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Abstract

Regression mixture models are a novel approach for modeling heterogeneous effects of predictors 

on an outcome. In the model building process residual variances are often disregarded and 

simplifying assumptions made without thorough examination of the consequences. This 

simulation study investigated the impact of an equality constraint on the residual variances across 

latent classes. We examine the consequence of constraining the residual variances on class 

enumeration (finding the true number of latent classes) and parameter estimates under a number of 

different simulation conditions meant to reflect the type of heterogeneity likely to exist in applied 

analyses. Results showed that bias in class enumeration increased as the difference in residual 

variances between the classes increased. Also, an inappropriate equality constraint on the residual 

variances greatly impacted estimated class sizes and showed the potential to greatly impact 

parameter estimates in each class. Results suggest that it is important to make assumptions about 

residual variances with care and to carefully report what assumptions were made.

Introduction

An important problem in behavioral research is understanding heterogeneity in the effects of 

a predictor on an outcome. Traditionally the primary method for assessing this type of 

differential effect has been the use of interactions. A new approach for assessing effect 

heterogeneity is regression mixture models which allow for different patterns in the effects 
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of a predictor on an outcome to be identified empirically without regard to a particular 

explaining variable.

Regression mixture models have been increasingly applied to different research areas, 

including marketing (Wedel & Desarbo, 1994, 1995), health (Lanza, Cooper, & Bray, 2013; 
Yau, Lee, & Ng, 2003), psychology (Van Horn et al., 2009; Wong, Owen, & Shea, 2012) and 

education (Ding, 2006; Silinskas et al., 2013). While traditional regression analyses model a 

single average effect of a predictor on an outcome for all subjects, regression mixtures 

model heterogeneous effects by empirically identifying two or more subpopulations present 

in the data where each subpopulation differs in the effects of a predictor or predictors on the 

outcome(s). Three types of parameters are estimated in regression mixture models: latent 

class proportions (probability of class membership), class specific regression coefficients 

(intercepts and slopes), and residual structures. Although all these elements are crucial to 

establish a regression mixture model, most methodological research in the area of mixture 

modeling have focused on detection of the true number of latent classes (Nylund, 

Asparauhov, & Muthen, 2007; Tofighi & Enders, 2008) or recovering the true effects of 

covariates on latent classes and outcome variables (Bolck, Croon, & Hagenaars, 2004; 
Vermunt, 2010). Residual variance components are often simplified without thorough 

examination of the consequences.

This study aims to evaluate the effects of ignoring differences in residual variances across 

latent classes in regression mixture models. Before examining our research question, we 

briefly review regression mixture models in the framework of finite mixture modeling.

Regression mixture models

Regression mixture models (Desarbo, Jedidi, & Sinha, 2001; Wedel & Desarbo, 1995) allow 

researchers to investigate unobserved heterogeneity in the effects of predictors on outcomes. 

Regression mixture models are part of the broader family of finite mixture models which 

also include latent class analyses, latent profile analyses, and growth mixture models (see 
McLachlan and Peel (2000) for a review of finite mixture modeling). In regression mixture 

models, subpopulations are identified by class specific differences in the regression weights, 

which characterize class means on the outcomes (intercepts) and the relationship between 

predictors and outcomes (slopes). Thus, subjects identified to be in the same latent class 

share a common regression line, while those in another latent class have a different 

regression line. The overall distribution of the outcome variable(s) is conceived as a 

weighted sum of the distribution of outcome(s) within each class.

Take a sample of N subjects drawn from a population with K classes. The general regression 

mixture model within class k for a single continuous outcome can be written as:

(1)
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where yi represents the observed value of y for subject i, k denotes the group or class index, 

β0k is the class-specific intercept coefficient, p is the number of predictors, βpk is the class-

specific slope coefficient for the corresponding predictor, xip is the observed value of 

predictor x for subject i, and εik denotes the class-specific residual error which may be 

allowed to follow a class specific variance, . The value of K is specified in advance but the 

class-specific regression coefficients and the proportion of class membership are estimated. 

Hence, regression mixture models formulated in this way allow that each subgroup in the 

population has a set of unique regression coefficients and potentially unique residual 

variances, which represent the differential effect of the predictor on outcome.

