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Abstract New therapeutic intervention strategies

for the treatment of human malignancies are always

desired. Approval of bortezomib as a front-line

treatment for multiple myeloma highlighted the sig-

nificance of ubiquitin–proteasome system (UPS) as a

promising therapeutic target. However, due to the

broad impact of proteasome inhibition, deleterious

side effects have been reported with bortezomib

treatment. Cullin RING ligases (CRLs)-mediated

ubiquitin conjugation process is responsible for the

ubiquitin conjugation of 20 % cellular proteins that

are designated for degradation through the UPS, most

of them are critical proteins involved in cell cycle

progression, signaling transduction and apoptosis.

Studies have depicted the upstream NEDDylation

pathway that controls the CRL activity by regulating

the conjugation of an ubiquitin-like-protein NEDD8 to

the cullin protein in the complex. A specific pharma-

ceutical inhibitor of NEDD8 activating enzyme (NAE;

E1) MLN4924 was recently developed and has been

promoted to Phase I clinical trials for the treatment of

several human malignancies. This article summarizes

the most recent understanding about the process of

NEDD8 conjugation, its relevance for cancer therapy

and molecular mechanisms responsible for the potent

anti-tumor activity of MLN4924.
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Introduction

The ubiquitin–proteasome system (UPS) does not

obviously drive any oncogenic pathways and yet

bortezomib (Velcade�)-mediated specific inhibition

of proteasome, the system responsible for the final step

of protein degradation, turned out to be a paradigm

shift therapeutic strategy for multiple myeloma treat-

ment (Field-Smith et al. 2006; Richardson et al. 2005,

2007). Clinical trials of bortezomib in other types of

tumors, including mantle cell lymphoma, acute

leukemia and non-small cell lung cancer also high-

lighted the significance of UPS as a novel target for

human malignancy management (clinicaltrials.gov).

Bortezomib-mediated proteasome inhibition was de-

picted to exert its potent anti-myeloma activity by

inhibiting NFjB signaling, stabilizing pro-apoptotic

proteins and triggering endoplasmic reticulum (ER)

stress/unfolded protein response (UPR) (Mujtaba and

Dou 2011). Mechanistically, however, since protea-

some is also an essential system for normal tissue cell

survival, bortezomib-mediated proteasome inhibition

may cause serious side effects as have been reported in

clinical trials. Typical side effects include thrombo-

cytopenia, gastrointestinal toxicities and peripheral

neuropathy (Richardson et al. 2005, 2007). Last

35 years’ endeavor uncovered the detailed molecular
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mechanisms mediating the transferring and conjuga-

tion of ubiquitin (Ub) proteins to their substrate

targets. Consequently, a new therapeutic intervention

strategy that will more specifically and potently

impede cancer relevant portion of the UPS will

presumably exert potent anti-tumor activity and in

the meantime, will be well-tolerated by the patients.

Studies on multiple human malignancies showed

that hyper-activated UPS will sustain uncontrolled

proliferation and progression of cancer cells by

constitutively activation of pro-survival pathways

and dysregulation of proteins in cell cycle (Watson

et al. 2011). Up-regulation of UPS has been shown in

human malignancies like melanoma, lung cancer and

squamous-cell carcinoma (Li et al. 2014; Cheng et al.

2014). Proteasome-mediated degradation of proteins

starts with conjugation of an ubiquitin (Ub) to

substrate proteins. Ub conjugation happens in three

successive enzymatic steps (Komander 2009). Ub was

first activated in an ATP dependent manner by Ub-

activating enzymes (E1s), transferred to Ub-conjugat-

ing enzymes (E2s), which will further form a E3

complex to conjugate Ub to substrate proteins (Her-

shko and Ciechanover 1998). Besides Bortezomib, the

significance of UPS for cancer treatment was further

highlighted by the development of novel agents that

specifically target the components in the Ub conjuga-

tion pathway. In vertebrates, two E1 enzymes (Uba1

and Uba6) have been shown to activate ubiquitin and

an inhibitor targeting these enzymes, PYR-41, has

recently been studied for its antitumor activity (Yang

et al. 2007). Like bortezomib, PYR-41 was believed to

exert its anti-tumor activity by inhibiting NFjB
signaling (Yang et al. 2007). More than 35 E2s have

been found in vertebrates and an agent called CC0651

was specifically designed to inhibit one of the E2

called CDC34 (Ceccarelli et al. 2011; Huang et al.

