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Abstract

Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental 

toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic 

embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the 

balance of processes generating reactive species and oxidative stress, and those anti-oxidant 

defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant 

defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential 

process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in 

determining embryonic response to oxidants and oxidative stress are only beginning to be 

understood. The zebrafish (Danio rerio) is an established model in developmental biology and 

now also in developmental toxicology and redox signaling. Here we review the regulation of 

genes involved in protection against oxidative stress in developing vertebrates, with a focus on 

Nrf2 and related cap’n’collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate 

animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that 

respond to oxidative stress, contributing to the value of zebrafish as a model system with which to 

investigate the mechanisms involved in regulation of redox signaling and the response to oxidative 

stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and 

keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate 

NRF genes, including multiple sensing mechanisms involved in chemical-specific effects.
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Introduction1

Oxidative stress occurs when the cellular redox balance is altered, disrupting redox signaling 

and regulation [1-3]. It can occur through the generation and action of reactive species such 

as superoxide anion, hydrogen peroxide, peroxynitrite, and other reactive products that can 

alter thiol redox circuits [4-6]. Oxidative stress is increasingly recognized as a significant 

mechanism of chemical toxicity and as a contributing factor in a wide range of pathological 

conditions and diseases in adults, and in developing animals. The roles of reactive species 

and redox status in normal physiology, and the mechanisms underlying adverse effects of 

oxidative stress, have been studied extensively in adult animals and cells. However, less is 

known about the role of these processes in developmental disorders and chemical toxicity 

during embryonic and fetal development.

Developing animals are uniquely sensitive to oxidative stress because of the rapid changes 

in cell proliferation and differentiation that occur at this time, and because enzymatic 

systems that protect against or repair toxic damage may not be fully mature early in 

development. The expression and inducibility of anti-oxidant defenses are critical factors 

affecting susceptibility to oxidative stress, but the ontogenic development of antioxidant 

defenses and their regulation in at early life stages are only beginning to be understood. The 

zebrafish (Danio rerio), an established model in developmental biology, has emerged 

recently as a valuable system for studying the expression and regulation of antioxidant 

defenses during development, and in particular the role of Nfe2-related transcription factors. 

Here we provide a review of the development and regulation of genes involved in protection 

against oxidative stress, with a focus on insights obtained from studies in zebrafish early life 

stages (embryos and larvae). For an additional perspective on the use of zebrafish as a model 

to study oxidative mechanisms, please see a recent review [7].

Oxidant signaling and oxidative stress in development and developmental 

toxicology

Importance of redox status and oxidant signaling during development

Embryonic development involves precisely orchestrated processes--including proliferation, 

differentiation, apoptosis, establishment of left-right asymmetry, gene expression, and 

epigenetic modifications--that increasingly are found to depend on redox signaling and 

intracellular redox potentials (Eh) [8-16]. Because endogenous oxidants and cellular redox 

potential play such important and fundamental roles in normal embryonic development, 

tight regulation of redox balance is critical. Toxicant exposures or other environmental 

stressors that increase oxidant levels or disrupt redox balance can fundamentally alter cell 

fate decisions. This can result in functional or structural changes, some of which could have 

long-term consequences that may only become apparent with subsequent stress or age [17, 

18].

1Abbreviations used: ARE: anti-oxidant response element; CNC-bZIP: cap’n’collar basic-leucine zipper; CRISPR: clustered regularly 
interspaced short palindromic repeats; DEM: diethylmaleate; DQ: diquat; GFP: green fluorescent protein; GSH: glutathione; MO: 
morpholino oligonucleotide; NRF: NFE2-related factor; RT-PCR: reverse transcription-polymerase chain reaction; SFN: 
sulforaphane; tBHQ: tert-butylhydroquinone; tBOOH: tert-butylhydroperoxide; TILLING: Targeting Induced Local Lesions IN 
Genomes
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Role of oxidative stress in developmental toxicity

Oxidative stress contributes to a variety of human diseases [19-23] and has been implicated 

in the mechanism of action of human teratogens including valproic acid, phenytoin, ethanol, 

and thalidomide [16, 24-29], as well as in congenital malformations associated with PAH 

exposure [30, 31] and diabetic embryopathy [27, 32]. A variety of chemicals can generate 

reactive species or disrupt redox balance in other ways, through redox cycling, following 

biotransformation to reactive intermediates, or through induction or uncoupling of enzymes 

that can generate oxidants [33-36].

Studies of oxidative stress in adult organisms and cultured cells dominate the literature. 

However, developing animals (vertebrates including mammals and fish) are often more 

sensitive than young adults to chemical toxicity [37-40] and embryos appear to be especially 

sensitive to oxidative damage [24-27, 40, 41]. The risk of embryotoxicity and teratogenicity 

following exposure to pro-oxidant chemicals depends on the balance between reactions 

generating oxidative stress and reactions that are protective or repair the damage [24, 25, 

41-45]. Consistent with this, supplementation with small molecular anti-oxidants or 

stimulation of anti-oxidant enzymes protects embryos against the developmental toxicity of 

a variety of chemicals [46-55] and embryos with reduced antioxidant capacity are at 

increased risk for developmental toxicity and teratogenicity [24, 30, 44, 56-58].

Constitutive and inducible antioxidant defenses in embryos

Anti-oxidant defenses can be constitutive, protecting against and balancing redox potential 

under normal physiological conditions, and inducible defenses, which protect against 

toxicant-stimulated levels of oxidants or redox imbalance. Embryos express relatively low 

basal (constitutive) levels of most anti-oxidants and anti-oxidant enzymes [59-67], which 

can put them at increased risk for oxidative toxicity [24, 25, 27]. Less is known about the 

inducible component of the anti-oxidant defense in embryos. A number of studies have 

examined inducible anti-oxidant defenses and the oxidative stress response in mammalian 

development [16, 17, 65, 68-70]. These studies have demonstrated the capacity of vertebrate 

embryos to respond to oxidative stress with increased expression of anti-oxidant genes, and 

in some cases have demonstrated a role for NFE2-related factor 2 (Nrf2)2 [70, 71]. Several 

groups including ours have begun to examine the oxidative stress response in zebrafish 

embryos (see below). These reports suggest that the responsiveness of embryos to oxidative 

stress can vary dramatically with developmental stage, and that this involves Nrf proteins. 