The between class portion of the model specifies the probability that an individual is a 

member of a given class. This model may include covariates to predict class membership 

and can be specified as:

(2)

where ci is the class membership for subject i, k is the given class, zi is the observed value of 

predictor z of latent class k for subject i, αk denotes the class-specific intercept, γk is the 

class-specific effect of z, which explains the heterogeneity captured by latent classes. In this 

study, we are not considering the effect of z, so the equation can be simplified to:

Since there are many parameters to be estimated, model convergence can sometimes be a 

problem and, even when models do converge, they may not converge to a stable solution. To 

simplify model estimation, the class-specific residual variances are often constrained to be 

equal across classes. Referring to multilevel regression mixtures, Muthén and Asparouhov 

(2009) stated that, “For parsimony, the residual variance θc is often held class invariant.” (p. 

640). This can be suitable in some cases, such as when the residual variances are very 

similar for all latent classes. However, the effects of this constraint on latent class 

enumeration and model results when there are differences in residual variances between 

classes has not been thoroughly examined.

We know of no existing research examining the effects of misspecifying the residual 

variances in regression mixture models and of little research examining these effects with 

mixture models in general. McLachlan and Peel (2000) demonstrated the impact of 

specifying the common covariance matrix between two clusters in multivariate normal 

mixtures. They found that class proportions (and consequently assignment of individuals to 
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a class) were poorly estimated under this condition and they cautioned against the use of 

homoscedastic variance components. On the basis of this initial attempt, Enders and Tofighi 

(2008) investigated the impact of misspecifying the within-individual (level-1) residual 

variances in the context of growth mixture modeling of longitudinal data. In their study, the 

class-varying within-individual residual variances were constrained to be equal across 

classes and the impact on latent class enumeration and parameter estimates were assessed. 

They found some bias in the within-class growth trajectories and variance components when 

the residual variances were misspecified. In growth mixtures, intercepts and slopes are 

directly estimable for every individual and the value of the model is to classify individuals 

who are similar in patterns of these growth parameters. In regression mixture models, 

however, individual slopes are not directly estimable and the mixture is used to allow us to 

estimate variability in regression slopes which cannot otherwise be estimated. Thus, we 

expect that the impact of misspecifying the error variance structure on the parameter 

estimates to be more severe in regression mixture models than growth mixture models.

Unlike growth mixture models in which means (intercepts), slopes over time, and variances 

are the main focus, regression mixture models focus on the regression weights 

characterizing the association between the predictors and outcomes. In this case, we see 

clear reason to expect differences in residual variances between classes: if regression 

weights are larger there should be less residual variance, given the larger explained variance. 

Thus, even though residual variances are not the substantive focus when estimating these 

models, because differences between classes in residual variances are expected, it is 

especially important to understand the effects of misspecifying this portion of the model.

A review of the literature in which regression mixtures are used showed a lack of consensus 

in the specification of residual variances; some authors freely estimated the class-specific 

residual variance (Daeppen et al., 2013; Ding, 2006; Lee, 2013), while others constrained 

them to be equal across classes (Muthén & Asparouhov, 2009). Interestingly, the majority of 

the studies employing regression mixtures gave no information about residual variance 

specifications whether the equality constraint has been imposed or not (Lanza et al., 2013; 
Lanza, Kugler, & Mathur, 2011; Liu & Lu, 2011; Schmeige, Levin, & Bryan, 2009; Wong & 

Maffini, 2011; Wong et al., 2012). The contribution of this paper is to examine the degree to 

which this is a consequential decision that should be thoughtfully made and clearly reported, 

so that readers can understand regression mixture results, and so results may be replicated in 

the future. In the current study, we are focusing on the specification of  which is the 

variance of the residual error, εik, and represents the unexplained variance after taking into 

account the effect of all predictors in the model. We assume that the residual variances are 

normally distributed in this study to avoid the complex issue of non-normal errors in the 

regression mixture models (George et al., 2013; Van Horn et al., 2012).

Study Aims—The objective of this study is to examine the consequences of constraining 

class-specific residual variances to be equal in regression mixture models under conditions 

that approximate those likely in applied research. It is reasonable to expect that the 

unexplained/residual variances of the outcomes differ across the classes between which the 

effect size of the predictor on the outcome varies. However, in practice, residual variances 
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are of little interest substantively, and it has been recommended that they can be constrained 

to be equal across the latent classes for the sake of the model parsimony. In this study, we 

used Monte Carlo simulations to investigate the impact of this equality constraint.

