibitor 

of T cell activation and function because it nitrates/nitrosylates the TcR [61] and MHC class 

I molecules [62], thereby altering TcR and MHC structure and preventing T cell-target cell 

binding.

Efficiency of these suppressive mechanisms requires close proximity of MDSC and their 

target cells since many of the effector molecules are soluble proteins or factors such as 

enzymes and ROS. Exosomes released from MDSC as well as intact MDSC can mediate 

many MDSC suppressive functions. For example, MDSC-derived exosomes up-regulate 

macrophage production of IL-10 and chemoattract MDSC through their content of pro-

inflammatory mediators including S100A8/A9 [63] and high mobility group box protein 1 

(HMGB1) (Ostrand-Rosenberg, Clements, and Fenselau, unpublished). Many proteins in 

MDSC exosomes are ubiquitinated [64], including S100A8/A9 and HMGB1, but it remains 

to be demonstrated if the ubiquitinated molecules are the active forms.

Collectively, these inhibitory mechanisms establish a state of tolerance in individuals with 

cancer and prevent a naturally arising immune response from eliminating the tumor and are 

a significant obstacle to therapies aimed at activating a patient’s immune system.

7. MDSC amplify tolerance by cross-talk with other cells in the tumor 

microenvironment (TME)

Solid tumors include a plethora of non-malignant host cells in addition to cancer cells, 

including tumor-associated macrophages (TAMs), regulatory T cells (Tregs), plasmacytoid 

dendritic cells, mast cells, cancer-associated fibroblasts (CAFs), as well as neutrophils, B 

and T lymphocytes, and other myeloid cells (reviewed in [65]). In addition to their direct 

effects on tumor progression, MDSC also regulate tumor growth by impacting these other 

cells in the TME. The best characterized effects are the reciprocal effects between MDSC 
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and macrophages. Macrophages display a continuum of phenotypes ranging from 

tumoricidal (M1-like) to tumor-promoting (M2-like) (reviewed in [66]). MDSC production 

of IL-10 down-regulates TAM production of IL-6, IL-12, and TNFα, thereby polarizing 

TAMs towards a tumor-promoting phenotype [43, 44, 67]. IL-10 produced by MDSC also 

impairs the ability of macrophages to function as antigen presenting cells by down-

regulating macrophage expression of MHC II molecules [45]. Macrophages, in turn, 

enhance MDSC production of IL-10, providing a feedback mechanism for sustaining tumor-

promoting TAMs. MDSC also drive the differentiation of immune suppressive T regulatory 

cells (Tregs). The induction of mouse Tregs is dependent on IL-10 and is regulated by Arg 

1, both of which are provided by MDSC [37, 68].

The accumulation and suppressive potency of MDSC are also enhanced by other cells in the 

TME. In a pancreas system, CAFs produce GM-CSF and IL-6 which drive the 

differentiation of MDSC by activating STAT3 [69]. In at least some cancers tumor-induced 

regulatory B cells (Bregs) are needed to educate and maximize MDSC suppressive potency 

through a TGFβ receptor-dependent process [70]. Likewise, tumor-induced NKT cells 

increase MDSC function by producing IL-13 which drives the accumulation of MDSC 

producing immune suppressive TGFβ [71]. Mast cells also contribute to MDSC function 

[72] and do so through a process involving IFNγ, NO, and CD40-CD40L cross-talk [73].

Collectively, these findings demonstrate that the TME is a complex milieu of cells and that 

the effects of the TME on MDSC and vice-versa are likely to vary from tumor-to-tumor and 

individual-to-individual depending on the specific populations of resident non-malignant 

cells.

8. Inflammation is a dominant driving force for the accumulation and 

function of MDSC

As described in section 7, non-malignant cells exacerbate the accumulation and suppressive 

potency of MDSC. However, tumor cells also drive MDSC levels and function, and the 

specific effector molecules are predominantly pro-inflammatory factors [74]. Early studies 

identified VEGF, which also drives angiogenesis, as an inducer of MDSC [75, 76]. Many of 

the factors that drive myelopoiesis induce accumulation of MDSC, an observation that is not 

surprising since MDSC are aberrantly differentiated cells of the myeloid lineage. 

Specifically, GM-CSF [77–79] and G-CSF [80] both induce MO-MDSC and Gr-MDSC

Studies identifying pro-inflammatory mediators as inducers of MDSC led to the concept that 

inflammation facilitates tumor progression by inducing MDSC which establish an immune 

suppressive environment that deters anti-tumor immunity [74]. For example, IL-1β and IL-6, 

which are produced by many different types of tumor cells, are potent inducers of MDSC 

[81, 82]. Prostaglandin E2 (PGE2) and cyclooxygenase 2 (COX2) are produced by numerous 

mouse and human tumors, are commonly found in the TME, and drive MDSC 

differentiation and suppressive activity [83–86]. The concept that inflammation drives 

cancer progression through the induction of MDSC is supported by multiple observations 

demonstrating that non-steroidal-anti-inflammatory drugs (NSAIDS), antibodies to COX2 or 

prostaglandin E2 (PGE2), or genetic deficiencies in cognate receptors reduce the risk of 
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cancer while reducing MDSC levels [83, 87–90]. Support for the role of prostaglandins in 

promoting MDSC also comes from in vitro studies in which MDSC were induced from bone 

marrow progenitor cells. In this experimental setting, COX2, PGE2, or NSAIDS prevented 

the in vitro differentiation of both human and mouse MDSC, while inclusion of PGE2 in the 

cultures enhanced the differentiation of MDSC [83, 85, 86, 91].

