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INTRODUCTION 
 
Agricultural by-products, such as cereal straw from oats, 

wheat, and corn, constitute a great potential source of 
ruminant feed energy. Straws have low nutritional value, 
because of their low nitrogen and high indigestible fiber 

content. In recent years, yeast-based additives, primarily 
Saccharomyces cerevisiae (S. cerevisiae), have been used to 
increase rumen feed utilization efficiency (Williams et al., 
1991; Miller-Webster et al., 2002; Lila et al., 2004; Doležal 
et al., 2011; Chaucheyras-Durand et al., 2012). The 
beneficial effects associated with S. cerevisiae in animal 
studies include a greater dry matter (DM) and neutral 
detergent fiber digestibility. (Plata et al., 1994), as well as a 
higher feed utilization and milk production (Moallem et al., 
2009). In vitro studies have also shown that yeast cultures 
favourably alter microbial fermentation (Marrero et al., 
2013; Ye et al., 2014) and stimulate DM and cellulose 
digestion (Miller-Webster et al., 2002; Lila et al., 2004; 
Tang et al., 2008). In the same way, Marrero et al. (2015) 
showed that inclusion of two strains of yeast (Levazot 15 
and Levica 25) in the in vitro fermentation of oat straw the 
accumulated gas production had a twofold increase as a 
result of yeast effect compared to control. Similar findings 
were reported by Marrero et al. (2014) when a yeast culture 
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(Levica 27) was included in the fermentation of corn stover. 
Aldo et al. (2006) also reported significant increases in the 
in vitro forage degradabilty when rice bran was treated with 
Candida utilis attributing this to the stimulation of rumen 
microbes by yeast. However, studies examining yeast 
cultures other than S. cerevisiae as rumen feed additives are 
scarce (Shin et al., 2002; Oeztuerk et al., 2005; Ando et al., 
2006). In a previous study, Castillo (2009) isolated and 
identified the yeast Candida norvegensis and demonstrated 
the favourable effect of a non-Saccaromyces yeast addition 
on some fermentative parameters, such as gas production. 
The aim of the current experiment was to investigate the 
inoculation of a yeast (Candida norvegensis) and the effects 
on the in vitro ruminal fermentation of oat straw. 

 
MATERIALS AND METHODS 

 
Additives and Substrates  

The yeast strain Levazoot 15 (Candida norvegensis) 
from the UACH yeast collection was used, with record 
number of the Gen Bank: JQ519367.1 GI: 386785959, was 
obtained in a previous study (Castillo, 2009) when the yeast 
was selected, isolated and identified from the rumen 
environment of dairy cows. Yeast strain samples from a 
culture of the Candida norvegensis strain were plated on 
malt extract broth and incubated for 20 h at 30°C±2°C. The 
probiotic was prepared by placing 30 mL of this inoculum 
into 1,200 mL of malt extract broth at identical conditions 
and incubation time, and containing 2.5×108 live 
organisms/mL. Oat straw was used as substrate on a DM 
basis for in vitro incubation. The oat straw had been ground 
in a Wiley mill (Thomas-Wiley Model 4 Thomas Scientific, 
Swedesboro, NJ, USA) to pass through a 1 mm screen. The 
chemical composition of the cow's diet and the oat straw are 
shown in Table 1. 

 
In vitro batch fermentation 

Two cannulated lactating Holstein dairy cows (550± 
25.5 kg BW) were fed twice daily with 4.0 kg of a mix 
grain and 4 kg of corn silage (DM basis) (Table 1), and used 
as donor animals for ruminal liquor. The ruminal liquor was 
drawn before feeding (0600) from each cow with a vacuum 
pump and deposited in a 2-L hermetically sealed insulated 
flask that had been brought to the proper temperature and 
flushed with CO2, and immediately taken to the laboratory. 
The mixed sample was strained through several layers of 
surgical gauze into a 1-L Erlenmeyer flask. The buffer 
solution had the following composition in 1.0 L: 9.8 g of 
NaHCO3, 7 g of Na2HPO4.7H2O, 0.57 g of KCl, 0.47 g of 
CaCl2, 0.12 g of MgSO4.7H2O, 0.917 g of urea, and 0.917 g 
of glucose. The entire procedure was conducted under a 
CO2 atmosphere to ensure anaerobic conditions and efforts 
were made to keep the temperature at 39°C. For each 