Our first aim is to investigate whether imposing equality constraints on the residual 

variances across classes affects the result of class enumeration. We generated data from a 

population with two classes. The size of the residual variances differed across simulation 

conditions; however, we kept the differences in effect sizes between the classes the same 

across conditions. We examined how often the true two classes were detected when the 

residual variances were constrained to be equal for ten scenarios that differ in the number of 

predictors, the correlation between the predictors, and whether there is a difference in 

intercepts between the classes. As class enumeration is mainly determined by the degree of 

separation between classes, we hypothesize that the equality constraints for small differences 

in variance will have minimal impact on selecting the correct number of latent classes. We 

also hypothesize that when models are misspecified by constraining variances to be equal, 

additional classes will be increasingly found as class separation and power increases.

The second aim is to examine parameter bias in regression coefficients, variance estimates, 

and class proportions that results from constraining the residual variances to be equal across 

classes. We hypothesize that the scenario with a large difference in residual variances 

between the classes will result in the regression coefficients with substantial bias because we 

force the two very different values to be the same. With an additional class varying predictor 

in the model, although the total residual variances are reduced for each latent class, the 

differences in the residual variances across latent classes will increase because the difference 

in total effect size is greater. Thus, we expect that there will be greater bias when there is an 

additional predictor in the regression mixture models. We expect no bias when the true 

model contains two classes with equal variances.

The outcome of the first aim is the proportion of simulations that select the true population 

model over a comparison model using the BIC and ABIC as criteria. Although AIC is also 

frequently used for model selection in finite mixture models, previous research have shown 

that AIC has no advantage for latent class enumeration and tends to overestimate the number 

of latent classes in regression mixtures (Nylund et al., 2007; Van Horn et al., 2009). 

Therefore, we do not further discuss about the AIC in this study. For the second aim, the 

accuracy of the parameter estimates of intercepts, regression coefficients of the predictors, 

residual variances, and percentages of subjects in each class are examined.

Methods

Data generation

Data were generated using R (R Development Core Team, 2010) with 1000 replications for 

each condition with a sample size of 3000 in each dataset. Because regression mixtures rely 

on the shape of residual distributions for identification, this is seen as a large sample method 

(Fagan, Van Horn, Hawkins, & Jaki, 2012; Liu & Lin, 2014; Van Horn et al., 2009). We 

choose a sample size of 3000 to be consistent with other research in the field (Smith, Van 

Horn, & Zhang, 2012, April) and because samples of this size are available in many publicly 
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available datasets in behavioral research. Our starting point for finding differential effects is 

a population comprised of two populations (which should be identified as classes) with a 

small effect size for the relationship between a single predictor and an outcome (r =.20) in 

one and a large effect size for this relationship in the other (r =.70). The rationale for this 

condition is that we believe that a difference in correlations between subpopulations of .20 

and .70 is the minimum needed for regression mixture models to be useful in capturing 

heterogeneity in the effect of X on Y. This corresponds to a small effect in one group and a 

large effect in the other, which can be found in some applied research employing the 

regression mixture models (Lee, 2013; Silinskas et al., 2013). If the method cannot find a 

difference between a small and large effect with a sample size of 3000, then we argue that it 

has limited practical value for detecting differential effects. If it meets this minimum 

criterion then it has application at least in some situations. This condition is therefore chosen 

because it represents a threshold for the practical use of the method and is a good starting 

point for evaluating other features of the regression mixtures.

In this study, because we focused on the effect of misspecified residual variances, we held 

constant class membership probabilities (.50) and differences in effect size between classes 

to be equal. The challenge in this situation was to create conditions in which the difference 

in effect sizes between the two classes was the same, but in which residual variances 

differed. To achieve equal variances and have distinct regression weights, we chose the 

regression weights that had the same absolute value but differed in directionality, in which 

case the residual variances would be equal in each class. We also have a condition with a 

moderate difference in variances in which regression weights are scaled to be closer to zero 

than in the .20/.70 condition. In order to maintain the same effect size in each condition we 

computed a Fisher’s z-transformation1 (Fisher, 1915) for each correlation, when r is .20 

and .70, z’ is .203 and .867, which led the difference between the two classes of z’=.664. 