S100A8/A9 [39, 92] and HMGB1 [42] also enhance MDSC development and function. Both 

of these pro-inflammatory mediators are ubiquitously present in the TME. S100A8/A9 is 

secreted by a variety of myeloid cells including MDSC and HMGB1 is released by both 

viable and dying cells. Both molecules not only increase MDSC suppressive potency but are 

also chemoattractants for MDSC and are present in MDSC-released exosomes [63], 

(Ostrand-Rosenberg, Fenselau, and Clements, unpublished). Serum levels of MDSC, 

S100A8/A9 and HMGB1 were recently identified as negative biomarkers for successful 

treatment of melanoma patients with the anti-CTLA4 mAb Ipilimumab [93], confirming the 

negative impact of inflammation-induced MDSC on anti-tumor immunity.

9. Therapies that universally neutralize MDSC are needed

MDSC differentiate from progenitor cells in the bone marrow and then enter the blood 

stream. In individuals with solid tumors, they are then chemoattracted to the site of tumor. 

Their half-life in vitro is approximately 1–2 days and in the blood is less than 24 hrs [94]. 

Their survival time within solid tumors is not known. Despite their relatively short half-life, 

MDSC can accumulate to high levels in cancer patients due to their rapid generation in bone 

marrow. Several mechanisms have been identified that regulate MDSC survival. 

Inflammation, and particularly IL-1β [81, 82] and HMGB1 [95] not only drives MDSC 

accumulation but also extends their half-life. Mechanistically, increased survival has been 

attributed to miRNA-494 through its ability to activate the AKT pathway [96], and to 

activation of the transcription factor Nrf2, which up-regulates anti-oxidant genes and 

protects MDSC from ROS [97]. Survival of MDSC is decreased by activated FasL+ T cells 

which induce apoptosis of Fas+ MDSC [98, 99].

Given the widespread presence and potent immune suppressive ability of MDSC in cancer 

patients, much work has focused on identifying agents that will eliminate or neutralize the 

cells. Many drugs have been identified; however, to date, none are universally effective 

against all MDSC. See [100–102] for recent reviews of strategies and drugs that target 

MDSC.

10. MDSC may be useful for inducing tolerance in pathological conditions 

where immunity causes disease

Owen’s studies identified tolerance as a mechanism that protects against unwanted immune 

responses by inducing tolerance to benign cells that were normally present in the individual. 

In individuals with cancer, MDSC are also tolerogenic; however, the tolerance is not 

beneficial and instead prevents the host from rejecting cells that should be eliminated by the 

immune system. However, there are disease situations in which MDSC could be beneficial, 

and recent studies are exploring the use of MDSC to treat pathological situations in which 
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unwanted immune responses occur. For example, MDSC have been tested in several mouse 

models of autoimmunity and have had varying success in reducing disease. In murine 

experimental autoimmune encephalomyelitis adoptive transfer of MDSC decreased 

demyelination and delayed disease progression [103]. In the same study it was observed that 

the blood of patients with active multiple sclerosis contained elevated levels of MDSC that 

suppressed the activation of CD4+ autologous T cells. Co-transplantation of MDSC 

sustained the survival of transplanted islet allografts and was fully dependent on MDSC 

expression of B7-H1+ (PD-L1+), suggesting that MDSC may be useful for the treatment of 

diabetes [104]. In a mouse system of collagen-induced arthritis, adoptive transfer of MDSC 

inhibited pro-inflammatory responses of CD4+ T cells and reduced severity of disease [105]. 

Adoptive transfer of MDSC also decreased intestinal inflammation, and levels of IFNγ, 

TNF, and IL-17 in mice with experimental colitis [106]. MDSC have also shown therapeutic 

efficacy in a mouse model of experimental autoimmune myasthenia gravis that involves 

autoreactive B and T cells. In this setting, adoptive transfer of MDSC induced by hepatic 

stellate cells reversed disease progression by inhibiting acetyl choline receptor-specific 

immune responses without impacting immunity to non-disease target molecules [107]. 

MDSC generated in vitro from bone marrow progenitor cells have also been used in mouse 

models to treat graft-vs-host lethality [108], and to induce Tregs to prevent the onset of type 

1 diabetes [109]. In both mice and patients exacerbation of allergy-induced asthma is 

associated with diminished immune suppressive function of Gr-MDSC [110]. Recent studies 

also show a correlation between reduced levels of MDSC and miscarriage [111, 112], 

suggesting that MDSC may also be implicated in normal pregnancies. Therefore, MDSC 

may play a critical role in combating autoimmune and allergic reactions and have the 

potential to be exploited as therapeutic agents for multiple diseases involving harmful 

immune responses.

11. Conclusions

For the past 60+ years tolerance has served as a central concept that has impacted much of 

the progress in immunology research. Early studies focused on tolerance to self molecules, 

and as the field of immunology has progressed it has become apparent that the concept is 

also integral to non-self, mutated self, and danger signals. Tolerance as initially 

characterized by Owen was defined in terms of its beneficial consequences in preventing 

autoreactivity. However, tolerance can also be detrimental such as in cancer when immune 

suppression-induced tolerance protects malignant cells against potentially beneficial 

antitumor immunity, or when neonates have reduced immunocompetence due to the 

presence of immune-suppressive CD71+ erythroid cells[113]. Obviously, the work of very 

many investigators throughout the world over the past 60+ years has contributed to current 

understanding of tolerance. However, it is clear that Ray Owen’s studies provided a starting 

point and laid the foundations for much of the knowledge that has facilitated the 

advancement of basic immunology and its applications which have led to significant clinical 

developments.
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Highlights

• Ray Owen’s studies provided the first mechanistic understanding of tolerance

• Tolerance/immune suppression is a major obstacle for anti-tumor immunity

• Myeloid-derived suppressor cells (MDSC) are potent immune suppressive cells

• Most cancer patients have elevated levels of MDSC

• MDSC are a significant obstacle to anti-tumor immunity
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