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Abstract

The growth and development in the last decade of accurate and reliable mass data collection 

techniques has greatly enhanced our comprehension of cell signaling networks and pathways. At 

the same time however, these technological advances have also increased the difficulty of 

satisfactorily analyzing and interpreting these ever-expanding datasets. At the present time, 

multiple diverse scientific communities including molecular biological, genetic, proteomic, 

bioinformatic, and cell biological, are converging upon a common endpoint, that is, the 

measurement, interpretation, and potential prediction of signal transduction cascade activity from 

mass datasets. Our ever increasing appreciation of the complexity of cellular or receptor signaling 

output and the structural coordination of intracellular signaling cascades has to some extent 

necessitated the generation of a new branch of informatics that more closely associates functional 

signaling effects to biological actions and even whole-animal phenotypes. The ability to untangle 

and hopefully generate theoretical models of signal transduction information flow from 

transmembrane receptor systems to physiological and pharmacological actions may be one of the 

greatest advances in cell signaling science. In this overview, we shall attempt to assist the 

navigation into this new field of cell signaling and highlight several methodologies and 

technologies to appreciate this exciting new age of signal transduction.
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1. Introduction

1.1. The Relentless Progression in Complexity

Many research scientists familiar with signal transduction research have in recent years 

realized that despite their enhanced output technologies, genomic, proteomic or 

metabolomic, they often consider themselves somewhat hampered by analytical techniques 

that do not seem able to adequately appreciate mass datasets. Our consideration of the nature 

of signal transduction systems has likely forever moved away from linear enzymatic 

cascades with near-Brownian modes of motion of individual signaling factors in 

intermediary metabolic systems. Current hypotheses, of at least receptor-mediated signal 

transduction pathways, include the presence of substate-specific isoforms of receptors 

coupled to preassembled signal transduction cascades consisting of subtype-specific, stable 

multiprotein signaling complexes that possess distinct subcellular targeting mechanisms (1, 

2). Despite this conversion of thinking and the wider appreciation of the inherent increase in 

the complexity of signaling systems, the potential for hindrance of pharmacological research 
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has not been seen, actually quite the reverse. The more subtle our appreciation of the 

intricate nature of receptor response mechanisms and their contextual variety, then the more 

selective and specific rationally designed pharmacotherapies may become (3, 4).

With the ability to rapidly and accurately measure multiple differences (genomic or 

proteomic) between either physiological or drug-induced states, our appreciation of the 

complex nature of biological processes has forced us to consider that often physiological 

disorders or drug responses are mediated by alterations in whole gene/protein networks, as 

opposed to simple activation or inhibition of a linear signal transduction pathway. A 

common phrase often used to describe this changing mindset in molecular biology is 

“pathways no longer exist, there are only networks.” This statement however does not 

negate the many years of prior signal transduction research but suggests perhaps that the 

delineation of discrete signaling pathways is likely an abstraction of the true hyper-complex 

signaling network due to our previous deficiencies in analytical technology. There are a 

huge variety of efficient and sensitive techniques which an investigator can use to assess 

genomic or proteomic differences in distinct pathophysiological or pharmacological 

scenarios, including fluorometric gene array analysis, genome-wide association screening 

and massive parallel sequencing, ChIP(chromatin immunoprecipitation)-on chip, antibody 

arrays, protein-binding microarrays, differential in-gel electrophoresis and quantitative mass 

spectrometry (MS). These techniques have been thoroughly discussed in recent years and 

therefore will not be repeated here. These era-changing technologies, however, often leave 

experimenters feeling lost in a mass of data that may or may not contain the specific 

scientific answers they are seeking. The application of biologically relevant mathematical 

processes to divine the eventual physiological meaning of these datasets will be the primary 

subject of this overview. We intend to provide a simple primer that researchers can use as a 

reference for interpretation of their complex datasets. The analytical tools and processes 

described will be applicable to both genomic and proteomic data and will hopefully facilitate 

a more holistic understanding of the creation and eventual pharmacological targeting of 

signal transduction networks. The primary goal of these bioinformatic analytical tools is the 

rational and biologically relevant condensation of these mass data lists into outputs that may 

predict the functional activities of the genes/proteins modulated between the control and test 

datasets. The clustering of gene/protein factors into functional groups or even signaling 

pathways will help to categorize characteristic gene/protein sets for future diagnostic and 

therapeutic use. Therefore in the future patient diagnosis, drug development, testing, and 

design may all take place initially at the signaling network level rather than at the single 

gene/protein measurement index level.