Thus, the effect size difference was fixed to be a difference of z’=.664 between the two 

classes for all conditions. The models can be written as,

• Large difference condition:

• Moderate difference condition:

• No difference condition:

1Fisher’s z’ was calculated by .
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where X was generated from a standard normal distribution with a mean of 0 and 

standard deviation of 1. The differences in variances are set to be .45 for large 

difference, .225 for moderate difference, and zero for no difference condition, while 

the total variance of Y is set to be 1 within each class across all conditions.

In order to assess the effects of variance constraints in situations more likely to mirror those 

observed in applied applications of regression mixtures, the simulations were expanded to 

include two predictors, the effects of which both differed between classes. This resulted in 

nine additional simulation conditions which differed in the correlations between these 

predictors as well as in the means of the outcome (intercepts) within each class. The general 

model for the multivariate conditions can be written as,

Because predictors in a multivariate model (especially where the predictors are operating in 

the same way) are typically correlated, we varied the relationship between X1 and X2 to 

range from having no relationship (Pearson correlation coefficient r = 0), moderate 

relationship (r = 0.5), and a strong relationship (r = 0.7). The population regression weights 

for the multivariate conditions were calculated to maintain the univariate relationships in 

light of the correlation between the predictors2. Additionally, the intercept values for the 

larger effect class (β02) were varied to be zero, 0.5, and 1 for the condition with two 

predictors in the model, while the intercepts for the smaller effect size class (β01) were 

always zero. Therefore, we generated a total of 30 sets of simulations including three 

variance-difference (large, moderate, and no) conditions for the univariate model and 27 

conditions (3 variance-difference x 3 correlations of predictors x 3 intercept-difference) for 

the multivariate model. Larger intercept differences result in greater class separation and 

should increase power to find 2 classes when the model is correctly specified, and to find 

more than 2 classes when the model is misspecified. The point of these analyses is to 

examine the effects of constraining class variances to be equal as class separation increases. 

We note that with two predictors the effect size when the predictors are both included in the 

model is not the same across conditions, specifically, there is less residual variance when the 

predictors are less correlated.

Data analysis

Mplus 7.1 (Muthén & Muthén, 1998–2012) employing the maximum likelihood estimator 

with robust standard errors (MLR) was used for estimating regression mixture models. We 

first fit the relaxed model (defined as the true model for the cases with a large and moderate 

difference in variances between classes) by allowing the class-varying residual variances. 

This serves two purposes: first, it validated the data-generating process by showing that the 

parameter estimates from the true model were as expected; second, this demonstrated that 

2The population parameters for the regression coefficients of two predictors and residual variances for both classes are presented in 
Appendix A.
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when there is no difference in variances between classes (i.e. for the no difference condition) 

it is still possible to estimate class-specific variances.

Then we examined the impact of constraining the residual variances to be the same between 

the classes on class enumeration. One-class, 2-class, and 3-class models were run for each of 

the 30 simulation conditions. The outcome is the percentage of simulations in which the true 

number of classes (2) is selected using the Bayesian Information Criterion (BIC; (Schwarz, 

1978)) and sample-size adjusted BIC (ABIC; Sclove, 1987). Both BIC and ABIC have been 

shown to be effective for latent class enumeration in regression mixture models (Van Horn et 

al., 2009).

Next, we compared the 2-class constrained model with class-invariant residual variances to 

the 2-class relaxed model with residual variances freely estimated in each class. A null 

hypothesis test was conducted to examine whether the restricted model fit worse than the 

relaxed model by using the Satorra-Bentler log-likelihood ratio test (SB LRT; Satorra & 

Bentler, 2001). The adequacy of parameter estimates is formally assessed using the root 

mean squared error (RMSE) and the coverage rate for the true population value for each 

parameter. RMSE is a function of both bias and variability in the estimated parameter and it 

is computed as the rooted square value of the difference between the true population value 

and the estimated parameter (i.e., ). We also reported the 

average parameter estimates, standard errors, standard deviations, maximum and minimum 

values, and the coverage rates. The coverage rate is the proportion of the 1000 simulations in 

which the true parameter values fall in the 95% confidence interval for each model 

parameter. If the parameter estimates and standard errors are unbiased coverage should be 

95%. It shows the accuracy of statistical inference for each parameter in each condition.