However, there is much yet to learn concerning the oxidative stress response in embryos and 

how it is regulated. Before discussing what has been learned from studies in zebrafish 

embryos, we briefly review what is known about the oxidative stress response and its 

regulation by NRF proteins in mammals. Additional details can be found in other reviews in 

this volume.

2Nomenclature: NRF is a commonly used notation for NFE2-Related Factor genes, which are officially designated as NFE2L (NFE2-
Like). For example, NRF2 is officially designated as NFE2L2, and NRF1 as NFE2L1. Throughout the paper, we use the more 
common NRF designation. Otherwise, we utilize the approved format for designating genes and proteins (https://wiki.zfin.org/display/
general/ZFIN+Zebrafish+Nomenclature+Guidelines). In particular, human genes and proteins are designated using all capitals (NRF2 
and NRF2, respectively), whereas zebrafish genes are designated nrf2 and Nrf2 for genes and proteins, respectively. When not 
referring to a specific species, we have used the human notation as a default format.
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The oxidative stress response – regulation by Nfe2-related factors

Vertebrate animals possess an inducible enzymatic defense system that acts to detoxify 

reactive species and replenish the supply of small molecule anti-oxidants. Oxidants, 

electrophiles, and some so-called anti-oxidant chemicals activate an oxidative stress 

response via a family of related, cap’n’collar (CNC)-basic-leucine zipper (bZIP) 

transcription factors that interact with an anti-oxidant response element (ARE; a.k.a. 

electrophile response element or EpRE: 5’-TGACnnnGC-3’) in the promoters of target 

genes [72-76]. Known target genes in mammals include GSTA1, GSTP, NQO1, GCL, SOD, 

heme oxygenase (HO-1), and others.

The best-characterized oxidative stress response mechanism is that involving NRF2. NRF2 

is normally found in the cytosol as an inactive complex with Kelch-like-ECH-associated 

protein (Keap1, also called iNRF2). Keap1 both retains NRF2 in the cytoplasm and 

enhances its proteasomal degradation [77-80]. Oxidative stress disrupts the interaction 

between NRF2 and Keap1 through a mechanism that may involve phosphorylation and/or 

disruption of sulfhydryl interactions [72, 81-87] affecting the nucleocytoplasmic shuttling of 

NRF2 [88, 89]. Once free of the repressor Keap1, NRF2 protein accumulates in the cell, 

enters the nucleus and forms a heterodimer with one of several small Maf proteins (MafF, 

MafG, MafK), which also contain bZIP motifs [90-92]. The NRF2-Maf dimer binds to 

AREs and activates transcription. A few studies suggest that Nrf2 may not dissociate from 

Keap1, but that the disruption of ubiquitination maintains Keap1 in a Nrf2-saturated state, 

permitting newly synthesized Nrf2 to travel unimpeded to the nucleus (e.g. reviewed in 

[93]). However, this remains controversial and has not yet been examined in zebrafish. 

Irrespective of whether Nrf2 dissociates from Keap1, or whether the de novo/Keap1 

saturation model proves correct, accumulation of Nrf2 in the nucleus results in ARE-

mediated gene regulation. An additional layer of regulation is provided by the related 

proteins BACH1 (BTB and CNC homology 1) and BACH2, which can also act as repressors 

of NRF2 [94, 95].

An oxidative stress response involving CNC proteins appears to be evolutionarily conserved 

in animals, with NRF homologs in Drosophila melanogaster [96, 97] and C. elegans [98, 

99]. However, most of our current understanding of the oxidative stress response has been 

obtained from studies of the four mammalian CNC-bZIP proteins.

Nuclear factor erythroid-2 (NFE2)—NFE2 (also called p45) is a hematopoietic cell-

specific transcription factor controlling globin gene expression as a complex with one of 

several small Maf proteins (p18) [100, 101]. NFE2 null mice are deficient in platelets and 

exhibit hemorrhaging and high mortality [102].

NFE2-related factor-1 (NRF1; also called NFE2L1, TCF11 and LCR-F1)—NRF1 

is expressed in a variety of tissues [103] and as multiple isoforms [104]. Mice in which the 

Nrf1 gene has been disrupted die in utero either by day 7.5 or day 17.5 and exhibit a defect 

in definitive erythropoiesis [105, 106]. Studies in Nrf1−/−/Nrf1+/+ chimeric mice show that 

NRF1 is required for the development of the liver but not other tissues, that the effect is 

specific to hepatocytes, and that Nrf1−/− hepatocytes exhibit increased oxidative stress and 
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undergo apoptosis late in pre-natal development [107]. NRF1 interacts with the ARE and 

regulates the basal expression and inducibility of GCL [108] and NQO1 [109, 110]; it is also 

important for glutathione homeostasis [111]. NRF1 can also act as a repressor of gene 

expression [104, 112]. Unlike NRF2 (below), NRF1 is localized to the endoplasmic 

reticulum and may play a role in the response to ER stress [113]. NRF1 is involved in 

regulating lipid metabolism [112, 114] and the expression of proteasome subunits in 

response to oxidant-damaged proteins [115, 116].

NRF2 (NFE2L2)—NRF2 was initially cloned from humans [117] and chickens [118] 

(called ECH). NRF2 binds to ARE sequences in vitro [119] and experiments in NRF2-

deficient mice show that it regulates the basal and inducible expression of genes in the 

oxidative stress response, including NQO1, GSTP, GSTA, GSTM, GCL, ferritin, HO-1 

[120-123] and other genes [124, 125]. Unlike targeted disruption of NRF1, which is 

embryo-lethal, NRF2 knock-out mice develop and reproduce normally [126]. Interestingly, 

constitutive activation of NRF2 in Keap1-deficient mice leads to postnatal lethality [127]. 

