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Abstract 
Chronic intake of alcohol undoubtedly overwhelms 
the structural and functional capacity of the liver by 
initiating complex pathological events characterized 
by steatosis, steatohepatitis, hepatic fibrosis and 
cirrhosis. Subsequently, these initial pathological events 
are sustained and ushered into a more complex and 
progressive liver disease, increasing the risk of fibro-
hepatocarcinogenesis. These coordinated pathological 
events mainly result from buildup of toxic metabolic 
derivatives of alcohol including but not limited to 
acetaldehyde (AA), malondialdehyde (MDA), CYP2E1-
generated reactive oxygen species, alcohol-induced 
gut-derived lipopolysaccharide, AA/MDA protein and 
DNA adducts. The metabolic derivatives of alcohol 
together with other comorbidity factors, including 
hepatitis B and C viral infections, dysregulated iron 
metabolism, abuse of antibiotics, schistosomiasis, 
toxic drug metabolites, autoimmune disease and other 
non-specific factors, have been shown to underlie 
liver diseases. In view of the multiple etiology of 
liver diseases, attempts to delineate the mechanism 
by which each etiological factor causes liver disease 
has always proved cumbersome if not impossible. In 
the case of alcoholic liver disease (ALD), it is even 
more cumbersome and complicated as a result of the 
many toxic metabolic derivatives of alcohol with their 
varying liver-specific toxicities. In spite of all these 
hurdles, researchers and experts in hepatology have 
strived to expand knowledge and scientific discourse, 
particularly on ALD and its associated complications 
through the medium of scientific research, reviews 
and commentaries. Nonetheless, the molecular 
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mechanisms underpinning ALD, particularly those 
underlying toxic effects of metabolic derivatives of 
alcohol on parenchymal and non-parenchymal hepatic 
cells leading to increased risk of alcohol-induced fibro-
hepatocarcinogenesis, are still incompletely elucidated. 
In this review, we examined published scientific 
findings on how alcohol and its metabolic derivatives 
mount cellular attack on each hepatic cell and the 
underlying molecular mechanisms leading to disruption 
of core hepatic homeostatic functions which probably 
set the stage for the initiation and progression of 
ALD to fibro-hepatocarcinogenesis. We also brought 
to sharp focus, the complex and integrative role of 
transforming growth factor beta/small mothers against 
decapentaplegic/plasminogen activator inhibitor-1 and 
the mitogen activated protein kinase signaling nexus 
as well as their cross-signaling with toll-like receptor-
mediated gut-dependent signaling pathways implicated 
in ALD and fibro-hepatocarcinogenesis. Looking into 
the future, it is hoped that these deliberations may 
stimulate new research directions on this topic and 
shape not only therapeutic approaches but also models 
for studying ALD and fibro-hepatocarcinogenesis. 
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Core tip: Alcoholic liver disease (ALD) leading to fibro-
hepatocarcinogenesis may show a bidirectional origin 
within the gut-liver axis. We bring to light the subtle 
reprogramming of the gut epithelium, gut microbiome 
and hepatic cells by both metabolic derivatives and 
unstable chemical species secondary to chronic alcohol 
intake, and their concerted role in ALD. We specifically 
highlight the integrative role of transforming growth 
factor-β/Smad, which synchronizes inflammatory 
and fibrogenic signals within the gut-liver axis. The 
gut may provide a less invasive option not only for 
prognosis and treatment of ALD but also for future 
research. We suggest that therapies for ALD and fibro-
hepatocarcinogenesis should focus on restoring the gut 
microbiome.
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INTRODUCTION 
It is a common knowledge that continuous heavy 
alcohol intake (80 g/d by men and 40 g/d by 

women) spanning several years (10-20 years)[1-3] 
may ultimately lead to chronic liver injury most 
often characterized by steatosis, steatohepatitis, 
liver fibrosis and cirrhosis leading to increased risk 
of fibro-hepatocarcinogenesis[1,4-6]. Many reviews[6-9] 
and research reports[10-12], just to mention but a few, 
have all emphasized the pathological role of alcohol 
and its metabolic derivatives in ALD as well as efforts 
to identify some of the signaling pathways crucial in 
alcohol-induced liver disease. These important expert 
inputs have provided new insights in our understanding 
of ALD and fibro-hepatocarcinogenesis and have 
also provided new research directions about these 
diseases. Nevertheless, the pathological and molecular 
signaling pathways which underpin the initiation and 
progression of alcohol-induced liver injury leading to 
fibro-hepatocarcinogenesis still remain incompletely 
elucidated. For instance, signaling pathways that 
integrate gut-dependent alcohol-induced dysbiosis, 
inflammation and liver-specific alcohol-related 
inflammation, immune regulation and fibrogenic 
signals have so far remained elusive. The current 
difficulty in elucidating the molecular pathogenesis 
of alcohol-induced liver disease is multifaceted. (1) 
The anatomical position of the liver coupled with the 
diversity of agents in terms of number, biochemical 
properties, physicochemical properties, toxicity 
potential, their duration/frequency of exposure to the 
liver have obscured well designed attempts to delineate 
and characterize agent-specific effects on the liver 
much less the signaling pathways involved; (2) There 
is accumulating evidence, which seems to indicate 
that buildup of mutations in hepatic alcohol metaboli-
zing enzymes (alcohol dehydrogenase, aldehyde 
dehydrogenase, CYP2E1) and genetic alterations 
induced by alcohol in hepatic cells[13,14] may have further 
obscured attempts to elucidate the signaling pathways 
in ALD and fibro-hepatocarcinogenesis; and (3) Perhaps 
the most major difficulty is the bidirectional origin of 
ALD and fibro-hepatocarcinogenesis (gut to liver or 
liver to gut) and the dysregulation of key homeostatic 
functions (inflammation, immune regulation and 
regulation of fibrogenic signals). Notably, hepatic 
metabolism of alcohol as well as effect of alcohol on 
the gut generates many toxic chemical species with 
different mechanisms of hepatic toxicity which makes it 
difficult to distinctly identify their individual effects and 
signaling pathways involved.

This review takes a close look at current per-
spectives and scientific investigations on the effect 
of alcohol and its metabolic derivatives on hepatic 
parenchymal and non-parenchymal cells, bidirectional 
origin of ALD as well as the subtle conspiracy at the 
molecular level involving inflammatory, immune 
and fibrogenic signaling pathways underpinning ALD 
and fibro-hepatocarcinogenesis. Specifically, we put 
into perspective the complex and integrative roles of 
TGF-β (a key fibrogenic cytokine), Smad proteins, and 
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MAPK signaling pathways which pathologically suffer 
complicity in ALD and fibro-hepatocarcinogenesis mainly 
due to up-regulation of PAI-1 gene (a key downstream 
target gene of dysregulated TGF-β/Smad signaling in 
fibro-hepatocarcinogenesis) as well as recruitment 
of inflammatory and immune signaling pathways to 
promote ALD and fibro-hepatocarcinogenesis. Of note, 
the pathological role of PAI-1 in liver fibrosis, cirrhosis 
and cancer in general has been reported[15]. And 
these pathological roles of PAI-1 may be linked to 
dysregulated TGF-β/Smad and MAPK pathways.

Transforming growth factor beta is a prototype of 
a superfamily of multi-functional cytokines including 
bone morphogenetic protein (BMPs), activin, inhibin, 
growth and differentiation factors, nodal, and anti-
Mullerian hormone[16]. The TGF-β1 subtype has been 
extensively studied, mainly due to its physiological 
and pathological roles in the regulation of metazoan 
development, differentiation and homeostasis. It is in 
the light of these that the TGF-β class of cytokines is 
seen as a necessary evil in metazoan biology. In fact, 
TGF-β signaling pathway plays an important role during 
embryonic development, normal physiological processes 
and disease states by regulating several cellular 
processes, including cell growth and differentiation, cell 
migration, apoptosis, extracellular matrix formation[16] 
and inhibition of cell proliferation in the early stages 
of carcinogenesis mainly by blocking uncontrolled 
proliferation of epithelial, endothelial and hematopoietic 
cells[17]. However, genetic and epigenetic alterations 
of the TGF-β ligand, TGF-β-specific membrane 
receptors (TβRⅠ, TβRⅡ and TβRⅢ), and mediators 
(Smad proteins) may switch its tumor suppressor 
effects into tumor promotion. The susceptibility of 
TGF-β to loss of function mutations in various cancers 
has been reported[18]. For example, loss or gain of 
function mutations in TβRⅠ[19] TβRⅡ[20-22], Smad2[23,24], 
Smad3[25] and Smad4[23,26] have all been implicated in 
various human cancers. Therefore, it is not surprising 
that dysregulated TGF-β signaling pathway suffer 
complicity in almost all known human cancers[27-30]. It is 
maintained that genetic and epigenetic factors conspire 
to mastermind switching of TGF-β function by rendering 
tumor cells resistant or unresponsive to TGF-β-mediated 
growth arrest, and other homeostatic functions. TGF-β 
has been branded as the key factor regulating the 
acquisition of all the phenotypic hallmarks of cancer (cell 
proliferation, induction of epithelial to mesenchymal 
transition (EMT), induction of tissue invasion and 
migration, induction of tumor angiogenesis, inhibition 
of immune surveillance, induction of cancer cell 
survival, cancer cell immortality and resistance to 
TGF-β-mediated cytostasis)[27,30]. Recent evidence 
shows that mitogen activated protein kinase (MAPK) 
pathway regulate linker-dependent phosphorylation 
of receptor mediated Smads (Smad2 and Smad3) 
to promote pathological roles of dysregulated TGF-β/
Smad signaling in liver fibrosis and hepatocellular 
carcinoma (HCC)[31,32]. The question arises as to how 