2014). Structural studies indicated that CC0651 can

inhibit the spontaneous hydrolysis of the Cdc34A-

ubiquitin thioester and thus inhibit the ubiquitin and

subsequent degradation of p27(Kip1), accumulation

of which will induce cell cycle G1 phase arrest (Huang

et al. 2014). The most inspiring story of targeted

therapy against UPS system comes from the recent

identification of MLN4924 as a mechanism-based

specific inhibitor of NAE, impacting a subgroup of E3

ligases called Cullin RING ligases (CRLs) (Soucy

et al. 2009a, b). CRLs are responsible for ubiquitin

conjugation of 20 % cellular proteins designated for

degradation through the UPS system (Soucy et al.

2009a, b). Typical CRL substrates include proteins

involved in cell cycle regulation [Cdt1, Orc6,

p21(Cip1), p27(Kip1), WEE1], apoptosis (BIM,

Mcl1) and signaling transduction pathways (IjBa;
b-catenin; HIF1a; REDD1; Deptor) (Genschik et al.

2013; Lee and Zhou 2010; Soucy et al. 2009a, 2010).

Promising pre-clinical studies have promoted the

Phase I clinical trial of this compound in human

malignancies (Lin et al. 2010; Milhollen et al. 2011;

Zhao and Sun 2012; Swords et al. 2010; clinicaltri-

als.gov). Furthermore, hyper-activation of CRL com-

plexes has been reported in melanoma, squamous-cell

carcinoma, lung cancer, colon cancer and intrahepatic

cholangiocarcinoma (Li et al. 2014; Cheng et al. 2014;

Gao et al. 2014; Xie et al. 2014). The up-regulation of

CRL activity in these human malignancies further

validated CRL complexes as a promising therapeutic

target. However, detailed molecular level understand-

ing of how MLN4924 kills the cancer cells remains

elusive. In this review, we will introduce the relevance

of NEDDylation inhibition for cancer therapy and

summarize/review the cytotoxic mechanisms so far

proposed underlying the potent anti-tumor activity of

MLN4924 as a new generation of compounds that

specifically target the cellular protein turnover process

(Nawrocki et al. 2012).

Regulatory role of NEDD8 conjugation in CRL

complexes

Several levels of regulation were evolutionally devel-

oped to tightly control the activity of theCRL (Lydeard

et al. 2013). CRLs are composed of a scaffold protein

called cullin (CUL1, 2, 3, 4A, 4B, 5, 7, 9), substrate

receptor (SR) protein and an adaptor protein that

mediates the interaction between the cullin N-terminus

and the substrate receptors (Lee and Zhou 2010;

Sarikas et al. 2011). The C-terminus of cullin interacts

with the RING finger protein (Rbx1 and Rbx2), which

will mediate the recruitment of the Ub-conjugated E2

enzymes (Bohnsack and Haas 2003). Proposed

mechanisms regulating the activity of this multimeric

complex include binding of cullin-associated NEDD8-

dissociated protein 1 (CAND1) to the cullin-RING

complex, substrate-mediated up-regulation of SR

proteins and NEDDylation and deNEDDylation of a

Ub-like (Ubl) protein NEDD8 to the C-terminal area
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of cullins (Lydeard et al. 2013). So far, NEDD8

conjugation is one of the best studied mechanisms that

can turn ‘on’ and ‘off’ CRL activity in a timely manner

to delicately regulation the turn over of cellular

proteins. Conjugation of NEDD8 to the cullin protein

also happens in three enzymatic steps that involve

activating of NEDD8 by NEDD8-activating enzyme

(NAE; AppBp1/Uba3), and transfer to one of the E2

enzymes (Ubc12, Ube2F). E3 enzymes will then

facilitate the conjugation of NEDD8 to the substrate

proteins (Bohnsack and Haas 2003; Parry and Estelle

2004). A more detailed review on the regulatory role

of NEDDylation on CRL complex was published by

King and Finley (2014), recently. The cullin family of

proteins constitutes the major substrates of NEDDy-

lation, accompanied with other recently identified

substrates including TGF-b type II receptor, histone

H4, p53, p73, ribosomal proteins and L11 (Ma et al.