sample, 50 mL of filtered rumen fluid and 100 mL of buffer 
solution were mixed in a 1:2 ratio. After mixing, 120 mL of 
diluted ruminal fluid was transferred under anaerobic 
conditions to 250 mL serum bottles containing 1.5 g of the 
substrate (oat straw) on a DM basis. Forty bottles were 
anaerobically sealed with butyl rubber stoppers and capped 
with aluminium. One set of 20 bottles, the control, was 
incubated at 39°C for 24 h with shaking at 30 rpm (New 
Brunswick Model Innova 4000, Nijmegen, Netherlands) 
and each bottle contained only the filtered rumen liquor and 
buffer solution. The remaining bottles (20) contained the 
same medium and was inoculated with 30 mL of the yeast 
probiotic and were incubated under identical conditions as 
the control group. Five sample times were set, 0, 4, 8, 12, 
and 24 h, (except for methane at 36 h) from the start of 
fermentation, with four repetitions for each time point. 
Consequently, the fermentation was conducted in a total of 
40 bottles.  

 
Microbiological determination 

At every incubation time, 1 mL samples were collected 
to determine colony forming units (Log10 colony-forming 
unit [CFU])/mL) of cellulolytic bacteria, cellulolytic fungi, 
and yeast using the Hungate (1969) culture roll-tube 
technique under strict anaerobic conditions. The cellulolytic 
bacteria were grown in culture media as described by 
Caldwell and Bryant (1966) with the modification described 
by Elías (1971). Dilutions of 103, 104, and 105 were used to 
cultivate the bacteria and the fungi. The same dilutions were 
used for the fungi, and the culture media used was as 
specified by Joblin (1981). For the yeasts, malt extract agar 
was utilized with 0.01 g/L of chloramphenicol and three 
dilutions were used, 104, 105, and 106. The number of CFU 
was determined by visual inspection of colonies on the tube 

Table 1. Chemical composition of feedstuffs 

Item 
Corn  
silage 

Concentrate1 Oat  
straw2 

Percentage of daily ration 69.5 30.5 - 
Chemical composition3    
OM 94.7 96.4 88.7 
CP 8.3 19.1 5.3 
EE 2.9 2.6 2.3 
ADF 31.0 9.5 45.8 
NDF 75.4 20.2 70.3 
OM, organic matter; CP, crude protein; EE, ether extract; ADF, acid 
detergent fiber; NDF, neutral detergent fiber. 
1 Contained (DM basis) 51.0% corn, 23.5% wheat bran, 10% cottonseed 

meal, 8.49% corn gluten meal, 2.0% sugarcane molasses, 1.5% soybean 
meal, 1.0% bypass fat, 0.8% CaCo3, 0.5% urea, 0.5% animal fat, 0.2%
NaCl, 0.5% trace mineral and vitamin premix. Trace mineral and vitamin 
premix contained: Mg, 0.003 Co, 0.001% Se, 0.140% Zn, 0.092% Mn, 
0.052% Cu, 0.140% Fe, 2,500 IU of vitamin A/g, and 50 IU vitamin D/g.

2 Substrate for in vitro fermentation. 
3 Percentage dry mass basis. 
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rolls under a magnifying glass.  
 