these signaling pathways act in synchrony to modulate 
alcohol-dependent activation of the hepatic cells to 
promote ALD and fibro-hepatocarcinogenesis from 
the perspective of the gut and the liver. Does chronic 
alcohol exposure alter TGF-β/Smad and MAPK signaling 
pathways? If it does, how and which component of the 
TGF-β/Smad signaling mediators is/are altered and 
how? Finally, how do deliberations on these questions 
inform us of future research directions and therapeutic 
strategies against ALD and fibro-hepatocarcinogenesis? 
The above questions are the preoccupation of the 
present review.

HEPATIC ALCOHOL METABOLISM
The liver metabolizes alcohol by employing two 
mechanisms, either through cytosol degradation 
by alcohol dehydrogenase to acetaldehyde (AA), 
then to acetic acid by aldehyde dehydrogenase in 
the mitochondria or via the cytochrome P450 (CYP) 
isoenzyme system where CYP2E1 actively metabolizes 
alcohol in cases of heavy alcohol ingestion[33-35]. 
Efficient functioning of these two hepatic alcohol 
metabolic processes ensure that toxic metabolites 
of alcohol, mainly AA (a hepatotoxin as well as a 
neurotoxin), MDA (a hepatotoxin) and some other 
unstable derivatives of the metabolites including 
CYP2E1-generated free radicals, protein adducts 
of AA and MDA, are rendered inactive or cleared 
from the system long before they cause any cellular 
damage. Indeed, buildup of AA and MDA, an inevitable 
phenomenon in chronic alcohol intake, is implicated 
for most of the toxic effects associated with chronic 
alcohol use[34]. 

Interestingly, it was reported that CYP2E1 activity 
may be induced about two to tenfold after chronic 
alcohol exposure and the underlying mechanism was 
linked to oxidative stress[36]. It was also reported 
that CYP2E1-dependent alcohol metabolism causes 
oxidative stress through increased output of reactive 
oxygen species (ROS)[37-39], which has already been 
implicated in lipid peroxidation and liver injury[40]. 

It must be noted that both cytosolic and mito-
chondrial alcohol metabolic pathways reduce NAD+ 

to NADH (addition of a hydrogen atom to NAD+ to 
convert it to NADH), however, impairment of any of 
the two metabolic pathways as a result of chronic 
alcohol intake may lead to a high NADH/NAD+ ratio 
which by extension affects cytosolic and mitochondrial 
metabolism of carbohydrate and lipid substrates 
leading to impaired gluconeogenesis[4]. It was reported 
that alcohol exposure induces fatty liver disease by 
increasing NADH/NAD+ ratio[41]. It remains to be 
established whether alcohol-induced NADH/NAD+ 
turnover underlies reprogramming and switching 
energy metabolism of pre-neoplastic hepatic cells from 
efficient mitochondria oxidative phosphorylation to 
that of inefficient but protective aerobic glycolysis (so-
called Warburg effect). The net effect is that there is 

52 January 7, 2016|Volume 22|Issue 1|WJG|www.wjgnet.com

Boye A et al . Alcohol and fibro-hepatocarcinogenesis



53 January 7, 2016|Volume 22|Issue 1|WJG|www.wjgnet.com

short-chain fatty acids (SCFAs). About 60%-90% of 
SCFAs in the gut lumen are absorbed by enterocytes 
to regulate energy supply, control gut pH, and resist 
pathogenic growth[50] probably via inflammasome[51]. 
The gut microbiome also plays a role in bile acid 
regulation[52,53], exchange of phenolic and aromatic 
acids[54], cholines, fatty acids and phospholipids[55,56]. 
Liver-specific biosynthesis of primary bile acids are 
reported to be dehydroxylated by some of these gut 
microbiome giving rise to secondary bile acids, which 
may be absorbed by the enterocytes to promote lipid 
absorption and energy homeostasis[52,53]. In view of 
the above, the importance of the gut microbiome 
in anti-oxidant, inflammatory, immune and energy 
homeostasis cannot be underestimated and therefore 
it represents a crucial determinant of the body’s sus-
ceptibility to irritants including alcohol and its metabolic 
derivatives.

It is not surprising that alterations in the num-
ber and species diversity of the gut microbiome 
culminating from host-behaviors including but not 
limited to chronic alcohol intake derail the essential 
benefits of the gut microbiome[57] and may provide 
avenue for the onset of various inflammatory diseases 
of the gastrointestinal system and its accessory 
organs, of which the liver is the most affected. From 
hindsight, change in gut microbial diversity has long 
been implicated in Crohn’s disease (CD)[46], ulcerative 
colitis (UC)[46] and irritable bowel disease (IBD)[46,58]. 
The case is not different with chronic alcohol exposure 
and the possible increase in Gram negative/Gram 
positive bacteria ratio (Figure 1). Nakayama et 
al[59] have shown that increased translocation of 
Streptococcus suis and its degraded products across 
the gut wall secondary to alcohol exposure correlated 
with progression of ALD. Accumulating evidence show 
that chronic alcohol intake may switch the afore-
mentioned essential regulatory functions of the gut 
microbiome into a rather deleterious one. For example, 
alcohol-induced gut dysbiosis increases endotoxin 
turnover[60,61], particularly LPS[6,62], which leads to 
increased leakage of endotoxins into portal circulation 
and chronic stimulation of the liver. By diverse 
mechanisms, alcohol and its metabolic derivatives 
have been implicated in dysbiosis of the gut mucosal 
layer[63-66].

Lipopolysaccharides (LPS) are breakdown products 
of bacterial cell walls, specifically pathogenic Gram 
negative bacteria strains[67] and it is reported that it can 
activate hepatic cells[6,67] and initiate overt inflammatory 
responses via TNF-α mediation[68,69]. Under normal 
physiological conditions, release of LPS from breakdown 
of pathogenic Gram negative bacteria into portal 
circulation is rendered harmless by endothelial cells 
lining blood vessels, sinusoidal endothelial cells (SECs) 
of the liver as well as liver-resident macrophages (KCs) 
or its cellular concentration is reduced to levels well 
below physiological concentrations insufficient to elicit 
any inflammatory response. But perturbations of the 

diminished substrate flow through the Kreb’s cycle, 
giving rise to diversion of acetyl CoA to fatty acid 
synthesis and this possibly underlies NADH-induced 
inhibition of mitochondria fatty acid β-oxidation and 
elevated fatty acid synthesis leading to the onset of 
alcoholic liver disease[42-44]. 

Currently, it has been proposed that the path-
ogenesis of a healthy liver to one of alcohol-induced 
liver damage may involve a two-hit progression 
with steatosis being considered as the “first hit”, 
followed by cellular insults such as oxidative stress, 
lipid peroxidation, direct lipid toxicity, mitochondrial 
dysfunction and/or infection to cause hepatic in-
flammation leading to alcoholic steatohepatitis[4-6]. 
As useful as this current “two hit” proposal may be, 
it remains to be clarified whether the pathological 
sequence of ALD leading to fibro-hepatocarcinogenesis 
lend itself to any particular set pattern, in view of the 
fact that diverse toxic agents of non-alcoholic origin 
may also influence ALD progression. The effect of co-
morbidity factors such as hepatitis B and C infections 
has been shown to increase the progression of ALD. 
However, it is still difficult to clarify the question of 
which toxic agent first initiates liver damage and 
which toxic agent takes over at what cellular time 
scale and how? Is it alcohol or the co-morbidity 
factors that first initiate liver damage? It appears 
that alcohol-induced liver damage leading to ALD 
and fibro-hepatocarcinogenesis may not follow any 
specific temporal sequence, in view of the presence 
of other non-alcohol toxic agents. It is possible that 
the underlying non-alcohol liver-specific toxic agents 
may be the determinants of the temporal sequence of 
alcohol-induced liver disease.

Alcohol-induced liver damage displays bidirectional 
origin in view of the significant nauseating role of 
lipopolysaccharide (LPS) derived from progressive 
alteration of the gut microenvironment by chronic 
alcohol intake.