Results

Class enumeration

All models converged properly across all simulation conditions. Before examining the 

impact of the equality constraints on the residual variances, we analyzed the regression 

mixtures with freely estimating the residual variances for both classes. The percentage 

selecting the true 2-class model is presented in Table 1. For the single predictor model, the 

2-class model was selected in 86.2% and 87.2% of the simulations using the BIC and ABIC, 

respectively, when the difference in variances was large. Under the moderate variance-

difference condition (.225 difference), the true 2-class model was selected in 52.3% and 

86.7% of the simulations, respectively. Under the no variance difference condition when 

freely estimating the variance within class, the 2-class model was selected only in 46.7% 

using the BIC, while they were correctly selected using the ABIC in 84.1% of the 

simulations. The simulations which include two predictors suggest that the failure to select 

the 2-class model is a function of power related to relatively low class separation. When 

there is greater class separation – larger differences between classes in variance and 

intercepts, and additional predictors with weak correlations – the two class model is selected 

nearly all of the time using penalized information criteria.3
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The primary research questions for this paper were assessed using 1- through 3-class 

regression mixture models with the variance constrained to be equal between classes under 

all conditions. We first examined whether the true 2-class model was selected over the 1-

class and 3-class models in each simulation using the BIC and ABIC. The results in Table 2 

show that, as expected, the equality constraint does not impact class enumeration if the 

residual variances are actually the same. Under the equal variance condition for the single 

predictor model, the true 2-class model is usually selected by the BIC (70.4%) and the ABIC 

(94.4%). These detection rates for finding two classes are generally lower than those seen in 

previous research, possibly because differences in variance help to increase class separation. 

That this is due to decreased power due to less class separation is supported by because the 

detection rate is increased in the multivariate model where the residual variances are smaller; 

when the two predictors are not correlated, the 2-class model is selected in almost all 

simulations by the BIC (100.0%) and the ABIC (99.7%); when the two predictors are 

related, which decreases class separation, the detection rate for 2-classes goes down to 

70.1% with the BIC, while it is quite high with the ABIC (>95.1%).

For simulation conditions where the constraint on the variance was inappropriate (i.e., a 

difference in variances existed, but was constrained to be equal; see Table 3), we 

hypothesized that the 3-class result would be found. The results were more nuanced than 

this, when class separation is high, the BIC and ABIC both select the 3-class model over the 

1-class and 2-class results in every simulation. However, when class separation decreases 

(there is no difference between classes in the intercept and there is a higher correlation 

between predictors or the predictors are more correlated) the models tend to select the 1 or 

2-class solutions. In fact, the misspecified model sometimes performs better than the 

correctly specified model because the misspecification increases the probability of selecting 

the 2 over the 1-class result. The detection rate for selecting the correct number of classes is 

slightly decreased (BIC=68.0%; ABIC=92.5%) when the actual residual variances are 

moderately different (.225 difference) in the univariate model. Under the large variance-

difference condition (.45 difference), the detection rate is noticeably down to 55.6% using 

the ABIC, while the BIC was relatively stable (68.0%). When there are two uncorrelated 

predictors in the model, which has the biggest differences in residual variances between the 

two latent classes, 3-class model is selected in all simulations (100.0%) by BIC as well as 

ABIC, showing that the equality constraint leads us to select additional latent class. On the 

other hand, when there is some relationship (r = 0.5 and 0.7) between the two predictors and 

no intercept differences between the two classes, the power to detect the additional latent 

class capturing the effect heterogeneity decreases.

Model comparisons between the relaxed and restricted models

Next, we compared the restricted 2-class models with the equality constraint to the relaxed 

2-class model with class-specific residual variances. The last three columns in Table 2 show 

the results of the model comparisons based on the BIC, ABIC, and SB LRT. Overall, the 

relaxed models were favored over the restricted models when there were large variance-

differences between the classes, whereas the restricted models were favored when the equal 

3Results are summarized in Table 1, a complete set of results is available from the first author on request.
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variances were present. When there is a moderate difference in residual variances between 

the classes for the univariate model, all criteria tended to favor the restricted model. On the 

other hand, when the two predictors are not correlated, relaxed models are favored in most 

cases by all three criteria. Small differences were observed among the three model fit indices 

with the BIC always selecting the restricted model more often while ABIC selecting the 

relaxed model more. The SB LRT was best at choosing the relaxed model when the 

difference in variances was small.