Moreover, disruption of both NRF2 and NRF1 results in pronounced oxidative stress, 

apoptosis, and embryolethality at an earlier stage than seen in the Nrf1−/− mice, 

demonstrating that NRF1 and NRF2 both have developmentally important, partially 

overlapping roles [128]. In addition, although the Nrf2−/− single knock-out mice are viable, 

as adults they are much more sensitive to chemicals that cause oxidative stress [129-132], 

including benzo[a]pyrene (BaP) [133, 134]. Thus, NRF2 has a key role in mediating the 

oxidative stress response in adult animals.

NRF3 (NFE2L3)—NRF3 is expressed in several tissues, most notably in the placenta and 

in B-cell lineages [135, 136], and like NRF1 exists as several isoforms and is localized to 

the endoplasmic reticulum [137, 138]. NRF3-null mice develop normally and compound 

NRF3/NRF2 and NRF3/NF-E2 mutants exhibit no additional phenotypes [139]. However, 

NRF3-null mice have increased susceptibility to benzo[a]pyrene-induced T-cell 

lymphoblastic lymphoma [140]. NRF3 can activate or repress gene expression and may act 

as a negative regulator of NRF2 [138, 141]. The role of NRF3 in protection against 

oxidative stress is currently unclear.

Most information about the regulation of the oxidative stress response by NRF proteins has 

been obtained in adult mammals and mammalian cells. What is the role of NRF-related 

transcription factors in regulating the response to oxidative stress in developing animals?

Zebrafish as a model for studying development roles of Nrf2 and related 

proteins

The zebrafish has emerged as a powerful system in which to examine mechanisms involved 

in the regulation of the oxidative stress response by Nrf2 and related proteins in developing 

animals. The zebrafish embryo is an important vertebrate model (or “tool” [142]) in 

embryology and developmental biology [143-153]. Because zebrafish are vertebrates, results 

obtained in this system have more direct relevance for humans as compared to studies in 

invertebrates. The fundamental features of developmental signaling pathways are conserved 
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between fish and mammals, facilitating extrapolation of results from zebrafish to humans 

[151, 154-156].

A key technical advantage of zebrafish is the external development of nearly transparent 

embryos, facilitating direct observation of all stages of embryonic development, something 

not possible in mammals. The small size, rapid development (~48-72 hr from fertilization to 

hatch), and short generation time (2-3 mo) of zebrafish allow for large numbers of animals 

to be produced and housed [157]. Transgenic technologies are well developed in zebrafish 

[158]; transient and stable (germline) expression of transgenes can be used to visualize cell 

lineages [159], test promoter function [160, 161], and map regulatory elements [162-164], 

all in vivo. Heterologous promoters and proteins have been shown to function faithfully in 

zebrafish, recapitulating native expression patterns [162] or rescuing mutant phenotypes 

[165]. The coupling of green fluorescent protein (GFP)-based reporters [166-168] and 

transparent zebrafish embryos provides a powerful system for visualizing in vivo gene 

expression. Saturation mutagenesis screens have been performed using chemical or 

insertional mutagenesis [169-172] and many of the mutants reproduce human genetic 

diseases [173, 174].

Powerful loss-of-function approaches contribute to the utility of zebrafish in studying gene 

function. An anti-sense approach using morpholino-modified oligonucleotides (MOs) has 

been widely used to produce targeted gene “knock-downs” in developing zebrafish 

[175-177]. This approach has been useful for identifying gene function during development 

[175, 178-183] and to understand the role of specific genes in mechanisms of toxicity 

[184-191]. More recently, a trio of gene targeting methods have been developed and applied 

to zebrafish, making it possible to generate null alleles and homozygous null mutants at any 

locus. These methods include DNA-based targeted endonuclease approaches involving zinc-

finger nucleases (ZFN) and transcription activator-like effector nuclease (TALENS) 

[192-195], as well as the RNA-guided clustered regularly interspaced short palindromic 

repeats (CRISPR)-Cas9 approach [196, 197]. Recent results comparing mutant and 

morphant phenotypes have highlighted the strengths and limitations of each approach 

[198-200].

A whole genome sequence supports a variety of genomic tools for studies in zebrafish [201, 

202], and affords explicit comparisons with other species. Thus, zebrafish chromosomes 

exhibit large regions of conserved synteny with human chromosomes, facilitating studies of 

genome evolution and the identification of orthologous genes [203, 204]. An important 

advantage of zebrafish as a model is the existence of multiple copies of some human genes.

In general, zebrafish share with humans most features of key biochemical pathways 

(including signaling pathways). However, because of genome duplication in the teleost fish 

lineage shortly after its divergence from the tetrapod lineage [205-208], teleost fish have 

retained extra copies (paralogs) of some transcription factors, not found in humans. The 

existence of paralogs in fish provides an opportunity for new mechanistic insights, because 

duplicated fish genes might be exploited to obtain new information about the function of 

their single human counterpart [205-207, 209, 210]. This might apply especially to human 

genes with multiple functions or expression domains. The duplication, degeneration, 
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complementation model of gene evolution [209, 210] predicts that the multiple functions or 

complex expression patterns of such a gene in humans may be partitioned between its fish 

“co-orthologs,” so that each of the duplicates retains a subset of the original functions. By 

studying each paralog individually (e.g. by loss-of-function approaches), their distinct roles 

(subsets of the original roles or expression patterns) can be examined in isolation and 

thereby elucidated. This approach may be especially informative in studying pleiotropic 

transcription factors such as Nrf2, because it can help to reveal some of the subtle functions 

of the mammalian homolog.

Because of these advantages, zebrafish were prominent among a group of alternative models 

recommended by the National Research Council for research in developmental toxicology 

[20]. More recently, the zebrafish model has been adopted and embraced by regulatory 

agencies and scientists in the U.S. and Europe [211-216] and by the pharmaceutical industry 

[217-224]. The number of studies in which this model system has been used to investigate 

mechanisms underlying the oxidative stress response was initially small [225-229], but has 

been rapidly growing. The emerging picture is that the fundamental features of the oxidative 

stress response are conserved in vertebrates, and thus that zebrafish is a powerful model with 

which to investigate oxidative phenomena during development.