We shall consider the most commonly used techniques to extract functionally relevant and 

experimentally actionable information from mass data lists and then describe the most apt 

future uses of these paradigms. Even before more complex functional analysis can begin we 

shall discuss several important considerations with respect to the initial generation of the 

dataset and the relative merits and detractions of genomic/proteomic techniques.

Maudsley et al. Page 2

Methods Mol Biol. Author manuscript; available in PMC 2016 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1.2. Textual Definitions

In this overview, we shall consider both gene and protein datasets and will describe both as 

the same, that is, “dataset.” For most postexperimental analytical algorithms we find that the 

Gene Symbol nomenclature often provides the most reliable and flexible gene/protein 

annotation platform and therefore we shall primarily consider these in this overview. 

Individual genes or proteins will be individually and interchangeably described as “factors” 

in this overview.

2. Extracting Multiple Relevant Factors from Datasets

Since the advent of facile technologies that can generate large complex datasets, the primary 

goal of such experiments has been to identify many relevant factors (gene or protein) that 

may explain the pathophysiological outcome or drug response in the experimental paradigm. 

Typically, a single control and one or multiple test conditions are analyzed in a simple 

comparative manner. After the creation of the first readily available gene arrays, the primary 

data selection processes applied to these datasets were developed by classical statistical 

analysis (5). With respect to modern fluorometric gene arrays such as Illumina and also to 

quantitative proteomic techniques, the initial choices for data filtration are distinct due to the 

unique properties of either of the mass analytical techniques. Many of the analytical modes 

can be swapped between genomic or proteomic platforms but one must always take into 

account that often mass spectrometry is a discovery process while gene (and also antibody 

or protein) microarrays provide a standard reproducible platform for each experiment. The 

functional annotation of datasets provides an invaluable approach for divination of the 

physiological “meaning” of the output but specifically in the case of mass spectrometry 

proteomics provides a vital support for analysis of variability of function between 

experiments. This important aspect of functional annotation of proteomic data will be 

expanded upon in subsequent sections.

2.1. Fluorescent Microarrays

Using differential fluorescent dye attachment (typically Cy3 or Cy5) relative quantitative 

changes in mRNA expression are easily obtainable on a large scale (6, 7). As with most 

technologies based upon fluorescent dye usage, the presence of background residual signal 

can be problematical. Subtraction of such background intensity is achieved by statistically 

computing the average background intensity and using the standard deviation among this 

intensity to calculate a confidence interval, the upper limit of which is used for the 

subsequent background correction. To assist the comparison of multiple gene regulation 

profiles between microarray chips, normalization of the data is paramount. One of the most 

common methods employed for normalization of the respective gene fluorescent signal is 

the use of “housekeeping” genes. The valid employment of housekeeping genes to 

normalize biologically relevant fluctuating data on the array relies on the assumption that 

there is a set of standard genes whose expression does not change with experimental 

condition or ligand stimulation. However, with respect to our current thinking of 

physiological response/signal transduction networks, the concept of a nonchanging factor on 

the array unfortunately becomes less and less likely. Clearly, there will be a spectrum of 

perturbation of factors on the array and some genes may indeed be unperceivably altered 
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and thus provide a de facto basis for normalization. It is likely though that in the next few 

years the reliance upon “housekeeping” factors will be an increasingly redundant concept 

even though it may be practically effective. Internal spotted standards of a control factor, for 

example, bovine serum albumin, can often provide an adequate control for the output from 

the assay chip instead of using an experimental sample. However, this merely controls for 

experimental detection process itself and not the differential factor data per se. An 

alternative approach though is the more reliable use of whole-array normalization. 

Typically, whole-array normalization is performed using linear or logarithmic regression 

techniques (8–12). The reliability of this process is likely to be affected by the network 

connectivity of the targets under study and the target selectivity of the experimental 

effect(s). This whole-array normalization also relies upon a potentially anachronistic 

assumption, that is, the majority of genes on the array are nondifferentially expressed 

between the experimental states, and that varying genes are not solely associated with one of 

the fluorescent labels. The latter assumption can be checked easily by dye-swapping 

paradigms in which fluorescent labels are reversed and experimental data obtained again. 