ALCOHOL AND ALTERATION OF GUT 
MICROBIOME
The invention of the microscope[45] provided the impetus 
to uncover the co-existence of micro-organisms and 
humans[46]. It is now a common knowledge that the 
human gut, (a prominent barrier organ) harbors 
a metagenomic community of some 1014 micro-
organisms[47] mainly dominated by bacteria. The gut 
microbiome does play many regulatory functions 
spanning regular modulation of the innate and adap-
tive immune systems[48], synthesis and release of 
nutrients, vitamins, and preservation of the structural 
and functional integrity of the gut wall[46]. For instance, 
in the course of evolution of the gut microbiome, 
the diverse gut microorganisms have progressively 
managed to adapt as commensals, producing nutrients, 
such as vitamins of the B and K subclasses[49], and 
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gut wall as a result of chronic alcohol intake (Figure 1), 
increases gut permeability to LPS derived from degraded 
bacterial cells[62] and this certainly leads to leakage of 
high concentrations of LPS into portal circulation. The 
high levels of LPS in portal circulation overwhelms the 
regulatory capacity of SECs and endothelial cells leading 
to chronic liver injury[41]. Continual exposure of the liver 
to gut-derived LPS serves as an inflammatory nosae, 
first by disrupting the balance between inflammatory 
and anti-inflammatory homeostatic regulation. This 
balance is shifted to favor heightened or sustained 
inflammatory response. To sustain the exaggerated 
inflammatory response, LPS first activates hepatic 

parenchymal cells, precisely SECs KCs and hepatic 
stellate cells (HSCs) leading to re-programming of their 
core functions. It is not surprising that a correlation was 
reported between increased intestinal LPS permeability 
and alcoholic hepatitis[60,61]. Similarly, LPS derived 
from alcohol-induced increase in gut permeability was 
shown in alcoholics to correlate with the pattern and the 
amount of alcohol consumed[70,71] while high levels of 
LPS were detected in the sera and livers of patients with 
alcohol-induced liver disease[62]. The hepatotoxic effect 
of pathogen associated molecular patterns (PAMPs), 
e.g., LPS[72] has been shown to be mediated through 
toll-like receptors (TLRs)[73]. LPS is specifically reported 

Figure 1  An illustration of the bidirectional origin of alcoholic liver disease and fibro-hepatocarcinogenesis within the gut-liver axis. Chronic alcohol 
use induces derangement of the gut epithelium, increases Gram-/Gram+ bacteria ratio, increases endotoxin turnover, increases permeability of gut epithelium to 
endotoxins including lipopolysaccharide (LPS). Subsequently leakage of LPS into portal circulation gain access to liver to initiate activation of hepatic cells. LPS-
dependent activation of hepatic cells is further augmented by metabolic derivatives of alcohol to promote alcoholic liver disease (ALD) and fibro-hepatocarcinogenesis.  
T: Toll-like receptor 4; HSC: Hepatic stellate cell; KC: Kupffer cell; SD: Space of disse; SEC: Sinusoidal endothelial cell; M: Monocyte.
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to be the ligand for TLR4 subtype[67]. Importantly, TLR4 
as well as other TLR subtypes have been shown to 
be expressed on KCs, HSCs and hepatocytes under 
inflammatory conditions[9,74]. TLRs are crucial in the 
regulation of innate immune responses, sensing of 
damage associated molecular patterns (DAMPs) as 
well as PAMPs, of which LPS is an integral component. 
Also, it was reported that LPS/TLR4 signaling involves 
LPS-binding protein (LBP), CD14 and MD-2[75,76]. LBP 
facilitates the transfer of LPS from the outer membrane 
of bacterial cells to CD14, which in turn ensures 
the formation of TLR4-MD-2[77] to trigger LPS/TLR4 
signaling, but downstream of this TLR4-mediated LPS-
induced liver inflammation is myeloid differentiation 
factor protein 88 (MyD88). LPS-induced release of 
pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8, 
IL-12), chemokines (INF-γ, MCP-1)[78] as well as cell 
adhesion molecules (ICAM-1, VCAM-1) via activation 
of NF-kB and IkB in injured hepatic cells was MyD88-
dependent[78]. LPS-induced activation of the MAPK 
pathway leading to the expression of activator protein 
(AP)-1 was also reported to be MyD88-dependent[79-81].

In short, chronic alcohol intake may generate an 
inflammatory arsenal comprising LPS, ROS, AA and 
MDA together with their respective protein adducts, 
which launches continuous attack on hepatic cells 
(Figure 1). The pathological manifestation of these 
acohol-mediated attacks on the liver may depend in 
part on the synergistic interaction between alcohol 
and non-alcohol co-morbidity factors. Consequently, 
this sets the stage for the onset of liver fibrosis and 
its progression to cirrhosis, thus increasing the risk 
of fibro-hepatocarcinogenesis. To appreciate how the 
alcohol generated inflammatory arsenal attack the 
hepatic cells, we take a cursory look at each of the 
hepatic cells in the light of their normal structure and 
function vs their alteration by alcohol and its metabolic 
derivatives. 

ALCOHOL, METABOLIC DERIVATIVES 
OF ALCOHOL AND ACTIVATION OF 
HEPATIC CELLS
Sinusoidal endothelial cells
Sinusoidal endothelial cells (SECs) are hepatic non-
parenchymal cells characterized by flattened and 
highly fenestrated features[6]. SECs have no basement 
membrane and their microstructure endows them 
with the ability to selectively filter blood components 
from portal circulation into the space of Disse, for 
subsequent presentation to the hepatocytes and lipid 
storage cells[6].

Additionally, SECs are endowed with scavenger 
receptors (SRs) and higher permeability properties, 
and these factors make it possible for SECs to engage 
in phagocytosis, clearing blood of harmful toxins and 
ensuring bidirectional exchange of substances between 
the hepatic parenchyma cells and portal blood. The 

SECs, by logic provides the first line of defense for 
the liver, essentially scavenging and clearing potential 
harmful products from attacking the liver. Many 
immunological functions, including but not limited to 
the following, removal of small molecules (< 200 nm) 
from the blood using innate immune mechanisms such 
as scavenger and mannose receptors[82,83], expressions 
of MHC class Ⅱ and co-stimulatory molecules (CD54 
and CD106), and antigen processing, presentation, 
and leukocyte recruitment[83], have been attributed to 
SECs. 

The afore-mentioned homeostatic functions of 
SECs in the liver of an alcoholic become derailed due 
to continuous and sustained activation of SECs by 
gut-derived LPS leakage into portal circulation. For 
example, exposure of SECs to LPS was shown to have 
induced basement membrane formation[84], and this 
observation was said to have preceded fibrogenesis. 
Some results from in vitro studies have also shown 
that SECs can reverse activated HSCs back to their 
quiescent state, but SECs loose this property following 
capillarization due to LPS activation[85]. Serious is the 
fact that continuous LPS-activation of SECs induces 
decreased responsiveness of SECs to LPS and also 
diminishes SEC-dependent scavenger functions. 
Eventually, the liver may be exposed to potentially 
damaging insults including metabolic derivatives of 
alcohol.

Accordingly, AA and MDA were shown to have 
formed protein adducts, which in turn stimulated 
SECs to produce more fibrogenic cytokines[6]. A clear 
attestation to this observation was demonstrated by 
fibronectin. Fibronectin was shown to be overexpressed 
following alcohol-induced liver damage and it was 
implicated in the activation of HSCs leading to liver 
fibrosis[6]. MDA-derived protein adducts were reported 
to have increased the expression of soluble fibronectin, 
cellular fibronectin and EⅢA fibronectin variant (the 
variant form of fibronectin, most implicated in HSC 
activation)[86,87]. Pro-inflammatory cytokines including 
TNF-α, MCP-1, and MIP-2 were similarly shown to 
have increased following treatment of isolated SECs 
with MDA-derived protein adducts[87,88]. Also, AA/MDA 
modified proteins were reported to have induced SECs 
to release both pro-inflammatory and pro-fibrogenic 
signals[88], while LPS was similarly reported to induce 
AA/MDA modified protein adduct-dependent release 
of chemokines and cytokines by SECs[89]. Evidently, 
LPS, AA, MDA, and their protein adducts act in concert 
to potently induce apoptosis of SECs which leads to 
weakening of SEC-dependent defense mechanisms 
of the liver, further, compounding an already com-
promised liver. LPS-activated SECs may in turn trans-
activate KCs and HSCs in addition to their direct 
stimulation by LPS.

Kupffer cells
As part of the reticuloendothelial system are cells 
called Kupffer cells (KCs). Kupffer cells are monocyte-
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derived cells resident in the liver as specialized hepatic 
macrophages[6,90]. These cells were first observed 
by Karl Wilherm von Kupffer in 1876[91] to whom is 
credited the name KCs, but it was not until 1898 that 
KCs were correctly identified as macrophages[92]. Their 
origin can be traced to the bone marrow, where pro-
monocytes and monoblasts cells differentiate into 
monocytes, which then enter circulation and finally 
transform into KCs[93].