Although there are many strengths of zebrafish as a model in which to study developmental 

processes, it is important to keep in mind that early in development (prior to the onset of 

circulation at ~26 hpf [230]), zebrafish embryos may experience a somewhat different 

oxygen environment than that experienced by mammalian embryos. Zebrafish embryos are 

typically cultured and develop at ambient [O2] [231, 232], whereas at early stages 

mammalian embryos experience lower oxygen tension, and higher concentrations can be 

toxic [233]. After the onset of circulation, however, zebrafish embryos are likely to 

experience oxygen environments similar to those of mammalian embryos. Thus, while the 

zebrafish embryo may be a valuable system for investigating fundamental mechanisms 

underlying the developmental roles of Nrf2 and related proteins, as with any model there 

may also be unique features that must be considered in interpreting the results.

Diversity of CNC-bZip transcription factors and related genes in zebrafish

Studies over the past 15 years have begun to establish the molecular mechanisms underlying 

the regulation of the oxidative stress response in fish and their similarity to those in 

mammals. Early studies [225, 226] demonstrated that reporter gene constructs containing a 

luciferase gene under control of mammalian ARE sequences, when transfected into fish 

cells, could be induced by exposure to tert-butylhydroquinone (tBHQ), suggesting that fish 

oxidant-responsive transcription factors are able to recognize mammalian ARE sequences. 

Subsequently, it was shown that exposure of zebrafish embryos or larvae to tBHQ or tert-

butylhydroperoxide (tBOOH) induces an oxidative stress response [227, 234-237]. The first 

direct evidence for an oxidative stress response in fish and its mechanistic similarity to that 

in mammals was from Kobayashi et al. [227, 229], who cloned the cDNAs for zebrafish 

Nrf2 and Keap1 and showed that these proteins mediated the induction of gstp1, nqo1, and 

gclc by tBHQ in zebrafish embryos. Zebrafish also possess small Maf proteins (including a 

novel form, MafT) that form heterodimers with Nrf2 [238]. An evolutionarily conserved 
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ARE 50-bp upstream of the gstp1 transcriptional start site was shown to interact with Nrf2 

to regulate gstp1 expression [228].

Since the initial studies in zebrafish cells and embryos, the number and identity of Nrf genes 

and their partners has become clear, revealing in some cases enhanced diversity in zebrafish 

as compared to humans. As noted above, four CNC-bZIP family members exist in humans 

and other mammals: NFE2, NRF1 (NFE2L1), NRF2 (NFE2L2), and NRF3 (NFE2L3). 

Zebrafish have a single nfe2 gene that is expressed in erythroid cells and in the developing 

ear [239]. The function of zebrafish nfe2 is not well understood, but loss-of-function studies 

involving knockdown of Nfe2 by morpholino oligonucleotides suggested that nfe2 may be 

required for proper cellular organization in the pneumatic duct and subsequent swim bladder 

function, as well as for proper formation of the otic vesicles [240]. In contrast to the single 

NRF1 gene in humans, zebrafish have two nrf1 paralogs (nrf1a, nrf1b)3 [234, 241], whose 

functions are not yet known. In addition to the original nrf2 gene [227] (now known as 

nrf2a), a second nrf2 gene (nrf2b [234]) has been identified. Overall, Timme-Laragy et al. 

[234] found that zebrafish (Danio rerio) possess six nrf genes, including nfe2, nrf3, and 

duplicated nrf1 and nrf2 genes. Comparative genomic analysis demonstrated extensive 

conserved synteny involving human and zebrafish nrf2 and hox genes (Fig. 1), indicating 

that nrf2a and nrf2b are co-orthologs of human NRF2, and nrf1a and nrf1b are co-orthologs 

of NRF1. The conserved synteny suggests that the nrf1 and nrf2 duplicates—like the hox 

clusters to which they are linked—arose as part of the fish-specific whole-genome 

duplication that occurred after divergence of fish and mammalian lineages [207, 242]. In 

general, the comparative genomic analyses demonstrated strong support for the hypothesis 

that the zebrafish nrf genes are orthologs (nfe2; nrf3) or co-orthologs (nrf1a and nrf1b; nrf2a 

and nrf2b) of the corresponding human NRF genes. Zebrafish nrf genes are summarized in 

Table 1.

The HOX genes have important and well-established roles in embryonic development [245]. 

The conservation of the syntenic relationship between the HOX clusters and all of the NFE2-

related genes suggest that there has been strong selective pressure to preserve this 

arrangement over 500 million years of evolution. This has been seen also for other HOX-

associated genes and in comparisons of human and pufferfish (Takifugu rubripes) genomes 

[246, 247]. An intriguing possibility is that there may be coordinated regulation of these 

genes during development—a possible example of “genomic regulatory blocks”—large 

regions of conserved synteny and conserved gene order with overlapping regulatory features 

that resist recombination [248, 249]. Notably, all six of the NFE2-related genes are 

expressed in embryos [234, 240] (see below), supporting a plausible regulatory association 

with the HOX developmental patterning genes.

Similar to the findings with nrf1 and nrf2, zebrafish also possess duplicated keap1 genes 

(keap1a and keap1b [227, 229]) and duplicated bach1 genes (bach1a, bach1b [250, 251]). 

Together, these results demonstrate that duplicated zebrafish genes are common in the Nrf 

3The designation of duplicated genes (and their encoded proteins) as “a” (as in nrf1a) or “b” (nrf1b) is according to the approved 
zebrafish nomenclature for duplicates resulting from the fish-specific whole-genome duplication (https://wiki.zfin.org/display/general/
ZFIN+Zebrafish+Nomenclature+Guidelines).
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pathways, as they are in some other pathways involved in regulation of response to 

environmental stressors [252, 253].