Parameter estimates

We next examined the accuracy of parameter estimates from the 2-class regression mixture 

models when constraining the residual variances to be equal across classes. Given that we 

aim to know the consequence of constraining the variance for the parameter estimates and 

we know that the population has two classes, we included all 1000 replications in the 

assessment of estimation quality, rather than just the simulations in which the two class 

model was selected using fit indices. Table 3 presents the results of parameter estimates from 

the restricted 2-class model with a single predictor. The true population values for generating 

the simulated data are given in the table. Next to the true value, the mean of each parameter 

estimate across 1000 replications, standard deviation of the estimated coefficients across 

replications (empirical estimate of the standard error), mean of the estimated standard error 

across all simulations, minimum, maximum, RMSE, and coverage rates are presented.

Because they are constrained to be equal across classes, bias in the residual variances (σ2) 

between the classes is assured and the observed estimates are between the two true 

population values. The primary purpose of this aim was to assess the consequence of 

residual variance constraints on the other model parameter estimates. First, the class mean 

(i.e., log-odds of being in class-1 versus class-2) is severely biased when the large variance 

difference is constrained to be equal across classes. The true value of class mean is 0.00, 

which is the equal proportion (0.50) for the two classes. Under the large variance-difference 

condition, the average across simulations of the log-odds of being in class-1 is −1.755, 

which corresponds to a probability of .147. In other words, when variances are constrained 

to be equal on average, 14.7% of the 3000 subjects were estimated as being in the small 

effect-size class. The mean of the log-odds of class membership increased to −.777 (i.e., 

31.5% of subjects are estimated as being in class-1) under the moderate variance-difference 

condition, which is still considerably under the true value of 0. When the actual variance is 

equal between the classes (no variance-difference condition), the estimated class mean is 

unbiased (−.011).

The regression coefficients of the predictor (i.e., slopes of regression lines) for both classes 

are severely biased when there is a large difference in residual variances which are 

constrained to be equal in estimating the model. In this case the true regression coefficient 

of .20 for class-1 is on average estimated to be −.22, which now is in the wrong direction 

(negative) from the true population model (positive). The average estimate of the slopes for 

class-2 is also downward biased from .70 to .57. On the other hand, the mean of the outcome 

variable (i.e., intercepts of regression lines) is correctly estimated to be zero for both classes. 

Because the average parameter estimates show substantial bias, the estimated standard errors 
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are of little importance. However, we note that the standard deviation and minimum and 

maximum value of parameter estimates across simulations provide the evidence of large 

variation and in some cases of extreme solutions especially for the parameters estimates for 

class-1.

RMSEs increase as the magnitude of the variance-difference increased (see Table 3) and are 

especially large for the slope coefficients in the large variance-difference condition (RMSE 

for β11 = .42; RMSE for β12 = .24) indicating that these parameters are severely biased when 

misspecifying the residual variances to be equal across classes. The RMSE for class means 

indicates the extreme bias in this parameter when variances are incorrectly constrained to be 

equal. RMSEs for the model parameters under the equal-variance condition are small (range 

of .02 to .07) as they should be given that the data were generated such that the classes have 

equal variance in this condition.

The coverage rate for the equal variance condition is above 90% for all the parameters, 

which indicates that the 95% confidence interval for each parameter in the restricted model 

contains the true population value more than 90% of the time. The coverage rates became 

worse as the difference between the two residual variances increased. When the variance-

difference is large, the coverage rates for the class mean, slope coefficients, and residual 

variances are very low, in this situation it is unlikely that the correct inference would be 

made.

Table 4 presents the parameter estimates from the restricted 2-class model with two strongly 

correlated (r = 0.7) predictors and no intercept differences between the two classes. This is 

one scenario of 9 total simulation scenarios of the multivariate model. All other result tables 

are available from the first author upon request given the limited space in the paper. 