2013; Zuo et al. 2013; Abida et al. 2007; Watson et al.

2006; Xirodimas 2008; Xirodimas et al. 2004, 2008;

Sundqvist et al. 2009). The caveat here is that

identification of non-cullin NEDDylation substrates

all relied on over-expressed NEDD8 and recent studies

have suggested that NEDD8 may serve as a surrogate

for ubiquitin when its cellular levels are up-regulated

by over-expression (Hjerpe et al. 2012; Leidecker

et al. 2012). Conjugation of NEDD8 to the C-terminal

area will initiate a profound structural change of the

cullin-RING complex and facilitate the recruitment of

E2 and SRs and thus, promote Ub conjugation to

substrate proteins (Duda et al. 2008). Consequently,

inhibition of NEDD8 conjugation will down-regulate

CRL activity and induce accumulation of CRL

substrates. The intimate link between NEDD8-acti-

vated proteolysis and tumorigenesis was substantiated

by the development of MLN4924, which is now in a

Phase I clinical trial, as a specific inhibitor of NAE

(Soucy et al. 2009a, b).

MLN4924 is an adenosine sulfamate analogue that

inhibits the NEDD8 activation by forming a NEDD8-

MLN4924 adduct (Brownell et al. 2010). The selec-

tivity of MLN4924 in inhibiting NEDD8 activation

was established by showing that MLN4924 only

inhibits SUMOylation and ubiquitination activating

enzymes (Ubc10 and Ubc9, respectively) at much

higher dosages and this goes also for the protein

kinases, which generally require a concentration of

MLN4924 higher than 100 lM to reach their IC50s

(Soucy et al. 2009a, b). With the treatment of

MLN4924, NEDD8 will not be able to be conjugated

to cullin proteins, inducing CRL inhibition. Recent

proteomic studies identified hundreds of CRL sub-

strates critical for cell cycle progression, glucose

metabolism, signaling pathways and cell death

(Emanuele et al. 2011; Harper and Tan 2012; Liao

et al. 2011). Consequently, upon MLN4924 treatment,

these substrates will be stabilized and may trigger

cytotoxic responses.

Cytotoxic mechanisms of NEDDylation inhibition

in cancer cells

Most recent studies proposed several cytotoxic

mechanisms of NEDDylation inhibition towards

cancer cells (Fig. 1). However, given the amount of

CRL substrates that can be stabilized upon MLN4924

treatment, different cancer types may have distinct

mechanisms of vulnerability towards MLN4924. Cy-

totoxic CRL substrates so far proposed in mediating

MLN4924-induced cancer cell death include a cell

cycle licensing factor Cdt1, NFjB inhibitor IjBa,
mTOR inhibitor Deptor and REDD1 and cell cycle

checkpoint proteins p21(Cip1), p27(Kip1) and WEE1

(Lin et al. 2010; Zhao et al. 2012; Swords et al. 2010;

Mackintosh et al. 2013; Jia et al. 2011a, b; Gu et al.

2014). New mechanisms are emerging based on

different cellular context of cancer types and here

Fig. 1 Proposed cytotoxic mechanisms of NEDDylaton inhi-

bition in human malignancies. With inhibition of NEDD8

conjugation pathway, certain critical CRL substrates will

accumulate and will lead to cancer cell death. Major proteins

identified to induce cell death include cell cycle licensing factor

Cdt1; cyclin-dependent kinase inhibitor p21; a negative

regulator of entry into mitosis WEE1; mTOR pathway inhibitor

Deptor 1; NFjB pathway inhibitor IjB. Due to distinct cellular

context, different mechanisms were proposed in different cancer

cell lines tested with MLN4924
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we will outline those cytotoxic events so far proposed

when NEDDylation is inhibited.