Functionally, KCs form a major part of the reti-
culoendothelial system within the liver sinusoidal 
compartment, phagocytizing senescence red blood cells 
as well as phagogenic presentations. As a result, they 
are widely scattered within the sinusoids. In support 
of the phagocytizing capacity of KCs, Helmy et al[94] 
have reported a receptor of the immunoglobulin family 
(CRIg), and they further showed that CRIg null mice 
could not clear complement system-coated pathogens, 
and that CRIg is well conserved in mice and humans, 
emphasizing the relevance of the CRIg as a component 
of the innate immune system and that of the role of 
KCs in the innate and complement systems. 

In normal physiological state, KCs perform their 
immuno-regulatory functions without overt release 
of pro-inflammatory cytokines and chemokines; 
however, alcohol and its associated metabolic deriva-
tives have the potential to reprogram KCs through 
repeated or continuous activation. This undue 
activation of KCs renders them more pro-inflammatory 
and pro-fibrogenic due to KC-dependent release of 
inflammatory and fibrogenic cytokines. For instance, 
it was reported that under stress conditions, KCs and 
other hepatic cells release cytokines (IL-1, IL-6, IL-8, 
TNF-) and chemokines (MIP-2, IP-109, KC/GRO, MIP-
1α, and RANTES)[90,95]. It is the unregulated release 
of these inflammatory and fibrogenic cytokines that 
induces liver injury. It was further shown that each of 
the pro-inflammatory cytokines and chemokines could 
directly cause liver injury by targeting hepatic cells or 
indirectly through chemo-attraction of immune cells 
including neutrophils and lymphocytes[95]. Also, it was 
reported that the expression of adhesion molecules 
changes during LPS/alcohol-dependent liver injuries. 
Notably the enhanced expression of PECAM-1 and 
down-regulation of ICAM-1 characteristic of normal 
liver were reported to be reversed by TGF-β under 
inflammatory conditions[96]. 

Chronic exposure of the liver to alcohol succeeds in 
changing the sensitivity of KCs to LPS stimulation[97-99]. 
In a study to clarify alcohol-induced sensitization of 
KCs to LPS, Watanabe et al[100] have suggested that 
it could be due to the effect of alcohol on calcium 
channels, which is indispensable for TNF-α release. 
Exposure of KCs to alcohol does not only increase 
sensitivity of KCs to metabolites of alcohol but also 
increases intracellular calcium channels in KCs. It 
was shown that KCs exposed to alcohol for two hours 
lacked elevated intracellular calcium, but prolongation 

of alcohol exposure time to 24 h showed increased 
intracellular calcium, which manifested as TNF-α 
production and expression of LPS binding receptor 
(CD14), and this perhaps explains the increased 
sensitivity of KCs to LPS. Chronic alcohol exposure was 
also shown to have increased the expression of α2A-
adrenoceptors in activated KCs and it was linked to the 
release of TNF-α and TNF-α-induced liver injury[101]. 
LPS was shown to augment AA/MDA protein adduct-
mediated release of pro-inflammatory and pro-
fibrogenic cytokines and chemokines by KCs[89]. LPS-
induced acute and chronic liver injury was linked to 
activation of KC[102,103].

The activation of KCs is not limited to only LPS-
derived from gut microbiome, and proteins modified 
by AA and MDA may also activate KCs leading to overt 
inflammatory and immunological responses injurious 
to the liver (Figure 2). Many alcohol modified protein 
adducts have been widely implicated in alcoholic liver 
disease[89,104,105]. Alcohol and its metabolic derivatives 
have also been implicated in KC/prostaglandin E2-
induced liver injury[106] and this is in part attributed to 
endotoxin-dependent release of nitric oxide (NO) in 
KCs[107]. It appears that, chronic alcohol exposure in 
addition to AA and MDA dependent liver injury may 
also induce increase in gut-derived LPS, increase 
in LPS leakage into portal blood, increase in blood 
concentration of LPS, increase in LPS binding receptor 
expression and increased sensitivity of KCs to LPS and 
these may collectively sustain liver injury.

LPS activation of hepatic cells shows a snowballing 
effect, in that apart from LPS directly activating each 
hepatic cell, each activated hepatic cell may in turn 
influence the activation of its neighboring hepatic 
cells in a manner akin to paracrine or hormone-like 
cell to cell communication. For example, LPS-induced 
activation of SECs leads to activation of KCs via release 
of pro-inflammatory and pro-fibrogenic factors, similar 
activation of KCs also in turn activate quiescent HSCs 
through the release of TNF-α and TGF-β1

[6]. Typically, 
LPS-activated KCs were shown to have activated HSCs 
in vitro leading to HSC proliferation and increased ECM 
production[108]. Next, we look at how alcohol and its 
metabolic derivatives act in concert to activate HSCs to 
usher in liver fibrosis.

Hepatic stellate cells
Hepatic stellate cells (HSCs) are non-parenchymal 
hepatic cells located within the space of Disse between 
endothelial cells and hepatocytes[109,110]. HSCs can 
exist in two distinct forms depending on whether 
they are activated by an external inflammatory 
nosae or otherwise. In their normal inactivated state, 
also known as quiescent stellate (Ito) cells, they 
function normally by storing vitamin A, and may play 
modulatory roles during inflammation by expressing 
ICAM-1 and VCAM-1. It has been shown that HSC 
activation (tran-differentiation of quiescent vitamin 
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A-storing cells to proliferative myofibroblast cells) by 
hepatotoxins plays a crucial role in liver fibrogenesis. To 
substantiate this claim, it was shown that inactivation 
of HSCs attenuates liver fibrosis[111]. Activated HSCs, 
mostly release excess TGF-β1 which has been shown to 
down-regulate ICAM-1 and VCAM-1 while increasing 
N-CAM expression in HSCs. In addition, HSCs in their 
activated states may express TNF-α, which reduces 
N-CAM-coding mRNAs and also induces ICAM-I-and-
VCAM-1 specific transcripts by many folds[90]. Under 
inflammatory conditions, HSCs trans-differentiate 
into myofibroblast and concomitantly increase ECM 
production. There is dysregulation of ECM metabolism 
which promotes liver fibrosis. This underlies the 
initiation of fibrogenesis and the complicity of HSCs 
in liver fibrosis[112]. Coherent with this, Knittel et 
al[113] have intimated the importance of HSCs during 
hepatic injury through the recruitment and migration 
of mononuclear cells in the peri-sinusoidal space. This 
perhaps sets the stage for the secretion of TGF-β and 
TNF-α and their pathological role in liver fibrosis[114,115] 
and several other cytokines and chemokines including 
MCP-1, RANTE-1, and IL-8[116-118].

The effect of alcohol and its metabolic derivatives 
on HSC activation and their roles in ALD progression 
have been extensively investigated. For example, 
alcohol-induced activation of HSCs was linked to the 
release of TGF-β1, matrix proteins, and initiation of 
fibrogenic response[112,119]. Karaa et al[120] have also 
shown that alcohol exposure to mice produced HSC 
activation in addition to increased hepatic collagen 
output and neutrophil infiltration. 

Evidence implicating alcohol-specific metabolites 
in liver injury was clearly demonstrated by using 
4-methylpyrazole (4-MP), an inhibitor of alcohol 
metabolism. It was shown that sustained alcohol 
exposure to precision cut liver slices (PCLS) produced 
increased levels of IL-6, depletion of GSH stores, 
increased lipid peroxidation, increased expression of 
smooth muscle actin (α-SMA) and increased deposition 
of collagen in liver sinusoidal space[6]. But all these 
aforementioned alcohol exposure-specific phenotypic 
hallmarks were reversed by 4-MP treatment[6,121], 
emphasizing the involvement of alcohol and its meta-
bolic derivatives in liver fibrosis.

Furthermore, LPS was reported to exert direct 

Figure 2  A schematic illustration of the two-way attack of hepatic cells in alcoholic liver disease and fibro-hepatocarcinogenesis. By multiple mechanisms 
alcohol metabolizing enzymes and gut-derived LPS induce production of free radicals which stimulate the release of pro-inflammatory and pro-fibrogenic cytokines. 
Free radical-dependent activation of hepatic cells leads to the release of pro-inflammatory transcription factor (NF-kB) and inflammatory cytokines (TNF-α, IL-1β) 
which provide the signal for injurious overt hepatic inflammatory response. Secondary to the injurious hepatic inflammatory response, is the activation of hepatic 
cells (mainly HSCs and KCs) to further release pro-fibrogenic factors, mainly the key fibrogenic cytokine (TGF-β) which mediates a high ECM turnover (increased 
fibrogenesis : fibrinolysis ratio) in HSCs and the space of Disse, and trans-migration of hepatic non-parenchymal cells. These pathological events initiate liver fibrosis 
and cirrhosis leading to fibro-hepatocarcinogenesis. AA: Acetaldehyde; ADH: Aldehyde dehydrogenase; ALDH: Alcohol dehydrogenase; ECM: Extracellular matrix; 
HSCs: Hepatic stellate cells; IL-1β: Interleukin-1 beta; KCs: Kupffer cells; LPS: Lipopolysaccharide; MDA: Malondialdehyde; NF-kB: Nuclear factor kappa B; SECs: 
Sinusoidal endothelial cells; TGF-β: Transforming growth factor beta; TNF-α: Tumor necrosis factor alpha; VCAM: Vascular cell adhesion molecule; +++: Up-regulated 
expression or overproduction.
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effect on HSCs[122] and also indirectly via LPS activated 
KCs[108,123]. LPS was shown to enhance the effect 
of alcohol and AA on HSC activation[124,125] and the 
expression of collagen 1 and IL-6[126], while AA alone 
induced activation and proliferation of HSCs[127,128] and 
expression of α-SMA[127,129]. 