Analyses 
At the end of incubation methane gas was measured 

according to Theodorou et al. (1994), and total gas was 
measured by inserting a needle connected to a pressure 
transducer (Festo Co. Chihuahua, Chih. Mexico) where 
amount of gas was recorded and collected in a previously 
sealed tube using a 50-mL syringe. Tubes were retained and 
methane was measured by gas chromatography (Pye 
Unicam LTD, Cambridge, UK) using a flame ionization 
detector. The carrier gas was nitrogen, temperature of 
furnace was 52°C and detector temperature was 230°C. 
Silica gel columns were utilized. Methane concentration 
produced in each fermentation was calculated according to 
the general equation of gases (N = PV/RT). Atmospheric 
pressure was 10.1×104 Pa and room temperature was 
299.5°K. The pH was immediately determined after bottles 
were uncapped with a portable pH meter (Hannah 
Instruments, Model HI 9017, Arvore-Vila do Conde, 
Portugal). Lactic acid (LA) concentrations (µg/mL) were 
determined by a colorimetric method. as described by 
Taylor (1996). For analysis of ammonia nitrogen (mMol) 
and volatile fatty acids (VFA) (mMol), 1 mL of 25% meta-
phosphoric acid (wt/vol) was added to 5 mL of fermentation 
fluid and was stored at –20°C. The NH3-N was determined 
by the colorimetric method of Broderick and Kang (1980) 
using a spectrophotometer (Hach DR500, Loveland, CO, 
USA). After thawing, 1 mL of fermentation fluid was 
centrifuged (10,000×g for 10 min) and VFA levels (mMol) 
were determined by gas chromatography (Perkin Elmer 
Model Clarus 800, Perkin Elmer Inc., Waltham, MA, USA) 
using a column (30 m×0.32 mm i.d.) and a flame ionization 
detector (column temperature 180°C, detector temperature 
320°C, and injector temperature 240°C). The carrier gas 
was hydrogen with a flow rate of 1.40 mL/min. For in vitro 
DM disappearance (IVDMD) was determined according to 
Capetillo et al. (2002). the bottles' contents were transferred 
into test tubes (20 cc) previously dried at 105°C and 
centrifuged at 1,000×g for 5 min and the pellets were dried 
at 55°C for 48 h. The IVDMD was calculated by 
subtracting the dry residue weight (pellet) from the original 
weight of oat straw divided by the original sample weight, 
and the values multiplied by 100 to derive the percentage of 
IVDMD. 

 
Statistical analysis 

An analysis of variance was performed with the PROC 
MIXED procedure of SAS. (2002) (SAS Inst., Inc., Cary, 
NC, USA). The adjusted model included the fixed effects of 
yeast strain treatment and the control group, fermentation 
time, and the interaction between treatment and the time 
effect.  

The model as fitted was as follows:  
 
Yĳk = μ+Ti+Mj+L×M(ĳ)+εĳk,  

 
where Yĳk = the dependent variable; µ = overall mean; 

Ti = treatment effect (i = 1,2); Mj = Time effect (j = 
1,2,3,4,5); L×M(ĳ) = Interaction effect, and εĳk = random 
residual error.  

The identity of the nested balloon flask (experimental 
unit) was used in the treatment as a random effect. A trend 
analysis was performed on the variables across fermentation 
times in each treatment group, using fermentation time as 
an indicator variable. Mean values are reported with 
standard errors, and p-values are declared statistically 
different when p<0.05 or as indicated. Comparison of 
means were made using the predicted difference procedure 
of  SAS (2002). 