Ontogeny of glutathione redox dynamics and constitutive antioxidant 

defenses in developing embryos

In addition to the oxidative stress response and developmental events regulated by the Nrf-

family of transcription factors, other endogenous antioxidant defenses play important roles 

in embryonic development. Glutathione (GSH) is the most abundant cellular antioxidant, 

present in mM concentrations, and is required for successful embryonic development [254, 

255]. Importantly, numerous studies have demonstrated a strong relationship between 

concentrations and nuclear localization of GSH and cell cycle progression [256-259]. Cell 

fate decisions have also been shown to be closely related to GSH Eh, with more oxidized Eh 

associated with differentiation, and more reduced Eh with proliferation [260-262].

Timme-Laragy et al. [263] assessed GSH homeostasis during embryonic development by 

measuring GSH redox dynamics over 0-120 hours of zebrafish development. They used 

high-performance liquid chromatography (HPLC) to measure reduced and oxidized 

glutathione (GSH, GSSG) and calculated the whole embryo total glutathione (GSHT) 

concentrations and redox potentials (Eh) at each of twelve stages. The results (Fig. 2) 
revealed distinct windows of GSH concentration and redox status that correspond to major 

developmental events. Initially (at fertilization and shortly after), embryos have relatively 

low concentrations of GSHT and reducing conditions. Subsequently (3-24 hpf) 

concentrations of GSHT remain low (2-3 mM) but the redox potential becomes more 

oxidized. From 30-48 hpf, concentrations of GSHT increase while the redox potential 

remains oxidized. This is a period of cellular differentiation, which would be promoted at a 

cellular level by an oxidized redox status [260-262]. After hatching, GSH concentrations 

remain high and the redox potential becomes more reduced, conditions that promote cellular 

proliferation [261]. These results suggest that embryonic development involves a highly 

regulated trajectory of glutathione status involving changes in both the amount and 

oxidation state of this important regulator of cellular redox status. Studies in other fish 

demonstrate similar cycles of GSH regulation during development [264, 265].

Timme-Laragy et al. [263] also identified the set of zebrafish orthologs of mammalian genes 

involved in glutathione synthesis, recycling, and utilization and measured their expression 

during development. They identified in the zebrafish genome extensive duplication of genes 

encoding proteins involved in GSH synthesis and recycling, and these genes exhibited 

complex patterns of gene expression in developing embryos. A number of the genes 

involved in GSH synthesis were maternally loaded and/or expressed highly in early 

embryos. Overall, ontogenic changes in the expression of GSH-related genes supported the 

hypothesis that GSH redox status is tightly regulated during development. However, the role 

of Nrf proteins and other transcription factors in regulating the constitutive expression of 

these genes in embryos is not yet well understood.
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Developmental expression of Nfe2-related genes and inducible antioxidant 

defenses

The constitutive expression of genes involved in antioxidant defense may help to ensure that 

redox conditions are appropriate for normal embryonic development, and may provide some 

immediate protection against challenges posed by exposure to chemicals or other stressors. 

In addition, embryos possess the ability to up-regulate antioxidant defenses in response to 

challenges, but how these inducible responses vary by cell type and developmental stage and 

how they are regulated during development are poorly known.

Kobayashi et al. [227] found that exposure of zebrafish larvae to tBHQ (30 μM) for 6 hr at 

4- or 7-days post fertilization (dpf) caused the induction of gstp1, nqo1, and gclc. However, 

exposure of 24-hpf embryos to tBHQ for 6 hours did not induce gstp1, suggesting that 24-hr 

old zebrafish embryos are less capable of mounting an oxidative stress response. Timme-

Laragy et al. [235] found induction of gstp1, gpx1, and gclc in zebrafish embryos exposed to 

tBOOH or ß-naphthoflavone for 24 hr beginning at 24-hpf, suggesting that at some point 

during the 24-48-hpf period the embryos are capable of responding to these chemicals. A 

recent study [237] showed that tBHQ exposure for 6 hr caused strong induction of gstp1 in 

1- and 2-dpf embryos. tBHQ also induced gclc (1-, 2-, and 4-dpf), but not sod1 or nqo1. 

Together, these reports suggest that there are stage- or chemical-specific differences in 

responsiveness to oxidative stress during development.

Gene expression profiles

A few studies have gene expression profiles in embryos exposed to oxidant chemicals. In a 

comparison of responses of zebrafish larvae to eleven different chemicals using microarrays, 

Yang et al. [236] found that tBHQ at 5-dpf produced a distinct profile that included a 

number of genes known from studies in mammals to be involved in the oxidative stress 

response. Nakajima et al. [266] reported that exposure of 4-dpf larvae to the sulfhydryl-

reactive chemical diethylmaleate (DEM) induced 42 genes by more than 2-fold, including 

gclc, txnrd1 (thioredoxin reductase 1), peroxiredoxin 1, and several gst genes. In another 

study [237], microarray analysis of gene expression in 4-dpf larvae acutely exposed to tBHQ 

showed a robust response, with both up-regulated genes (220 genes induced by more than 2-

fold) and down-regulated genes (109 genes). The induced genes included several involved in 

the synthesis and utilization of GSH and other sulfhydryl-reactive anti-oxidants 

(thioredoxin) and their regulation, including gclc, gclm, glutathione synthase (gss), GSH 

reductase (gr1), gamma-glutamyl transferase (ggt1a), and cystathionine beta-synthase 

(cbsb). There was substantial overlap (10/15) between genes induced in these larvae and a 

set of marker genes induced by oxidative stress in mammals (Table 2), demonstrating the 

evolutionary conservation in the oxidative stress response.

Developmental expression of nrf genes

How the expression of nrf genes and Nrf proteins varies during development is not fully 

understood, but current data suggest that there are substantial differences in developmental 

patterns (ontogeny), levels, and localization. Expression of nrf2a mRNA as assessed by RT-

PCR is low in early embryos (≤24 hpf), but increases substantially from 2- to 7-dpf [268]. A 
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similar pattern was seen using quantitative RT-PCR [234] and microarray [240]. 

Interestingly, microarray data suggest that nrf3 mRNA is maternally loaded and that levels 

of nrf3 expression through the first two days of embryonic development are much greater 

(by several orders of magnitude) than those of any other nrf gene [240].