At the mechanistic level, AA-induced activation of 
HSCs was linked partly to ERK1/2/PI3K pathway[130,131], 
JNK/α1-collagen pathway[132] and TGF-β1/TβRⅡ 
signaling[133,134]. Transcriptional elevation of TGF-β and 
its membrane receptors (TβRⅠ and TβRⅡ) have been 
considered as key hallmarks of activated HSC[135]. And 
this certainly increases the sensitivity of activated HSCs 
to TGF-β-mediated fibrogenic signals. Siegmund et 
al[9] have posited that the signal for ECM production by 
HSCs in liver-related diseases of all etiologies including 
alcohol emanates from TGF-β. Corroboratively, it was 
shown that TGF-β protein levels increased in both 
experimental and human liver fibrosis[136]. Thus, TGF-β 
is the key contributor of irregular ECM accumulation 
in liver sinusoidal space by forming basal membranes 
leading to defenestration of the liver sinusoids[137] 
as well as decreasing MMPs to further halt ECM 
degradation[138].

Hepatocytes
Hepatocytes are the main hepatic cells in the liver 
accounting for 80% of the cytoplasmic mass of 
the liver[90]. Characteristically, hepatocytes exhibit 
eosinophilic cytoplasm (a cytoplasm with abundant 
mitochondria) and basophilic stippling (abundance of 
endoplasmic reticulum and ribosomes)[90]. Within the 
liver, hepatocytes are organized into cell-thick plates 
separated by vascular channels[139,140]. When these 
structural and functional characteristics of hepatocytes 
are not disturbed or altered by any nosae, hepatocytes 
can attain an average life span of 5 months whiles 
retaining the capacity to regenerate[90].

Functionally, hepatocytes are involved in protein 
synthesis, protein storage, and transformation of 
carbohydrates, synthesis of cholesterol, bile salts, 
phospholipids, detoxification, modification and 
excretion of exogenous and endogenous substances[90]. 
Additionally, hepatocytes can biosynthesize hormones 
including insulin-like growth factor (IGF-1)[90,141], 
thrombopoietin[142], erythropoietin[143] and cytokines such 
as IL-8[144,145] needed for normal hepatic homeostatic 
processes.

In the event of liver injury due to alcohol and its 
metabolic derivatives, the degree of injury overwhelms 
the hepatocyte defense mechanisms, especially when 
the nosae is continuous and sustained (Figure 1). 
As a means of defense, hepatocytes may respond 
to acute phase inflammatory mediators such as 
IL-6 by releasing acute phase proteins including 
C-reactive protein (CRP)[146], serum amyloid A 
(SAA)[147] and also some intracellular defense proteins 
like heme-oxygenase-1 (HO-1)[148]. In a desperate 

attempt to fight back, hepatocytes employ various 
mechanisms including release of chemokines such 
as MIG[149], IP-10[149], cytokine-induced neutrophil 
chemo-attractant (KC), MIP-1, MIP-2, and MIP-3 
which act in concert to recruit and activate pro-
inflammatory cells (mononuclear phagocytes) and 
KCs respectively. But because the inbuilt intracellular 
hepatocyte defense mechanisms i.e., CRP, SAA and 
HO-1, and the anti-oxidant system have already 
been weakened, by the continuous exposure of the 
damaging nosae, the hepatocyte defense response 
leads to mass hepatocyte apoptosis at a rate that 
further compromise the structural and functional 
integrity of the liver as a whole. Hepatocyte cytosol 
and microsomal compartments are the initial sites for 
alcohol metabolism before mitochondrial-dependent 
breakdown. The number and integrity of hepatocytes 
are rate-limiting factors in alcohol metabolism. 
Therefore, increased apoptosis of hepatocytes leads 
to poor alcohol metabolism which further increases 
the buildup of alcohol metabolites (AA and MDA), 
meanwhile KCs, SECs, and NKs which could clear the 
debris and the resulting buildup of toxins have been 
disabled by LPS, AA, and MDA. This situation exposes 
the liver to potentially damaging nosae which may set 
the stage for the initiation of cirrhosis leading to HCC.

Pit cells
Pit cells, lymphocyte-derived non-parenchymal cells, 
form about 1% of the non-parenchymal cell mass[150]. 
Pit cells are liver representatives of natural killer cells 
(NKs) in other organs. Pit cells are suspected to have 
originated from the bone marrow transported by blood 
to finally settle in the liver, where they transmogrify 
into their current state by lowering their density and 
increasing their granular content. The very existence of 
the pit cells are dependent on KCs[151], which suggest 
that whatever that happens to KCs will in turn affect 
the fate of pit cells. 

Functionally, pit cells biosynthesize interferon 
gamma (IFN-γ) in response to damaging inflammatory 
nosae, but they can also partake in the destruction of 
virus-infected malignant cells. Pit cells are versatile 
migratory cells and they are normally activated 
by interleukin-2[90]. Alcohol, AA, MDA, and LPS 
may directly damage pit cells through continuous 
activation or indirectly by activated KCs and HSCs, 
leading to functional impairment and consequences 
thereof on the liver, in view of the fact that pit cells 
via the perforin/granzyme-dependent mechanism 
are indispensable in the removal and apoptosis of 
splenic/blood-NK-resistant tumor cells[152]. Importantly, 
TGF-β-induced repression of NKs, a phenomenon 
characteristic of chronic alcohol consumption[153], has 
been linked to failure of NK cell-mediated apoptosis of 
HSCs[154,155].

Evidently, chronic alcohol intake affects the 
structural and functional capacity of all the hepatic 
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cells and this possibly may set the cellular stage for 
the actions of pro-inflammatory and pro-fibrogenic 
cytokines acting in concert to promote ALD leading 
to fibro-hepatocarcinogenesis. At the center of this 
complex cellular conspiracy against the liver are 
the TGF-β/Smad and MAPK pathways and their 
downstream target genes.

TGF-β: A VERSATILE SIGNALING 
MODULATOR WITH COMPLEX 
FUNCTIONALITY IN ALD AND FIBRO-
HEPATOCARCINOGENESIS
To appreciate how alcohol and its metabolic derivatives 
alter TGF-β/Smad signaling to promote ALD and 
fibro-hepatocarcinogenesis, we should first take a 
panoramic view of TGF-β/Smad signaling and also 
the cell/context-specific functions of TGF-β which 
perhaps may explain its complex and integrative roles 
in ALD. TGF-β is considered to exert growth restraints 
on various cancer cells at the initial stages of fibro-
hepatocarcinogenesis by mechanisms including 
cell cycle arrest at critical check points, induction of 
apoptosis and restoration of cellular structure[156-158], 
an observation which highlights TGF-β as a potent 
anti-tumor cytokine[31]. However, by a sudden twist of 
events, in a different cellular context such as in ALD, 
fibro-hepatocarcinogenesis as well as in other disease 
pathologies, it tends to promote disruption of cell 
adhesion, induces migration and invasion, and mediate 
immune suppression and angiogenesis, to become a 
crucial tumor promoter[158]. For example, in ALD it was 
reported that AA does not only increase the steady 
levels of TGF-β mRNA transcripts[159] but also promote 
activation of latent TGF-β and elevate the expression of 
TβRⅡ[134]. Furtheremore, it was shown that a decrease 
in TGF-β protein levels correlated with a decrease in 
AA-induced α2 collagen (I) gene[160]. 

Basically, TGF-β signaling involves two major 
signaling modes, canonical and non-canonical. The 
former is mediated by Smad proteins while the latter 
involves cross signaling between TGF-β and other 
cell signaling pathways implicated in cancer such as 
Wnt/β-catenin pathway[161,162], VEGF pathway[163,164], 
aberrant FGF/FGFR signaling pathways[165,166], MAPK 
pathway[167,168], PI3k/AKT/ mTOR pathway[169], HGF 
signaling[164], aberrant EGF/EGFR signaling pathway[170], 
and deregulation of IGF pathway[171]. To proceed, we 
highlight the Smad proteins and the MAPK pathway, 
which have so far been shown to work closely with 
TGF-β signaling in both cell and animal models of ALD 
(Table 1) to promote liver fibrosis and HCC[31]. 