 
RESULTS AND DISCUSSION 

 
pH value and lactic acid content 

As shown in Table 2, the pH and LA concentrations in 
the medium decreased quadratically over time (p<0.01 and 
p<0.02, respectively). Treatment with yeast reduced pH 
relative to controls at all fermentation times (p<0.01). 
Williams et al. (1991) reported similar results; they 
observed decreased pH when S. cerevisiae (10 g/d) was 
added to oat hay diet of young bulls. and by Lynch and 
Martin (2002), who studied the in vitro effect of S. 
cerevisiae on fermentation of Bermuda hay and alfalfa hay. 
Lila et al. (2004), Oeztuerk et al. (2005), Lattimer et al. 
(2007), Longuski et al. (2009), and Inal et al. (2010), 
reported in vitro studies where pH remained unchanged. LA 
concentration in the yeast treatment was lower than the 
control group at 12 h of fermentation (p<0.05). At 24 h, the 
reduction was not statistically significant, although there 
was an appreciable numerical difference. These results 
confirmed findings by Williams et al. (1991), Erasmus et al. 
(1992), and Lila et al. (2004) who reported that the presence 
of yeast significantly reduced rumen LA concentrations and 
this reduction could be attributed to yeast cells stimulating 
the activity of Selenomona ruminantum, which consumes 
LA and thus contributes to pH stabilization.  

 
Ammonia nitrogen concentration 

The concentrations of ammonia-N (Table 3) increased 
quadratically with time of fermentation (p<0.01). Yeast 
treatment reduced ammonia-N concentrations in the 
medium at 4, 8, 12, and 24 h. These results agreed with 
those of Erasmus et al. (1992) and Moallem et al. (2009) 
who found significant ammonia-N concentration decreases 
when yeast was added to dairy cow diets. Chaucheyras-
Durand and Fonty (2001) also reported that ammonia-N 
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concentrations decreased when yeast was added to alfalfa 
hay and feeds for growing sheep. This ammonia-N 
reduction may be due to higher ammonia intake by 
microbial cells, perhaps as a direct result of stimulation of 
rumen microbial activity (Williams and Newbold, 1990). 

 
Percentage of in vitro dry matter digestibility 

As shown in Table 3, oat straw IVDMD increased 
quadratically with greater fermentation time (p<0.02). Yeast 
treatment only increased IVDMD relative to controls at 24 
h (p<0.01), in agreement with in vitro results reported by 
Miller-Webster et al. (2002) and Lila et al. (2004). Williams 
et al. (1991) reported that stimulation of cellulose 
degradation by yeast cultures is associated with a decrease 
in the lag phase, which also causes an initial increase in 
digestion rate. These authors also attributed the 
improvement in DM digestibility to pH stabilization. Ando 
et al. (2004) as well, reported an increment in the total 

degradability of forage when they added dried beer yeast 
attributing it to the activation of rumen microbes and 
partially due to the addition of nitrogen sources. Newbold et 
al. (1995) reported that some yeast cultures increased total 
and cellulolytic bacterial counts in the rumen, thus 
increasing fibre digestion. Another explanation may be that 
yeast cells in the rumen produce ethanol (Kung et al., 1997), 
which is converted by rumen microorganisms into valeric 
and isovaleric acids. The increases in these acids that were 
observed with the yeast treatment in this study are 
consistent with this latter possibility (Table 4). Valeric, 
capric, isobutyric, and isovaleric acids were found to 
stimulate rumen cellulolysis in studies involving fractional 
distillation of the rumen fluid (Elias, 1983). Likewise, in 
our study, higher concentrations of valeric and isovaleric 
acids were associated with increased rumen cellulolysis and 
in vitro disappearance of DM. The molar concentrations of 
acetic (p<0.01), butyric (p<0.01), propionic (p<0.01), 

Table 2. Least squares means (±SE) of pH and lactic acid during in vitro oat straw rumen fermentation 

Variable 
Treatment 

SEM 
Trend

Treatment effect 
Time (h) Control Yeast L Q 

pH 0 7.56a 7.36b 0.045 *** ** *** 

4 7.55a 7.16b 0.045   *** 

8 7.37a 7.02b 0.045   *** 

12 7.28a 6.91b 0.045   *** 

24 7.08a 6.68b 0.045   *** 

Lactic acid  
 (µg/mL)  

0 20.36a 19.08a 1.11 *** ** NS 

4 18.19a 19.65a 1.11   NS 

8 17.42a 16.05a 1.11   NS 

12 17.18a 14.01b 1.11   * 

24 16.58a 14.68a 1.11   NS 

SEM, standard error of the mean; L, linear trend across fermentation times; Q, quadratic trend across fermentation times; NS, non significant. 
Different letters in the same row indicate significant differences (* p<0.05; ** p<0.01; *** p<0.001) between treatments. 
Means (n = 40) in rows with the same superscript are not significantly different (ns) due to treatment effect. 