Localization of nrf gene expression also varies by gene and developmental stage. As noted 

earlier, zebrafish nfe2 is expressed in erythroid cells and in the developing ear [239]. The 

expression of nrf2a mRNA at 24 hpf is restricted to the olfactory system, but by 5-dpf this 

gene is more widely expressed, appearing also in gill, liver, and intestine [266]. Expression 

of nrf2a mRNA is also seen in the exocrine pancreas at 84 hpf [250]. The expression of nrf3 

mRNA is localized to fore, mid- and hindbrain and pectoral fin buds between 24- and 36-hpf 

[240]. The localization of nrf1 paralogs and nrf2b is not known. These patterns of tissue-, 

cell- and developmental stage-specific expression suggest that there are specific and varying 

needs for regulating redox status, and also that there are target cells, tissues, or stages that 

may be more susceptible to non-physiological oxidant challenge; neither of these is well 

understood.

Functional assessment of Nfe2-related genes in development and 

developmental toxicity

Loss-of-function approaches to define the roles of Nrf proteins

Measurements of gene expression—whether of nrf genes themselves or their putative target 

genes—provide intriguing associations but do not reveal regulatory relationships or 

mechanisms. In contrast, loss-of-function experiments in which the expression or function of 

a protein is reduced or eliminated can provide valuable mechanistic information about the 

role of that protein. The primary approach used so far to elucidate the functional roles of Nrf 

proteins in zebrafish embryos has been knock-down of protein expression using morpholino-

modified anti-sense oligonucleotides (MOs) [175]. Although questions have arisen recently 

about the use of the MO approach to identify functions of novel genes [198-200], MO-based 

knock-down remains a valuable method for testing specific hypotheses about the role of 

transcription factors in regulating putative target genes.

Several groups have used MO-mediated knock down of Nrf2a to assess the role of this 

protein in the regulation of gene expression in zebrafish embryos in response to oxidant 

exposure. Some of these results are summarized in Table 3. These studies show that a 

number of oxidant-inducible genes (and at least one repressed gene) are under control of 

Nrf2a; the genes include some well-known Nrf2 targets such as gstp1, gclc, hmox1, and 

prdx1. However, other oxidant-inducible genes do not appear to be regulated via Nrf2a 

(Table 3), suggesting that other transcription factors may be involved in controlling their 

induction.

A recent study [244] compared the tBHQ-induced gene expression profiles in 2-dpf 

zebrafish embryos in which either Nrf2a or Nrf2b had been knocked down. Knockdown of 

Nrf2a or Nrf2b blocked some but not all of the tBHQ-induced changes in gene expression 

and the effects of Nrf2a-MO and Nrf2b-MO were distinct. The results indicated that Nrf2 

paralogs regulate distinct gene sets, with some overlapping targets, in response to oxidative 
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stress in embryos. This study also highlighted the importance of gene down-regulation as a 

component of the oxidative stress response during embryonic development.

Much less is known about the role of other Nrf proteins, including the Nrf1 paralogs and 

Nrf3, in regulating specific genes in response to oxidative stress. Studies in mammals (e.g. 

[269, 270]) suggest that much will be learned by defining the sets of genes regulated by each 

Nrf protein in embryos. In addition, other redox-sensitive transcription factors may be 

involved in regulating the response to oxidant exposure (see below).

In addition to regulating the induction (or repression) of oxidant-responsive genes, Nrf 

proteins are likely to be involved in the regulation of constitutive (basal) expression of some 

genes. For example, Timme-Laragy et al. [234] performed gene expression profiling of 

Nrf2a-MO-injected embryos and Nrf2b-MO-injected embryos and found that Nrf2a and 

Nrf2b regulate distinct but partially overlapping gene sets even in the absence of chemical 

exposure. In Nrf2a-morphants, 198 probes were up-regulated, whereas 310 were down-

regulated as compared with embryos injected with the control-MO. In contrast, Nrf2b-

morphants had more up-regulated probes (280) than down-regulated probes (254), 

suggesting that Nrf2b can act as a repressor of constitutive gene transcription during 

development.

The loss-of-function caused by MO-based knock-down is partial and temporary. Thus, while 

MO experiments can help to identify functions during early development, they may miss 

functions occurring later or that can proceed in the presence of reduced Nrf protein 

expression. A more powerful approach to defining gene function is to generate null mutants 

in which the expression of a gene or function of its encoded protein is completely 

eliminated. While such an approach is common in mice and has been applied extensively to 

understand the role of murine Nrf proteins (see above), application of this approach to 

understand Nrf function in zebrafish is in its infancy.

Two point mutants of zebrafish nrf2a have been generated using the approach known as 

TILLING (Targeting Induced Local Lesions in Genomes [274, 275]). Each of these mutants 

(nfe2l2fh318 (R485L) and nfe2l2fh319 (N494I)) possesses a single amino acid change in a 

conserved residue in the basic region near the C-terminal end of the Nrf2 protein [243]. 

Kobayashi and colleagues [243] found that the protein encoded by the nfe2l2fh319 mutant 

retained activity, but that the transcriptional activity of the protein encoded by the 

nfe2l2fh318 allele was greatly reduced. Homozygous nfe2l2fh318 mutant fish were viable and 

fertile, similar to what is seen in Nrf2-knock-out mice [126]. However, mutant fish were 

more sensitive to the toxicity of H2O2 and other peroxides and certain electrophilic 

compounds, but not to some other oxidants [243]. The mechanism responsible for this 

increased sensitivity may involve a reduction in the ability to mount an oxidative stress 

response. Consistent with this, the induction of gstp1, prdx1, txn1, and gclc by H2O2 was 

greatly reduced in homozygous mutant larvae as compared to wild-type larvae [243].

The nfe2l2fh318 fish are also being used by other groups [273, 276, 277] to explore the role 

of nrf2a in protection against chemicals that cause oxidative stress.
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Chemical specificity: patterns and mechanisms

A variety of chemicals can disrupt redox balance by generating oxidants or reacting with 

sulfhydryl groups, and thereby activate an oxidative stress response. There are questions 

about the mechanisms by which these chemicals activate this response in embryos. For 

example, do they act through Nrf2 or other Nrf proteins? Do chemicals that act by different 

mechanisms produce the same gene expression response?