Although the results are not directly comparable to the univariate model because of 

differences in total effect size and the size of the residual variances, the overall results are 

similar. When the residual variances which large differences are constrained to be the same 

across classes, regression weights for both classes are downward biased, causing the slope of 

the smaller effect to switch direction. The class mean is again downward biased indicating 

that more number of observations are incorrectly assigned to be in class-2 (larger effect 

class). As expected, there is a lack of bias in parameter estimates when the equality 

constraint is held for the equal variance conditions.

Post hoc analyses for class identification

Previous analyses found that inappropriate equality constraint on the residual variances 

greatly impacted estimated class sizes and caused regression weights to switch direction. To 

better understand how this constraint impacts model results, we examined individuals who 

are misclassified as a result of the constraint. This analysis used a single simulated dataset of 

100,000 subjects to fit the 2-class restricted mixture model where data was generated under 

the large-variance difference condition. We then assigned individuals to latent classes using 

a pseudo class draw (Bandeen-Roche, Miglioretti, Zeger, & Rathoutz, 1997) in which 

individuals are assigned to each class with probability equal to the model estimated posterior 

probability of being in that class. Because the data were simulated, we also know the true 

class assignment for each individual. We then examined which individuals are correctly 
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versus incorrectly assigned as a result of constraining residual variances. Figure 1 presents 

the scatter plot with a regression line for each of the four groups defined by true and 

estimated class membership. As seen in the figure, a considerable number of class-1 subjects 

(about 80%) are incorrectly assigned to class-2, while most of the subjects in class-2 (above 

86%) remained in the same class. The relationship between the predictor and outcome in 

class-1 is now changed from positive (β11=.20) to negative direction (β11= −.18).

This reassignment of individuals helps to explain the mechanism through which constraining 

residual variances leads to bias. Because the effect size is stronger in class-2, class-2 

dominates the estimation. Extreme values from class-1, which show the strong positive 

relationship between X and Y, are moved to class-2 because the variance in class-2 is forced 

to be increased. At the same time, the residual variance of class-1 is reduced by allocating 

those extreme cases to class-2. Because those who followed an upward slope in class-1 have 

now been moved to class-2, the remaining individuals follow a downward slope (seen in the 

first two scatter plots of Figure 1) and the effect of X on Y in class-1 has now effectively 

changed direction. Individuals who are incorrectly assigned to class-1 have low variance 

because the variability in class-1 must be decreased and the variability in class-2 must 

increase. This demonstrates how a simple misspecification of residual variances can cause 

estimates of regression weights to switch signs.

Discussion

Regression mixture models allow investigation of differential effects of predictors on 

outcomes. Although they have recently been applied to a range of research, the effect of 

misspecifying the class-specific residual variances has remained unknown. This study 

examined the impact of constraining the residual variances on the latent class enumeration 

and on the accuracy of parameter estimates and found effects on both class enumeration and 

class-specific regression estimates.

Class enumeration was not affected by the equality constraint when the residual variances 

were truly the same. As differences in the residual variances across classes increased, 

detection rate for selecting the correct number of classes decreased. The ABIC seemed to be 

more sensitive to the misspecification of the residual variances, which was similar to the 

findings of Enders and Tofighi (2008) when looking at growth mixture models. However, 

differences in information criteria between the competing models were very small in many 

cases. In practice, an investigator who finds a very small difference in penalized information 

criterion will need to use other methods to determine the correct number of classes, in this 

case if the two class model shows two large classes with meaningfully different regression 

weights between the classes then they would be correct to choose the 2-class solution even if 

the BIC and ABIC slightly favored the 1-class result.

These results for latent class enumeration help to put previous research comparing indices 

for class enumeration into perspective. Previous research with regression mixtures has found 

that in situations where there is a large difference in variances between classes (as used in 

this paper) and large sample size (6000) the BIC performed very well and the ABIC showed 

no advantages (George et al., 2013). This study found that none of these indices perform as 
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well when sample size is somewhat lower: with large differences in residual variances and 

the correct model specification the 2-class model was supported less than 90% of the time; 

when the differences in residual variances are moderate or zero the 2-class model is 

supported using the ABIC and support for 2-classes is strongest when residuals are 

constrained to be equal. Thus, we do not recommend using either the BIC or the ABIC as 

the sole criterion to decide the number of classes. Along with the information criteria, class 

proportion, regression weights for each latent class, and previous research should be taken 

into account when deciding the number of latent classes.