Table 3. Least squares means (±SE) of ammonium nitrogen and in vitro dry matter disappearance during in vitro oat straw rumen 
fermentation 

Variable 
Treatment 

SEM 
Trend 

Treatment effect
Time (h) Control Yeast L Q 

NH3-N 0 3.27a 2.76a 0.25 *** ** NS 

4 7.45a 5.33b 0.25 *** 

8 7.04a 5.51b 0.25 *** 

12 7.72a 5.46b 0.25 *** 

24 9.44a 6.46b 0.25 *** 

IVDMD 0 9.76a 12.63a 2.74 *** ** NS 

4 10.96a 14.59a 2.74 NS 

8 17.64a 21.27a 2.74 NS 

12 25.00a 30.33a 2.74 NS 

24 46.64a 56.71b 2.74 ** 

SEM, standard error of the mean; L, linear trend across fermentation times; Q, quadratic trend across fermentation times;  

NH3-N, ammonium nitrogen (mMol); NS, non significant; IVDMD, in vitro dry matter disappearance (%). 
Different letters in the same row indicate significant differences (** p<0.01; *** p˂0.001) between treatments. 
Means (n = 40) in rows with the same superscript are not significantly different (ns) due to treatment effect. 
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valeric (p<0.01), and isovaleric acids (p<0.02) increased 
linearly over fermentation times (Table 4).  

 
Acetic acid content 

In the present study (Table 4), acetic acid concentrations 
were higher in the yeast treatment groups than in the 
controls at 8 h (p<0.01) and 12 h (p<0.01). Propionic acid 
was lower when yeast was added at 0 h (p<0.03), but higher 
at 8 h (p<0.03) and 12 h (p<0.02). Meanwhile, butyric acid 
concentration was also lower at 0 h and higher at 8 h with 
yeast treatment. Valeric and isovaleric acid concentrations 
with yeast treatment were higher than that in control 
solutions at 8, 12, and 24 h (p<0.01). Oeztuerk et al. (2005) 
studied the effects of live yeast on in vitro rumen 
fermentation of a hay and grain diet and found that acetic, 
butyric, valeric, and isovaleric acids increased, while only 
propionic acid did not increase significantly. Similar results 
were found by Erasmus et al. (2005); Miller-Webster et al. 
(2002). Diaz et al. (2011); Křižova et al. (2011); Kowalik et 
al. (2012). The stimulating effect of the strain under study 
on production of VFAs may be related to the chemical 

composition of the yeast cell wall and other cell 
components. Yeast cell walls, which account for ~20% of 
the yeast cell weight, are primarily made up of β-1.3 and β-
1.6 glucans, and chitin (Moukadiri et al., 1997). These 
structures, which form appropriate substrates for microbial 
rumen fermentation, independent of the state of the yeast 
(Oeztuerk et al., 2005).  

 
Microorganisms counts 

Table 5 shows the resulting CFU counts in viable yeast, 
cellulolytic bacteria, and cellulolytic fungi in the rumen. 
The quantity of viable yeast inoculated into the rumen 
decreased linearly with fermentation time (p<0.01, Table 5). 
Similar results were reported by Arambel and Rung-Syin 
(1987) in studies examining the growth of S. cerevisiae in a 
ruminal environment. These authors indicate that yeasts are 
incapable of sustaining a productive population within a 
ruminal environment, because of inhibiting factors for yeast 
growth, such as non-optimal temperature. The optimal 
temperature range for yeast growth is 28°C to 30°C, with 
survival remaining possible up to 37°C through formation 