Smad proteins
Genetic studies spanning more than a decade ago 
using Caenorhabditis elegans (a nematode), and 
Drosophila melanogaster (a fruitfly) led to the dis-

covery of a group of genes, which were later named 
Smads from their original sources. Smads are the 
central mediators that carry signals from receptors of 
TGF-β, BMP, and activin cytokines to the nucleus[172]. 
Smads which are now identified as substrate 
transcriptional factors play integral functions in the 
intracellular signaling responses to TGF-β and its 
related signaling complex[173]. Basically, the Smad 
proteins have three forms, namely receptor mediated 
Smads (Smad 2 and Smad3 specific for TGF-β), 
inhibitory Smad (Smad7) and a common Smad 
(Smad4). It must be stated that mutations in these 
Smad types due to genetic and epigenetic causes such 
as alcohol exposure are linked to dysregulated TGF-β 
signaling in ALD and cancer in general. For example, 
Smad7 inhibits TGF-β/TβRI-dependent phosphorylation 
of Smad2 and Smad3[174-176] to abrogate dysregulated 
TGF-β/Smad signaling transduction in many disease 
pathologies including but not limited to ALD and fibro-
hepatocarcinogenesis. But, alcohol and LPS were 
shown to down-regulate Smad7 expression to induce 
liver fibrosis in a Smad3-dependent fashion[120]. 
Similarly, a number of reports from cell and animal 
studies (Table 1) have implicated receptor-mediated 
Smad proteins (Smad2 and Smad3) in ALD as well as 
in HCC patients. Smad4 deletions have been mapped 
in HCC[18]. Smad2[23,24], Smad3[25] and Smad4[177] 
mutations have been detected in various cancer 
subtypes. But it remains to be elucidated how alcohol 
and its metabolic derivatives modulate the Smad 
proteins and the signaling pathways they mediate, 
particularly the upstream (TGF-β ligand, TβRⅠ, TβR
Ⅱ, Smad2, Smad3, Smad4, Smad7) and downstream 
(Imp7/8, PAI-1) signaling mediators of TGF-β and how 
such findings may inform future research directions 
and precisive therapeutic strategies against ALD and 
fibro-hepatocarcinogenesis. It is worth suggesting 
that Smad2, Smad3, and Smad7 deletions or/and 
mutations should be mapped in ALD as well as in HCC 
to facilitate early screening, diagnosis and treatment of 
ALD and its related complications.

Importantly, it must be mentioned that the switch 
of TGF-β function from tumor suppression in early 
stages of cancer as well as in early stages of ALD to 
tumor promotion in late HCC reflects an imbalance 
between canonical and non-canonical TGF-β signaling 
and recruitment of other oncogenic signaling pathways 
(Figure 3). What actually causes this switch has so far 
remained elusive. Refreshingly, in HCC it was reported 
that binding of Gas6 ligand to Axl induces activation 
of Axl/14-3-3ζ to switch TGF-β signaling from tumor 
suppression to tumor promotion in a JNK/Smad3L-
dependent fashion[178]. It was also mentioned that 
suppression of Axl succeeded in blocking oncogenic 
TGF-β signaling in HCC, and this has raised hopes 
about indirect inhibition of oncogenic TGF-β signaling 
using Axl-specific inhibitors. A number of Axl-specific 
inhibitors are under various stages of preclinical studies 
including SGI-7079, BGB324, DP3975 and NA80xl[179].
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Table 1  Involvement of Transforming growth factor-β, Smad, plasminogen activator inhibitor-1 and mitogen activated protein 
kinase signaling pathways in alcoholic liver disease and fibro-hepatocarcinogenesis

Alcohol/ 
metabolic 
derivative

Mechanism/pathway Cellular context Ref.

Alcohol, LPS, 
SAMe

Inhibition of TGF-β/Smad signaling abrogates alcohol-induced liver injury Cultured HSCs, 
male rats

[120,221]
alcohol and LPS induce liver fibrosis via activation of TGF-β signaling in a Smad3-dependent fashion 
and down-regulation of Smad7, but SAMe could abrogate it and also restore Smad7 expression 

AA Up-regulation of Smad3 and Smad4, increase in nuclear translocation of Smad3/4 complex, decrease 
in Smad7 expression, all leading to enhanced expression of COL1A2

Human and 
mouse HSCs

[159,219,222,223]

Increase in TGF-β1 secretion and up-regulated expression of TβRII in HSCs was linked to AA
AA increased COLα1 expression in HSCs in a Smad3-dependent manner

Alcohol Alcohol-induced increase in endotoxemia linked to up-regulated protein expression of TGF-β1, IL-6, 
NF-kB, TNF-α, IkBα

Guinea pig liver [224]

Alcohol, LPS Alcohol potentiates LPS-induced pancreatic fibrosis via increased production of TGF-β1 Human 
pancreatic 

tissue sample, 
pancreatic 

acinar-like cells 
(AR42J)

[225]

Alcohol Alcohol-induced translocation of S. suis across gut wall and also up-regulated TGF-β1 and COL 1 to 
promote liver disease

Alcoholics, mice, 
Caco-2 cells

[59]

Alcohol While alcohol exposure impairs nuclear import of growth hormone-induced STAT5B and IL-6-
induced STAT3, it had no effect on TGF-β1-induced nuclear import of Smad2/3

Rat liver, adult 
male C57BL/6J 

mice

[11,184,226,227]

TGF-β1 mediates liver fibrosis in experimental rats in a Smad4-dependent fashion
Alcohol-induces hepatic iron overload leading to liver damage via modulation of hepcidin through 
BMP6/Smad4 signaling pathway

Alcohol Alcohol modulates iron-induced liver injury via increased expression of TGF-β1, BMP2, 
phosphorylated Smad2

Mice [228]

Alcohol Alcohol-induced steatosis and liver injury in Smad7 null mice is enhanced by TGF-β1 signaling and 
TGF-β1-induced EMT in hepatocytes

Alb-Cre mice, 
Smad7 (loxP/

loxP) mice

[229]

Alcohol Alcohol exposure induces TGF-β1 release and activation of TGF-β1-induced down-regulation of 
alcohol dehydrogenase 1 (ADH1) mRNA transcripts in part through TGF-β/ALK5/Smad2/3 
signaling

Mice [230]

Alcohol, AA  Alcohol and AA-induced activation of TGF-β1, JNK and p38 signaling pathways were inhibited by 
butein

HSCs, HepG2 
cells 

[231]

Alcohol TGF-β1 mediates alcohol-induced activation of HSCs via activation of p38/JNK MAPK pathway 
and overexpression of HSC markers including α-SMA, procollagen1, betulin and betulinic acid can 
reverse these pathways to restore liver integrity 

Rat HSCs [232]

Alcohol, LPS LPS and CYP2E1-dependent oxidative stress synergistically activate p38/JNK pathway via LPS/
TNF-α signaling pathway

Hepatic cells [233]

Alcohol Alcohol induces cytotoxicity via activation of p38, JNK and ERK MARK pathway, but COS reversed 
this by inhibiting the MAPK pathway and activation of Nrf2

Human L02 
normal liver 

cells

[234]

Alcohol Alcohol induces hepatotoxicity by activating p38/JNK MAPK pathway in addition to NF-kB, IL-6, 
TNF-α, but these effects were reversed by MA

Mice [235]

Alcohol Activation of JNK and ERK MAPK pathway mediates alcohol-induced oxidative stress, but HO-
1-derived CO reversed these effects by activating p38 MAPK pathway just as CORM-2, which 
suppressed TNF-α and IL-6

Adult male 
Balb/c mice, 
primary rat 
hepatocytes 

[236]

Alcohol TLR2/4, p38/ERK MAPK pathway, IL-1β, TNF-α, COX-2 mediate alcohol-induced liver injury, but 
noni juice (NJ) effectively reverses alcohol-induced liver injury by modulating the above factors

Mice [237]

Alcohol Alcohol-induced hepatocyte apoptosis is mediated through activation of p38/JNK MAPK pathway 
and also involve Fas

Human liver 
adenocarcinoma 
(SK-Hep1) cells

[238]

LPS LPS induces liver inflammation via multiple pathways including activation of p38 MAPK/Nrf2/
HO-1, ICAM-1, VCAM-1, TNF-α

RAW264.7 cells, 
CLP-induced 
septic mice

[239]

Alcohol ERK MAPK activation, increase in mRNA transcripts of egr-1 and PAI-1 are associated with alcohol-
induced steatosis and hepatic necrosis

Rats [240]

LPS Activation of p38 MAPK pathway and COX-2 mediate LPS-induced liver injury, however, ES 
attenuates liver injury by modulating the above pathways

Sprague-Dawley 
(SD) rats 

[241]

Alcohol Activation of p38, JNK and ERK MAPK pathways and histone modification (acetylation, methylation 
and phosphorylation) mediates alcohol-induced hepatic cellular injury

Male SD rats [242]