A number of genes that are induced by oxidant exposure are shared in zebrafish and 

humans, and in a given species exposed to different oxidants [236, 237, 266, 267]. A recent 

study [278] examined the set of oxidant responsive genes that is induced by structurally 

distinct activators of the oxidative stress response in developing zebrafish. Zebrafish larvae 

(4 dpf) were exposed to tBHQ, tBOOH, diquat (DQ), or sulforaphane (SFN)) and gene 

expression was measured 6 hr later by microarray and Q-RT-PCR. The compounds caused 

overlapping but distinct patterns of altered gene expression. A core set of genes responded to 

all oxidants. However, other genes exhibited oxidant-specific changes in expression. 

Principal components analysis revealed that the changes in gene expression caused by SFN, 

a sulfhydryl-reactive agent, were distinct from those produced by the other oxidants. The 

results demonstrate that the oxidative stress response in developing animals is dependent 

upon the nature of the oxidative stress.

Kobayashi and colleagues [268, 279, 280] have begun to elucidate some of the mechanisms 

by which distinct responses might be produced for different chemicals. Their studies of this 

“multiple sensing mechanism” have identified six classes of inducers based in part upon 

which cysteines in Keap1 are targeted for oxidation. Additional mechanisms may involve 

activation of different Nrf paralogs. For example, MO knockdown studies in zebrafish 

embryos have shown that Nrf2a and Nrf2b regulate distinct gene sets, with only a small 

number of overlapping target genes [244]. The roles of other Nrf proteins—including Nrf1a, 

Nrf1b, and Nrf3—in regulating the response of developing animals to oxidative stress are 

completely unknown. Beyond the Nrf gene family, there are other redox-sensitive 

transcription factors such as AP-1, NFκB, p53, and HIF [281, 282] that may be involved in 

generating chemical-specific effects.

Conclusions and Future Directions

Regulation of constitutive and inducible defenses against oxidative stress by Nfe2-related 

factors is an evolutionarily conserved feature of animals. Conservation is especially evident 

among vertebrate animals, which share Nfe2, Nrf1, Nrf2, and Nrf3, as well as a core set of 

genes that respond to oxidative stress [227, 234, 237]. This conservation contributes to the 

value of zebrafish as a model system with which to investigate the mechanisms involved in 

regulation of redox signaling and the response to oxidative stress during embryo-larval 

development. Studies in zebrafish have revealed nrf and keap1 gene duplications that 

provide an opportunity to dissect multiple functions of vertebrate NRF genes, including 

multiple sensing mechanisms involved in chemical-specific effects.

Important questions about the regulation of the oxidative stress response in developing 

animals remain to be answered. We highlight three areas where substantial progress can be 
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expected. One concerns the role of different Nrf homologs and paralogs in such regulation, 

and how it may vary by cell type and stage of development. Understanding the roles of Nrf 

proteins will be facilitated by gene-targeting and genome-editing approaches such as 

CRISPR-Cas9 [196, 197]. This method, first used for gene inactivation in 2013, has now 

exploded and is being used for a variety of applications, including single-nucleotide genome 

editing [283, 284]. This is a transformative technology that is dramatically enhancing our 

ability to manipulate systems to better understand gene function. It is possible, for example, 

to introduce known human polymorphisms into zebrafish nrf or keap1 genes to better 

understand how they affect Nrf protein function during development.

Another important goal is to understand the localized generation of oxidants and oxidative 

stress and the consequent responses. Use of transgenic technologies [158, 285] will facilitate 

new insight into the cell and tissue specificity of the oxidative stress response in embryos. 

Initial studies have begun to address such questions, using molecular probes to localize 

oxidative stress [7] and transient [228, 286] and germ-line transgenics [279, 287] to measure 

the response.

A third topic of great interest and where progress should be substantial in the near future is 

cross-talk between Nrf signaling pathways and other stress-response and developmental 

signaling pathways. One example is the aryl hydrocarbon receptor (AHR) signaling 

pathway, involved in both developmental processes and the response to endogenous and 

exogenous chemicals. Interactions between AHR and NRF signaling occur in mammals 

[288-291] and recent studies suggest that such interactions also occur in zebrafish embryos 

[234, 277, 292]. In addition to the AHR pathway, there are several other signaling pathways 

that engage in cross-talk with Nrf signaling in mammalian systems. Some of these pathways 

include those involving Hsf1, Notch, NFκB, PPARγ/RXR, and the unfolded protein 

response [93, 293-298]. Whether any of these interact with Nrf signaling during 

development remains to be determined.

Although substantial progress has been made in using the zebrafish embryo system to 

understand the role of Nrf proteins in regulating the oxidative stress response in developing 

animals, much remains to be done. The next few years will be an exciting time as new 

approaches are applied in novel ways to address longstanding questions about Nrf function 

during development.
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Highlights

• The zebrafish is a valuable model for studying developmental roles of Nrf 

proteins.

• Zebrafish and mammals share a core set of oxidative stress response genes.

• Zebrafish and mammals share four types of NRF family transcription factors.

• Zebrafish nrf gene duplicates can help elucidate pleotropic roles of Nrf proteins.