Table 4. Least squares mean (±SE) of concentrations of acetic, propionic, butyric, valeric and isovaleric acids during in vitro oat straw 
rumen fermentation 

Volatile fatty acid 

 (mMol) 
Treatment 

SEM Trend 

Treatment effect 
Time (h) Control Yeast L Q 

Acetic acid 0 24.40a 20.00a 1.97 *** * NS 

4 24.56a 26.82a 1.97   NS 

8 29.50a 37.42b 1.97   *** 

12 32.36a 40.89b 1.97   *** 

24 45.04a 48.84a 1.97   NS 

Propionic acid 0 8.55a 6.72b 0.58 *** NS * 

4 8.22a 9.09a 0.58   NS 

8 9.99a 11.90b 0.58   * 

12 11.50a 13.46b 0.58   * 

24 17.26a 17.79a 0.58   NS 

Butyric acid 0 5.81a 4.48b 0.42 *** ** * 

4 5.27a 6.23a 0.42   NS 

8 6.73a 8.12b 0.42   * 

12 7.61a 8.50a 0.42   NS 

24 9.73a 9.68a 0.42   NS 

Valeric acid 0 0.50a 0.45a 0.06 *** NS NS 

4 0.46a 0.63a 0.06   NS 

8 0.60a 0.99b 0.06   *** 

12 0.67a 1.31b 0.06   *** 

24 0.96a 1.77b 0.06   *** 

Isovaleric acid 0 0.44a 0.47a 0.08 * ** NS 

4 0.42a 0.46a 0.08   NS 

8 0.48a 0.78b 0.08   ** 

12 0.58a 1.02b 0.08   *** 

24 0.99a 1.69b 0.08   *** 

SEM, standard error of the mean; L, linear trend across fermentation times; Q, quadratic trend across fermentation times; NS, non significant.  
Different letters in the same row indicate significant differences (* p˂0.05; ** p˂0.01; *** p˂0.001) between treatments. 
Means (n = 40) in rows with the same superscript are not significantly different (ns) due to treatment effect. 
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of ascospores (Dengis et al., 1995). At 39°C, the typical 
temperature in the ruminal environment, growth and 
viability are reduced. (Mendoza, 1993). Williams et al. 
(1990) postulated that yeast do not establish themselves 
permanently in the rumen. In the current study, the 
inoculated rumen materials maintained a higher yeast 
population than the control for up to 12 h (p<0.01), and was 
not significantly different until 24 h post-inoculation. After 
12 h, the yeast cells entered a lethal no-growth phase, which 
corroborates the hypothesis of Williams et al. (1990). Also 
it was observed that, after 12 h, the differences in yeast 
populations between the inoculated and control samples 
were smaller, reaching a nadir at 24 h. In the present study, 
rumen material was tested for resident yeast soon after 
collection, and it was demonstrated that a pool of yeast 
populations existed in the rumen. Fermentation and 
treatment time did not affect cellulolytic bacterial counts 
(p<0.05) (Table 5). The effects of live yeast on cellulolytic 
bacterial counts are very diverse. Similar to the present 
findings, Erasmus et al. (1992) found no effect of S. 
cerevisiae on the cellulolytic bacterial populations of dairy 
cows fed an energy-rich diet. Conversely, Newbold et al. 
(1996) and Lila et al. (2004) reported a positive effect of 
adding yeast cultures to in vitro fermentation of hay and 