This can also be applied to quantitative proteomic technologies that we shall describe in 

later sections. As mentioned previously this assumption that there is only a minimal 

perturbation of genes on the array constructively reinforces our old concept of linear discrete 

signaling pathways. Practically, however, this technique may still yield the production of a 

de facto valid data set based on the “broadness” of the spectrum of variation in the response 

to the experimental actions (Fig. 1). To further prepare microarray data for functional 

analysis, it is typical to apply a log transformation to the fluorescent data to make numerical 

manipulation more acceptable. Parametric tests used for statistical analysis of the factor 

variation are the most commonly utilized, as these tests are much more sensitive and require 

the data to be normally distributed. This is usually achieved by using log transformation of 

the spot intensities to achieve a Gaussian distribution of the data. To extract the actual 

differential expression profile of genetic factors from microarray data, a ratio of intensity (as 

a measure of expression level: z-ratio) between two samples is used. As with all biological 

experiments, replicates of array data are required if a fold-change cutoff of z-ratios is used to 

primarily filter the data set. Several model-based techniques have been developed that 

facilitate the assumption of multiplicative noise, and eliminate statistically significant 

outliers from the data (13). The typical parametric analytical methods applied to primary 

gene array data management include maximum-likelihood analysis, F-statistic, ANOVA 

(analysis of variance), and t-tests. The results of these tests are often improved by the log 

transformation of the primary data. Nonparametric tests used to analyze microarray data 

include Mann–Whitney tests (14) and Kruskal–Williams rank analysis (15). The primary 

goal of the initial statistical analysis of the array data is the calculation of significance values 

for gene expression, most commonly as a “p-value.” P-values, either fixed to 0.05 or 0.01 

are then employed to reduce the dataset to significantly regulated gene lists before z-ratio/

fold-change cutoffs are applied (typically ±1.5) as well as provisions for false data creation 

which are highly likely when large arrays are used. Protocols for the elucidation of random 

false results calculate the overall chance that at least one gene is a false-positive or -

negative, that is, the family-wise error rate (16). Erroneous data discovery from arrays can 

also be assessed using the Bonferroni approach, that is, this technique multiplies the 

uncorrected p-value by the number of genes tested, treating each gene as an individual test. 
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This protocol can increase significant data specificity by reducing the number of false-

positives identified, but unfortunately attenuates the array sensitivity by increasing the 

number of false-negatives. A modification of the Bonferroni approach, the false-discovery 

rate (FDR), uses a random permutation while assuming each gene is an independent test. In 

addition, bootstrapping approaches can improve significantly on the Bonferroni approach, as 

they are less stringent (17). Resampling-based false discovery rate-controlling procedures 

can also be used (18). These array data extraction protocols can be applied to other array 

platforms, for example, antibody or protein arrays, as essentially the chip data can be easily 

analogized. However, one caveat is of course required, that is, the likelihood of high 

logarithmic increases in protein expression is highly unlikely as even a twofold change of 

protein expression may be sufficient to generate profound signaling actions, especially if the 

protein possesses enzymatic activity.

2.2. Quantitative Mass Spectrometry

The primary contrast between proteomic datasets and those from array experiments is the 

expectation of inclusion of certain data-points, that is, proteins. Standard arrays provide a 

reproducible experimental platform while the recovery of the same protein between 

experiments is often unlikely. The use therefore of pathway bioinformatics, which can infer 

function from a variety of related proteins and not just based on individual identity, in such 

experiments may be paramount for the future use of proteomics. There are also recent 

advances in MS-based technologies that can be applied to mass spectrometers that can 

facilitate the accurate selection of protein species to be identified from a desired list 

(selective reaction monitoring, SRM; 19) in-part recreating the desired scanning pattern of 

an array. Such specific monitoring modes of MS may considerably slow down the rate of 

data retrieval and may only be suitable for experiments in which high levels of starting 

extract are available. In contrast to array technology though, the detection through SRM is 

still dependent on the ability of the MS to physically detect the specified peptides. This 

detection reliability is often more likely to demonstrate experiment to experiment variability 

than gene array platforms.

In this overview, our major focus is upon the functional interpretation of gene/protein 

datasets using bioinformatic approaches and therefore we shall focus upon the most 

commonly used current quantitative proteomic technique, that is, isobaric mass-tag labeling.