• Loss-of-function approaches can reveal Nrf target genes in embryos.
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Fig. 1. Comparative genomics of NFE2-related genes in zebrafish
Location and shared synteny involving NFE2-related genes and HOX genes in the human 

genome (top) and zebrafish genome (bottom). This research was originally published in The 

Journal of Biological Chemistry. Timme-Laragy et al., Nrf2b, Novel Zebrafish Paralog of 

Oxidant-responsive Transcription Factor NF-E2-related Factor 2 (NRF2). The Journal of 

Biological Chemistry. 2012; Vol. 287: 4609-4627. [234] © the American Society for 

Biochemistry and Molecular Biology.
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Fig. 2. Concentrations of GSHT and Eh during the first 120 hours of zebrafish development
Four “windows” of dynamic glutathione conditions during embryonic development are 

observed. A) reduced Eh and low GSHT, observed in mature oocytes; B) oxidized Eh and 

low GSHT, observed in embryos from the mid-blastula transition through somitogenesis 

(3-24 hpf); C) oxidized Eh and high GSHT, observed in embryos undergoing organ 

differentiation (30-48 hpf), and D) reduced Eh and high GSHT, observed in post-hatch 

eleutheroembryos. Reproduced, with permission, from Timme-Laragy et al. [263].
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Table 1
nfe2-related genes in zebrafish

gene
a protein Expression

during
development

Morphant
phenotype

Mutants
available

References

nfe2 Nfe2 yes; localized swim bladder,
otic vesicles

no [234, 239, 240]

nrf1a (nfe2l1a) Nrf1a yes
none

b no [234, 240]

nrf1b (nfe2l1b) Nrf1b yes none no [234, 240]

nrf2a (nfe2l2a) Nf2a yes, localized;
increasing 0-5 dpf

gene
expression

nfe2l2fh318

(R479L)
[227, 234, 240,
243, 244]

nrf2b (nfe2l2b) Nrf2b yes gene
expression

no [234, 240, 244]

nrf3 (nfe2l3) Nrf3 high none no [234, 240]

Notes:

a
Commonly used gene name is given. When different from the common name, the official gene name is provided in parentheses.

b
None = no phenotype detected so far, but phenotypes may be revealed upon further analysis.
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Table 2
Genes induced by exposure to tBHQ: Comparison of mammals and zebrafish

Marker gene in mammals Zebrafish
(co)-orthologs tBHQ / DMSO

HSP70 1A, 1B, 6
hsp70 (Chr.3) 52.3

hsp70l (Chr.8) 15.5

HSP70 9B hspa9 (Chr.14) 1.2

HSP90 1 alpha
hsp90a (Chr.20) 1.2

hsp90a2 (Chr.20) 10.4

DnaJ(Hsp40) B1
dnajb1a (Chr.3) 1.4

dnajb1b (Chr.1) 10.5

NAD(P)H quinone
oxidoreductase-1 (NQO1) nqo1 0.7

Glutamate-cysteine ligase,
modifier subunit gclm 4.1

Thioredoxin (TXN)
txn1 (Chr.7) 5.5

txn2 (Chr.1) 0.8

Thioredoxin reductase-1 txnrd1 1.6

Glutathione reductase glutathione reductase 1 3.8

Ferritin, heavy polypeptide-1

fth1 (Chr.7) 1.0

ferritin-like (Chr.3) 6.8

ferritin-like (Chr.25) 0.7

Ferritin light polypeptide ferritin L 0.9

Carbonyl reductase-1 cbr1 1.1

Phosphogluconate
dehydrogenase pgd 2.5

Sequestosome-1 sqstm1 7.6

Ubiquitin thioesterase usp4 1.0

A set of 20 candidate genes, based on the multiple data sets of genes responding to oxidative stress in mammalian cells, was compiled by Johnson 
and colleagues, as listed in Table 2 of Li et al. [267]. Here, the 20 mammalian candidate genes have been collapsed into 15 sets based on 
orthologous or co-orthologous relationships with zebrafish genes and including only those genes with orthologs represented on the Agilent 
zebrafish microarray. Of these 15 genes, 10 have at least one co-ortholog induced by tBHQ in 4-dpf zebrafish (indicated in bold type and green 
shading), whereas 5 are not induced under these conditions. This table is modified from Table 1 of Hahn et al. [237]; use is permitted by the 
Creative Commons Attribution license.
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Table 3

Use of MO-mediated knock-down to determine Nrf-dependence
a
 of altered gene 

expression in oxidant-exposed zebrafish embryos

Gene Inducer Age Nrf2a-
dependence?

Reference

bcat1 DEM 4 dpf Yes [266]

ferric-chelate
reductase 1

DEM 4 dpf Yes [266]

ferritin heavy chain DEM 4 dpf Yes [266]

gclc tBOOH, ANF + BNF 2 dpf Yes [235]

gclc CdCl2 4 dpf Yes [271]

gpx1 tBOOH, ANF + BNF 2 dpf Yes [235]

gsta1 DEM 4 dpf Yes [266]

gstp tBHQ 4 dpf Yes [227]

gstp1/gstp2 tBOOH, ANF + BNF 2 dpf Yes [235]

gstp CdCl2 4 dpf Yes [271]

gstp1 DEM 4 dpf Yes [266]

gstp1 tBHQ 2 dpf Yes [234]

hmox1 CdCl2 4 dpf Yes [271]

hmox1 PFOS 4 dpf Yes [272]

mitfa tBHQ 2 dpf
Yes

b [234]

peroxiredoxin 1 DEM 4 dpf Yes [266]

prdx1 CdCl2 4 dpf Yes [271]

prdx1 GSNORi 54 hpf Yes [273]

sepw2b DEM 4 dpf Yes [266]

sod1 ANF + BNF 2 dpf Yes [235]

sod2 ANF + BNF 2 dpf Yes [235]

abcc2 DEM 4 dpf No [266]

atf3 tBHQ 2 dpf No [234]

bc2 DEM 4 dpf No [266]

cx32.3 DEM 4 dpf No [266]

hsp70 tBHQ 2 dpf No [234]

txnrd1 DEM 4 dpf No [266]

ugdh DEM 4 dpf No [266]

Abbreviations used: ANF: alpha-naphthoflavone; BNF: beta-naphthoflavone; DEM: diethylmaleate; GSNORi: S-nitrosoglutathione reductase 
(GSNOR) inhibitor N6547; PFOS: perfluorooctane sulfonate; tBHQ: tert-butylhydroquinone; tBOOH: tert-butylhydroperoxide.

a
Nrf2a-dependence is defined as genes showing a reduction of induction (or repression) by chemical in embryos injected with Nrf2a-MO as 

compared to a control MO.

b
Gene is repressed, rather than induced, by chemical treatment.
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