concentrate mixes. Counts of cellulolytic fungi (Table 5) 
did not exhibit any trends across the fermentation times. 
However, treatment with yeast cultures positively affected 
cellulolytic fungal populations in the rumen after 4 h (p< 
0.01) and 8 h (p<0.01) of fermentation. Chaucheyras et al. 
(1995) also report that yeast stimulate the growth of the 
ruminal fungus Neocallimastix frontalis. This stimulation 
effect on ruminal microorganisms, particularly on those that 
break down cellulose, such as cellulolytic fungi, may be 
explained by specific mechanisms of action in the rumen. 
When yeast are plasmolized, over time they supply growth 
factors such as peptides, amino acids, B-complex vitamins, 
and other components that favour bacterial and fungal 
growth (Elías, 1971). Also, live yeast help to eliminate a 
small amount of oxygen (~1%), that enters the rumen when 
the animal ingests feed, through aerobic respiration, and this 
process facilitates growth of more stringent anaerobic 
microorganisms, such as cellulolytic bacteria and fungi 
(Newbold et al., 1996).  

 
Methane production 

As shown in Table 6, methane production did not 
exhibit any trends across fermentation times. A reduction in 
methane production was observed only at 8 h by yeast 

Table 5. Least squares mean (±SE) of yeast and microorganism counts during in vitro oat straw rumen fermentation 

Variable 
Treatment 

SEM 
Trend 

Treatment effect
Time (h) Control Yeast L Q 

Yeast 0 5.42a 7.30b 0.10 *** *** *** 

4 5.73a 6.65b 0.10   *** 

8 5.69a 6.25b 0.10   *** 

12 5.50a 5.91b 0.10   ** 

24 5.45a 5.67a 0.10   NS 

Cellulolytic fungi 0 5.88a 5.78a 0.19 NS NS NS 

4 5.26a 6.09b 0.19   ** 

8 5.20a 6.15b 0.19   *** 

Cellulolytic bacteria 0 6.26a 6.29a 0.11 NS NS NS 

4 6.36a 6.58a 0.11   NS 

8 6.23a 6.50a 0.11   NS 

SEM, standard error of the mean; L, linear trend across fermentation times; q, quadratic trend across fermentation times; NS, non significant.   
Different letters in the same row indicate significant differences (**p˂0.01; *** p˂0.001) between treatments. 
Means (Log10 CFU/mL, n = 40) in rows with the same superscript are not significantly different (ns) due to treatment effect. 

Table 6. Least squares mean (±SE) of methane production during in vitro oat straw rumen fermentation 

Item 
Treatment 

SEM 
Trend2

Treatment effect 
Time (h) Control Yeast L Q 

Methane 

 (mL) 
4 45.00a 28.78a 11.53 NS NS NS 

8 66.00a 15.06b 11.53   ** 

12 33.05a 15.91a 11.53   NS 

24 29.93a 13.12a 11.53   NS 

36 34.50a 24.94a 11.53   NS 

SEM, standard error of the mean; L, linear trend across fermentation times; q, quadratic trend across fermentation times; NS, non significant.  
Different letters in the same row indicate significant differences (* p˂0.05; ** p˂0.01; *** p˂0.001) between treatments. 
Means (n = 40) in rows with the same superscript are not significantly different (ns) due to treatment effect. 
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treatment (p<0.01). At other time points, there were 
noticeable numerical decreases, although not statistically 
significant. Numerous studies have demonstrated that 
methane production is affected by addition of yeast. 
Mutsvangwa et al. (1992) observed a marked decrease in 
methane production with the addition of S. cerevisiae in 
intensive fattening of bulls. Lynch and Martin (2002) and 
Lila et al. (2004) also found reduced methane production 
when they studied the behaviour of yeasts added to in vitro 
fermentation of alfalfa hay and hay-concentrate mix. This 
drop in methane production may be due to the yeast 
stimulating utilization of metabolic hydrogen by acetogenic 
bacteria in the generation of acetic acid. (Chaucheyras et al., 
1995). Based on the above results, addition of the yeast 
Candida norvegensis to in vitro oat straw fermentation 
positively influenced ruminal fermentation parameters as 
well as microbial growth with reduction of methane 
production. Additionally, yeast inoculum also improved 
IVDMD. 
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