First report regarding the cytotoxicity of MLN4924

highlighted the cell cycle licensing factor Cdt1 as a

substrate of CRL that accumulates upon NEDDylation

inhibition (Soucy et al. 2009a, b; Lin et al. 2010;

Milhollen et al. 2011). Cdt1, coordinated with other

replication factors cell division cycle 6 (Cdc6) and

origin recognition complex (Orc), will recruit MCM2-

7 complexes to the origins of DNA replication to form

a pre-replication complex (Pre-RC) (Caillat and

Perrakis 2012). After initiation of DNA replication

Cdt1 will be either targeted for degradation by CUL4-

DDB1Cdt2 and SCFSkp2 or bound by its inhibitor

geminin (Ballabeni et al. 2013; Nishitani et al. 2006).

With MLN4924 treatment, both E3 ligases (CUL4-

DDB1Cdt2 and SCFSkp2) with be inhibited and Cdt1

will not be timely degraded at late S phase. Accumu-

lated Cdt1 will trigger a process called DNA re-

replication in which DNA replication origins are

repeatedly initiated to replicate, leading to the accu-

mulation of [4N DNA content (Truong and Wu

2011). Supportive evidence of the existence of DNA

re-replication came from studies showing that with

MLN4924 treatment a cell population of[4n DNA

content was observed, indicating DNA replication was

fired multiple times (Soucy et al. 2009a, b; Lin et al.

2010; Jia et al. 2011a, b). More recent studies showed

that the cell line HCT116 used in those studies has

intra-S phase checkpoint defects, whereas other cell

lines that do not have such defects will not undergo

DNA re-replication to such an extent as in HCT116

(Blank et al. 2013). The intensity of DNA re-replica-

tion induced with MLN4924 treatment does not

necessarily relate with cancer cell death (Blank et al.

2013). Consequently, depending on the integrity of

cell-cycle checkpoints, the relevance of Cdt1 induced

DNA re-replication in mediating cancer cell death

upon NEDDylation inhibition may depend on the

specific cellular context in each cancer types.

MLN4924 treatment has been shown to induce cell-

cycle arrest in different phases. The specific cell phase

arrested with MLN4924 treatment also need to be

evaluated on the basis of a different cellular context.

Cdt1 accumulation will promote cell cycle S phase

entry whereas WEE1 accumulation will trigger G2/M

phase arrest (Soucy et al. 2009a, b; Mackintosh

et al. 2013). Accumulation of cell cycle regulatory

proteins upon MLN4924 treatment was constantly

accompanied with DNA damage response, which was

partially responsible for the apoptosis and senescence

induced upon NEDDylation inhibition (Soucy et al.

2009a, b; Mackintosh et al. 2013; Jia et al. 2011a, b).

Given the potency and the unique mechanism of

MLN4924 in inducing DNA damage in cancer cells,

synergistic interactions between MLN4924 with other

DNA-damage-inducing compounds (platinum, cytara-

bine, Cisplatin, mitomycin C) and radiation will

promote its incorporation into current treatment regi-

mens for human malignancies (Nawrocki et al. 2013,

2015; Yang et al. 2012; Wei et al. 2012; Kee et al.

2012; Jazaeri et al. 2013; Garcia et al. 2014). These

studies highlighted potential incorporation of

MLN4924 into current treatment regimens as addition

ofMLN4924 was shown to sensitize malignant cells to

those traditional therapeutic strategies.

The involvement of mTOR pathway in mediating

MLN4924-induced cell death was highlighted by the

findings that mTOR upstream inhibitors Deptor and

REDD1 are CRL substrates (Zhao et al. 2012; Gu et al.

2014). Stabilization/induction of REDD1 was induced

upon MLN4924 treatment in multiple myeloma and

siRNA-mediated knockdown was shown to alleviate

the cytotoxicity of MLN4924 (Gu et al. 2014).

Furthermore, MLN4924-mediated mTOR inhibition

was shown to trigger pro-survival autophagy in liver

cancer cells and simultaneous inhibition of autophagic

responses enhances cytotoxic effects (Luo et al. 2012).

This is consistent with a previous report with knock-

down of RING finger protein Rbx1 in the CRL

complex, in which protective autophagic responses

were also induced (Yang et al. 2013). Consequently,

concomitant inhibition of autophagy and NEDD8

conjugation hold significant therapeutic implications.