Results for parameter estimates were clearer than for latent class enumeration: parameter 

estimates show substantial bias in both class proportions and in regression weights when 

class specific variances are inappropriately constrained. This is consistent with previous 

research evaluating the effects of misspecification of variance parameters in other types of 

mixture models (Enders & Tofighi, 2008; McLachlan & Peel, 2000). Moreover, we 

hypothesized that the impact of misspecifying the error variance structure on the parameter 

estimates will be much more severe in regression mixture models than growth mixture 

models. As expected, while there was relatively minor bias in parameter estimates in growth 

mixture models (Enders & Tofighi, 2008), we found substantial bias in regression weights 

for both latent classes in regression mixture models. In light of these results a reasonable 

recommendation is that in regression mixture models residual variances should be freely 

estimated in each class by default unless models with constrained variances fit equally as 

well and there are no substantive differences in parameter estimates.

While these simulations showed no problems with estimating class specific variances, in 

practice there will be situations with estimation problems when class specific variances are 

specified. One option is to compare models in which variances are constrained to be equal to 

those in which they are constrained to be unequal (such as the variance of class 1 equals ½ 

the variance of class 2). If no model clearly fits the data better and when other model 

parameters change substantially, then any results should be treated with great caution.

As with most simulation studies, this study is limited to examining only a small number of 

conditions. Specifically, we limited the study to a 2-class model with 50/50 split in the 

proportion of subjects in each class, a sample size of 3000, and constant effect size 

differences between the two classes. The main design factor for this study is the amount of 

difference in residual variances and intercepts between the two classes as well as the degree 

of relationship between the two predictor variables. When class separation is stronger than in 

our simulation conditions (as indicated by larger class differences in regression weights or 

intercepts or more outcome variables) the models should perform better. The purpose of this 

study was to demonstrate the potential effects of inappropriate constraints on residual 

variances, the actual effects in any one condition may differ substantially from those found 

here, however, this illustrates the potentially strong impact of misspecification of residual 

variances in regression mixtures. Users of regression mixture models should be aware of the 

potential for finding effects that are opposite of the true effects when residuals, which are of 

little importance to most users, are misspecified.
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Appendix

A. Parameter values for generating the multivariate population model

rx1x2 Difference in variance β11 β21 σ2
1 β11 β21 σ2

2

0 Large 0.2 0.2 0.92 0.7 0.7 0.02

Moderate −.126 −.126 .968 .491 .491 .518

No −.32 −.32 .795 .32 .32 .795

0.5 Large .133 .133 .956 .467 .467 .456

Moderate −.084 −.084 .982 .327 .327 .732

No −.213 −.213 .886 .213 .213 .886
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rx1x2 Difference in variance β11 β21 σ2
1 β11 β21 σ2

2

0.7 Large .118 .118 .959 .412 .412 .495

Moderate −.074 −.074 .984 .289 .289 .751

No −.188 −.188 .894 .188 .188 .894

B. R code for generating data

# Single predictor with large variance-difference condition #

dat<-matrix(NA,ncol=3,nrow=3000)

dat[1:1500,3]<-1

dat[1501:3000,3]<-2

for(i in 1:1000){

 dat[,1]<-rnorm(3000)

 dat[1:1500,2]<-dat[1:1500,1]*(-0.32)+rnorm(1500,sd=sqrt(0.898))

 dat[1501:3000,2]<-dat[1501:3000,1]*0.32+rnorm(1500,sd=sqrt(0.898))

write.table(dat,paste(C:/Temp/

data',i,'.dat',sep=''),col.names=FALSE,row.names=FALSE)

}

Mplus code for analyzing regression mixture model with equality constraint

#constraining the residual variances (by default)#

Title: 2-class model with an equality constraint;

 data: file = C:/Temp/data1.dat;

 variable:

 NAMES = X Y Group;

 USEVARIABLES = X Y;

 CLASSES = c(2);

 analysis:

      type=mixture;

      starts=100 20;

 model:

 %overall%

 Y on X;

 Y;

 %c#2%

 Y on X;

 ! Y;           !constraining the variance by not writing out this statement 

(by default)

 Output:

    TECH14;
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Figure 1. 
Assignment of individual observations when holding an equality constraint on the residual 

variances under the large variance-difference condition
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