Alcohol Alcohol enhances Fas-induced liver injury by activating p38/JNK MAPK pathway, increase 
caspase-3 and -8 and TNF-α

Mice [243]
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Canonical TGF-β  signaling
The canonical TGF-β signaling is mediated primarily 
by Smad proteins (Smad2, Smad3, Smad4) via TGF-
β-specific receptors (TβRⅠ, TβRⅡ and TβRⅢ). Trans-
membrane TGF-β signaling begins with ligand binding 
of TβRⅢ, which then presents TGF-β to TβRⅡ[180], 
this is peculiar to TGF-β2 which only interacts with 
TβRⅢ before it becomes bound to TβRⅡ. However, 
the other TGF-β family members, precisely TGF-β1 
and TGF-β3 readily bind to TβRⅡ without the need 
of binding to TβRⅢ; therefore they can transduce 
intracellular signals either in the presence or absence 
of TβRⅢ[17]. TGF-β activated TβRⅡ subsequently 
trans-phosphorylate TβRⅠ. Activated TβR-Ⅰ in 
turn trans-phosphorylate latent transcriptional 
factors (Smad2 and Smad3) at their C-terminal SXS 
motif[17]. The phosphorylated Smad2/3 undergoes a 
rapid conformational change which facilitates their 
oligomerization with a common Smad4. The formation 
of Smad2/3/4 complex enhances preferential nuclear 
relocation and accumulation of the complex[181-183]. 
The cellular responses to TGF-β are fine-tuned by 
continuous nucleocytoplasmic shuttling of Smad2/3, 
which permits continuous sensing and responds 
to changes in TGF-β receptor activity[184,185]. The 
nucleocytoplasmic shuttling of Smad2/3/4 complex 
is crucial for TGF-β signaling and this is aided by 
karyopherins, particularly Imp7/8. In the nucleus, the 
Smad2/3/4 complex interacts with transcriptional co-
activators or repressors to determine the transcription 
of TGF-β target genes, such as PAI-1 gene, therefore 
deciding the fate of cells[186].

Though alcohol and its metabolic derivatives in 
many studies (Table 1) have been shown to stimulate 
increased expression of PAI-1, it remains to be 
explored how alcohol and its metabolic derivatives 
modulate Imp7/8 which facilitates Smad2/3/4 
nucleocytoplasmic shuttling. It must be noted that 
TGF-β/Smad signaling mediated through C-terminal 
phosphorylation of Smad2/3 corresponds to all its 
tumor suppressor and cytostatic functions. The exact 

modulation of canonical TGF-β/Smad, particularly 
Smad2/3/4 and their regulation by alcohol and its 
metabolic derivatives need to be clarified, in the light 
of gut-dependent and liver-dependent alcohol-induced 
inflammatory and fibrogenic signals. It is currently held 
that ALD may begin from the gut[187-190]. A paradigm 
that does not only highlight the therapeutic potential of 
the gut[191] but also the prognostic and diagnostic value 
of the gut. The possible crosstalk between LPS/TLR4/
TNF-α/TNF-αRI/MLCK in gut dysbiosis/inflammation 
and alcohol-induced liver inflammation/fibrogenesis 
driven by dysregulated TGF-β/Smad and the MAPK 
pathways remain veiled. Unveiling the link between 
the gut-liver axis in the light of TGF-β/Smad/MAPK 
and TLR4/TNF-αRI signaling will undoubtedly not only 
help to explain the switch of TGF-β signaling from 
tumor suppression to tumor promotion in ALD, but 
will also open a new therapeutic avenue to advance 
target specific therapies against ALD and fibro-
hepatocarcinogenesis.

Non-canonical TGF-β  signaling
Aside the canonical TGF-β signaling via TGF-β-
specific membrane receptors (TβRⅡ and TβRⅠ) and 
latent Smad proteins (Smad2, Smad3 and Smad4), 
TGF-β also activates other signaling pathways quiet 
independently. Among the signaling pathways 
activated by TGF-β are the MAPK pathway[192-194], the 
growth and survival kinases (P13K, AKT/PKB, mTOR) 
and the small GTP-binding proteins (Ras, RhoA, Racl, 
and Cdc42)[195-197]. It is worth notice that oncogenic 
non-canonical TGF-β signaling in its full activation as 
is the case in ALD and fibro-hepatocarcinogenesis far 
outweigh the canonical tumor suppressor TGF-β/Smad 
signaling and could therefore explain the connivance 
between alcohol and its metabolic derivatives and 
the oncogenic non-canonical TGF-β signaling in ALD, 
increasing the risk of fibro-hepatocarcinogenesis. This 
is evident in the elevated expression of PAI-1 in some 
cell and animal models of ALD and HCC. Importantly, 
PAI-1 is a key target gene of TGF-β signaling and plays 

LPS Alcohol induces CYP2E1 and LPS overproduction, and CYP2E1 sensitizes hepatocytes to LPS/TNF-
α-dependent injury and this is mediated through activation of p38/JNK MAPK pathway

[244]

Alcohol Inhibition of liver regeneration in partial hepatectomized rats is associated with alcohol-induced p38 
activation and cyclin D1 expression

Male Wistar rats [245]

Alcohol Alcohol-induced inhibition of HO-1 is mediated through blockade of p38/ERK MAPK-dependent 
nuclear import of Nrf2, but quercetin can reverse this blockade to restore hepatoprotection against 
alcohol-induced oxidative stress

Human 
hepatocytes

[246]

Alcohol Increased gastric mRNA transcripts was reported as a response to alcohol-dependent nosae on the 
gut wall, suggesting the protective role of PAI-1 in the gut

C57BL/6 mice, 
PAI-1-1-H/Kβ 

mice

[247]

Alcohol, LPS Increase in PAI-1 correlated with progression of ALD In vitro and in 
vivo models of 

ALD, mice

[199-201]
PAI-1 was implicated in hepatic inflammation and fibrosis in a two-hit model of ALD involving 
alcohol and LPS
Alcohol-induced increased in hepatic lipids was linked to up-regulation of PAI-1, but this was 
reversed by metformin

ALD: Alcoholic liver disease; HGF; Hepatocyte growth factor; ECM: Extracellular matrix; PAI: Plasminogen activator inhibitor; PI3K: Phosphatidylinositol 
3-kinase; EGF: Epidermal growth factor; MAPK: Mitogen activated protein kinase; TGF-β: Transforming growth factor beta; Smad: Small mother against 
decapentaplegic; SAMe: S-adenosyl-L-methionine.
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crucial roles in all disease pathologies in which TGF-β is 
implicated.

Plasminogen activator inhibitor
Plasminogen activator inhibitor (PAI)-1 gene is an 
important inhibitor of both tissue and urokinase type 
plasminogen activators; as a result it inhibits fibrin 
degradation via inactivation of plasminogen[6] and also 
mediates some inflammatory responses[198]. Many 
reports have implicated PAI-I in alcohol-induced liver 
damage[199-201]. PAI-I levels were shown to increase 
following acute and chronic alcohol exposure[200], and 
a decrease in PAI-1 expression perhaps through RNA 
interference significantly reduced alcohol-induced 
steatosis and lipid peroxidation[200]. 

Fibrinolysis has been shown to be a common 
feature in alcohol-induced liver disease; meanwhile 
PAI-1 gene is a crucial modulator of fibrinolysis through 
its inhibitory action on plasminogen activator[201]. The 
involvement of PAI-1 in alcohol-induced liver damage 
could be traced to the link between TNF-α and TGF-β/
Smad signaling and could also explain the integrative 
role of TGF-β in the gut-liver axis in alcohol-induced 
fibro-hepatocarcinogenesis, since PAI-1 is a major 
target gene of TGF-β/Smad signaling pathway[31,32,202]. 

The complicity of TNF-α in alcohol-induced fatty 
liver disease, where it was purported to increase the 
expression of PAI-1,[6] emphasizes a more complex 
interaction between pro-inflammatory and fibrogenic 
factors in ALD. TNF-α mediates the pro-inflammatory 
signaling while TGF-β1 controls the fibrogenic signals. 
To confirm the TNF-α/PAI-1 link, alcohol-induced 
expression of PAI-1 in TNFR1 -/- mice was investigated 
and found inhibited[200], indicating that TNF-α might 
induce PAI-1 through the MAPK pathway[203]. But the 
crosstalk between the MAPK pathway and TGF-β/Smad 
signaling pathway is a common dysregulated signaling 
pathway implicated in many cancers, particularly 
MAPK-dependent linker phosphorylation of Smad2 
and Smad3 leading to increased PAI-1 expression 
and occurrence of phenotypic hallmarks of fibro-
hepatocarcinogenesis[32].