Stabilization of NFjB inhibitor IjBa was found to

be one major cytotoxic mechanism of MLN4924 in

acute myeloid leukemia (AML) and also in B cell-like

(ABC) diffuse large B cell lymphoma (DLBCL)

(Swords et al. 2010; Milhollen et al. 2010). Stabiliza-

tion of IjBa was also reported as major cytotoxic

mechanism of bortezomib although more recent

studies showed contradictory results showing that

instead of inhibition NFjB, bortezomib actually

activates this pathway by inducing phosphorylation/

activation of IjB kinase (IKKb) (Hideshima et al.

2009). Consequently, the role and relevance of

MLN4924-induced IjBa stabilization in mediating

NFjB inhibition and cancer cell death warrants further
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investigation beyond AML and DLBCL. Also, given

other aspects of NFjB pathway are strictly regulated

by ubiquitination, the detailed impact of MLN4924 on

it remains elusive (Chen 2005).

Discussion

Before the development of MLN4924 as a specific

inhibitor of NEDD8 activating enzyme, therapeutic

significance of CRL complexes was investigated using

siRNA-mediated knocking down of certain compo-

nents in the CRL complex. The RING component of

the CRL complex Rbx1 was shown to be up-regulated

in multiple cancer cell lines and primary tumor tissues

(Jia et al. 2009). Meanwhile, siRNA-mediated Rbx1

knockdown induced apoptosis, senescence and au-

tophagy, indicating the critical role of CRL complexes

in sustaining tumor cell growth (Jia et al. 2011a, b;

Yang et al. 2013). Further studies on Rbx2 showed the

relevance of pro-apoptotic factor NOXA in mediating

cytotoxicity of CRL inhibition (Jia et al. 2010). Also

siRNA mediated Skp2 knockdown has been well

studied to have potent anti-tumor effects (Katagiri

et al. 2006). All these studies on the role of CRL

complex in tumor cells paved the way for the

development and clinical evaluation of MLN4924 as

a therapeutic agent targeting CRL complexes. The

development of MLN4924 further highlighted the

UPS system as a ‘drugable’ target for human malig-

nancy treatment, although the detailed molecular

understanding of how MLN4924 exerts its cyto-

toxicity remains largely unknown. In this article, we

summarized/reviewed the most recent cytotoxic

mechanisms proposed underlying the potent anti-

tumor activity of NEDDylation inhibition.

However, given that CRLs are responsible for about

20 % of UPS-mediated protein turnover, certain

oncogenic substrates may also accumulate with

MLN4924 treatment. For instance, Hypoxia-inducible

factor-1a (HIF-1a) is a well-documented substrate of

pVHL-associated SCF ubiquitin ligase complex

(Lisztwan et al. 1999), although most recent studies

on the impact of MLN4924 on angiogenesis showed

that NEDDylation inhibition could efficiently inhibit

tumor vascularization process by inducing RhoA

accumulation (Yao et al. 2014). Also, components in

the tumorigenic Wnt signaling pathway, including the

Dishevelled protein that integrates extra-cellular

stimulus to activate Wnt pathway and b-catenin a

key transcriptional factor activation of which will

promote cell proliferation and invasion, are also well-

established as substrates of CRLs (Angers et al. 2006;

Gao and Chen 2010; Su et al. 2003). Currently, there is

no study evaluating the impact of the stabilization of

these oncogenic proteins upon MLN4924 treatment.

Given the critical role HIF-1a and Wnt pathway plays

in tumorigenic vascular remodeling, complex in vivo

micro-environment that nourish the tumor cells will

also be affected with stabilization of these oncogenic

proteins (Semenza 2003; Easwaran et al. 2003).

Induction of apoptosis or senescence by MLN4924

results in a permanent change of the tumor cell.

Similarly, oncogenic proteins are permanently altered

bymutation or amplification in order to promote tumor

growth. Whether the transient stabilization of these

oncogenic proteins is sufficient to impact tumor cell

growth in such a way as to alter the prognosis of

patients warrants further study. Consequently, a more

detailed mechanistic understanding of the cytotoxicity

of MLN4924 is required to fully evaluate the

therapeutic significance MLN4924 as a new gen-

eration of targeted treatment for human malignancy.
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