MAPK pathway
Recent developments in the understanding of TGF-β/
Smad signaling has revealed non-Smad TGF-β sig-
naling[204] and a growing indication of a crosstalk bet-
ween MAPK pathway and Smad signaling downstream 
of TGF-β[205]. The MAPKs represent a large class of 
serine/threonine protein kinases crucial in the initial 

Figure 3  A proposed schematic illustration of the complex and integrative role of TGF-β/Smad signaling in alcoholic liver disease and alcohol-induced fibro-
hepatocarcinogenesis. Alcohol and its metabolic derivatives induce the release and activation of TGF-β/Smad signaling through NF-kB/TNF-α mediation (Figure 1). The 
NF-kB/TNF-α-mediated activation of TGF-β/Smad signaling switches canonical tumor suppressor (C-terminal phosphorylated Smad3/Smad4-dependent TGF-β 
signaling) into oncogenic (MAPK-dependent linker phosphorylated Smad2/3-dependent TGF-β signaling) and also non-canonical TGF-β signaling involving cross-
signaling with other signaling pathways implicated in hepatic malignancies. Key cross-signaling pathways which team up with TGF-β signaling includes but not limited 
to CDK 2 and 4, Ca-calmodulin kinase Ⅱ, EGF, HGF, PI3K/AKT, FAK, Src, Sprouty2, casein kinase Ⅰ, Wnt/β-catenin. This leads to imbalance between canonical 
and non-canonical TGF-β signaling. Increase in oncogenic TGF-β/Smad signaling leads to up-regulation of PAI-1 gene expression and PAI-1-mediated pathologies 
thereof. The key pathological effects of PAI-1 include dysregulated ECM regulation, cell proliferation and invasion, and dysregulated apoptosis and these underlie 
initiation and progression of alcohol-induced fibro-hepatocarcinogenesis. HGF: Hepatocyte growth factor; ECM: Extracellular matrix; PAI: Plasminogen activator 
inhibitor; PI3K: Phosphatidylinositol 3-kinase; EGF: Epidermal growth factor; MAPK: Mitogen activated protein kinase; TGF-β: Transforming growth factor beta; Smad: 
Small mother against decapentaplegic; +++: Up-regulated expression or overproduction.

Canonical tumor suppressor TGF-β/Smad signaling, 
e.g. , C-terminal phosphorylated Smad3-mediated 

TGF-β signaling

Oncogenic non-canonical TGF-β signaling, 
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responses to a diversity of extracellular signals involved 
in cell growth, cell differentiation and apoptosis[206] and 
activation of nuclear transcription factors by allowing 
nuclear sensing of extracellular signals[207]. They are 
grouped into three sub-classes: the extracellular signal-
regulated kinases (ERK1, ERK2), the stress-activated 
protein (SAP) kinases, also known as c-jun N-terminal 
kinases (JNK1, JNK2, and JNK3), and the p38 MAPKs (α, 
β, γ, and δ)[193]. In several reports, TGF-β was shown to 
activate ERK, p38, and JNK in different cell types[208,209]. 
As a result, TGF-β signaling can be regulated via linker-
dependent phosphorylation of Smad2/3. A number of 
protein kinases including ERK1/2[193], JNK[210] and p38[211] 
activated by TGF-β in turn phosphorylate Smad2/3 at 
the linker region. It is a common knowledge that linker-
dependent phosphorylation of Smad2/3 in part switches 
the TGF-β/Smad signaling from tumor suppression to 
tumor promotion. 

Notably, alcohol and its metabolic derivatives have 
been shown to activate the MAPK pathway, and this 
was reported to be crucial for collagen formation in 
HSCs[212]. Alcohol-dependent activation of the MAPK 
pathway depended on the type of hepatic cell and 
their physiological state, duration of alcohol exposure, 
and the type of agonist[212]. With specific reference 
to KCs, TNF-α production and release was linked to 
chronic alcohol exposure and LPS-induced activation 
of p38 MAPK[212]. Similarly, LPS-induced activation 
of ERK and p38 MAPKs was shown to be responsible 
for liver injury[213]. While elucidating how alcohol 
and its metabolic derivatives activate the MAPK 
pathway, Yao et al[214] showed that CD14-mediated 
LPS recognition of TLR4/MD-2 complex mediates 
TNF-α release secondary to MAPK activation. To stoke 
more arguments and perhaps stimulate search for 
explanation, it was reported that activation of p38 
MAPK is indispensable for hepatocyte proliferation, 
while sustained activation of the MAPKs reverses 
this effect[215,216]. The TGF-β/Smad and the MAPK 
signaling pathways may be crucial in the initiation and 
progression of ALD and fibro-hepatocarcinogenesis. It 
is apparent that a signaling loop possibly involves LPS/
TLR4/MD-2/TNF-α-MAPK and TGF-β/Smad crosstalk 
at multiple levels and plays key roles in ALD as well 
as recruitment of other signaling pathways implicated 
in ALD (Figure 3). Some of the signaling pathways 
recruited into the TGF-β/Smad/MAPK signaling nexus 
may include but not limited to Spry2[217], EGF and 
FGF[218], Ras and Wnt/β-catenin[219]. For instance, 
TGF-β1 was shown to down-regulate Spry2 in a 
Smad-dependent fashion[217], meanwhile, Spry2 aids 
phosphorylation of PTEN and its nuclear accumulation 
to induce p53-mediated growth arrest[220] which 
perhaps underlies Spry2-dependent inhibition of HCC 
cell growth and inhibition of c-Met-induced proliferation 
and angiogenesis in fibro-hepatocarcinogenesis[218]. But 
PTEN, which negatively regulates PI3K/AKT signaling, 
is in turn down-regulated by TGF-β1

[31]. However, it is 
yet to be determined how alcohol and its metabolic 

derivatives modulate the tumor suppressor PTEN 
via the TGF-β/Smad/MAPK pathways. Will selective 
inhibition of TGF-β specific receptors, MAPK-dependent 
phosphorylation of Smad2/3, TNF-α/TNF-αRI in ALD 
enhance PTEN expression to halt ALD and the risk of 
fibro-hepatocarcinogenesis?

CONCLUSION 

The structural and functional integrity of the liver is 
anchored on three pillars: effective modulation of 
inflammation, oxidative/nitrosative stress, and the 
innate and adaptive immune systems. From the 
foregoing, it appears that alcohol and its metabolic 
derivatives disrupt these three cardinal hepatic functions 
through reprogramming the functions of hepatic cells to 
favor ALD and fibro-hepatocarcinogenesis progression 
through concerted interplay of LPS/TLR4/MD-2/TNF-α-
MAPK and TGF-β/Smad signaling. Consequently, alcohol 
primes the liver to diverse irritants and also increases 
the sensitivity of hepatic cells to inflammatory nosae 
derived from non-alcohol sources such as those from 
co-morbidity factors. This may underlie the spectrum 
of the pathological features of ALD and other liver 
disorders, in view of the fact that alcoholics and non-
alcoholics alike have in one way or the other been 
exposed to alcohol and its metabolic derivatives once 
in their life time either through de novo biosynthesis of 
alcohol from food or from some endogenous substrates 
under conditions of low oxygen tension such as hypoxia. 

Etiologically, metabolic derivatives of alcohol as well 
as alcohol-dependent alteration of gut microbiome, 
derangements of gut wall, increased production of 
PAMPs such as LPS and their subsequent leakage 
into portal circulation, certainly are the significant 
alcohol-induced disrupters of inflammatory, innate 
and adaptive immune regulation within the gut-liver 
axis. Alcohol-induced liver inflammation, liver fibrosis, 
and cirrhosis leading to increased risk of HCC may not 
follow a specific temporal sequence but could follow a 
multi-dimensional pattern determined in part by the 
existence of non-alcohol co-morbidity factors.

Mechanistically, alcohol and its metabolic deriva-
tives provide a pathological platform for concerted 
interaction between pro-inflammatory factors (NF-
kB, TNF-α, and IL-1β), pro-fibrogenic factors (TGF-β, 
Smad, MAPK and PAI-1) and recruitment of other 
signaling pathways such as the PI3K, Sprouty2 in a 
TGF-β/Smad-dependent fashion to promote ALD and 
fibro-hepatocarcinogenesis. TGF-β/Smad/MAPK and 
their associated cross-signaling nexus must be seen as 
indispensable in ALD and fibro-hepatocarcinogenesis. 

 At the research front, it is important that future 
studies on ALD and fibro-hepatocarcinogenesis focus 
on experimental models that will permit study of each 
of the distinct alcohol-derived inflammatory nosae, 
i.e., AA, MDA, ROS, LPS, AA/MDA-derived protein/
DNA adducts and also delineation of nosae-specific 
pathways, while at the same time excluding overlap 
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from co-morbidity factors. This will certainly further 
expand our understanding and discourse on ALD and 
fibro-hepatocarcinogenesis to guarantee informed 
prognosis, diagnosis and treatment.

Therapeutically, TGF-β receptor inhibitors, Smad3L-
specific inhibitors, MAPK-specific inhibitors, TNF-α/TNF-
αRI-specific inhibitors as well as gut-specific therapeutic 
strategies must feature prominently in therapies de-
signed for ALD and fibro-hepatocarcinogenesis. 
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