Mass-tag labeling (Fig. 2), for example, iTRAQ (isobaric tag for relative and absolute 

quantitation), SILAC (stable incorporation of labeled amino acids in culture) or SILAM 

(stable incorporation of labeled amino acids in mammals), allows the rapid ratiometric 

analysis of multiple peptides separated by multidimensional cation-exchange liquid 

chromatography (LC) identified with either time-of-flight (TOF) or linear ion-trap tandem 

mass spectrometry (LC-MS2) with modified dissociation techniques such as PQD (20) and 

HCD (21). These instruments, and the diverse workflows they support, have in common that 

they both generate up to thousands of fragment ion spectra per hour of data acquisition. The 

assignment of these fragment ion spectra to peptide sequences, the inference of the proteins 

represented by the identified peptides and the determination of their abundances in the 

analyzed sample present complex computational and statistical challenges. It is important 
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for the future use of MS and proteomics in metabolic signaling analysis to develop 

technological solutions to these issues that provide accurate and reproducible quantitative 

differential protein expression data. To this end, one of the major advances will be the 

application of accurate functional annotation and categorization into metabolic pathways of 

the protein sets created. As MS generally does not provide a factor identification process as 

reliable as microarrays, the physiological and rational prediction of the signaling 

consequences of the protein streams will facilitate experiment to experiment comparison.

In contrast to array-based technologies, the primary concerns for MS-based dataset creation 

approaches involves the actual accurate identification of the proteins in the sample, for 

example, control versus test. For TOF and LC-MS2 the identification of proteins in the 

sample is based upon fragmentation ion spectrum (MS2-spectrum) of a specific peptide ion 

that is broken down into its constituent components in a gas-filled collision cell. Due to the 

enormous complexity of peptides composed of 20 amino acids, however, a large number of 

MS/MS spectra do not contain sufficient identity information to allow error-free peptide 

definition. In order to minimize false identification, a strict filtering criterion is required, 

which can be enforced, for example, by searching retrieved MS/MS spectra against a 

composite of both “target” and “decoy” (often reverse peptide alignments) sequence 

database (22). Much of the statistical manipulation used for protein datasets has focused 

upon the actual generation of the identified protein list rather than on the bioinformatic/

pathway structure of the resultant data list itself. In recent years, however, with the advent of 

sophisticated automated identification software more attention is now paid to the 

physiological relevance of the mass datasets. The correct correlation and attribution of an 

MS2-spectrum to its originating peptide sequence followed by eventual protein matching 

and identification is the first and central step in proteomic data processing. Numerous 

computational approaches and software tools have been developed to automatically assign 

candidate peptide sequences to fragment ion spectra, for example, SEQUEST, MASCOT, 

ProteinProspector, or ProbID (23–26). These computational approaches can involve 

database searching, where peptide sequences are identified by correlating acquired fragment 

ion spectra with theoretical spectra predicted for each peptide contained in a protein 

sequence database, or by correlating acquired fragment ion spectra with libraries of 

experimental MS2 spectra identified in previous experiments. In addition de novo 

sequencing can also be used, where peptide sequences are explicitly read out directly from 

fragment ion spectra as well as hybrid computational approaches, such as those based on the 

extraction of short sequence tags of three to five residues in length, followed by “error-

tolerant” database searching (27). For the majority of signal transduction laboratories, 

database searching remains the most frequently used peptide identification method. The use 

of MS-based techniques to identify quantitative protein profiles from animals/tissues has 

been excellently reviewed elsewhere (28–30) and therefore the focus of the rest of this 

overview is the predictive pathway analysis of mass datasets either from MS- or array-based 

experiments to appreciate factor expression at a network level.

While the accurate and unbiased collection of factor data is paramount, one extremely 

important caveat with respect to data retrieval and metabolic pathway analysis, is the need to 

physically retain both significant and nonsignificant factor data. The nature of the 
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“nonsignificantly regulated” data may yet yield significance when the co-existence of 

related factors is analyzed using functional annotation-based bioinformatic strategies. Often 

subtle differences between experimental conditions may be missed as no individually 

dramatically modulated factors may present themselves. If, however, we consider our posit 

that metabolic and signaling functions are indeed composed of multiple interlaced network 

activities, the appreciation and functionally relevant correlation of these small changes with 

each other may illuminate a more realistic view of cellular physiology.

3. Bioinformatic Analysis of Quantitative Mass Analytical Datasets

With application of an initial data-filtering statistical analysis to each factor individually 

(compared to background), it is frequently the case that a large (100–1,000s) dataset of 

significantly regulated factors remains. In the first decade of mass biological data analysis 

only the highest and lowest regulated factors were often considered for further analyses. 

This approach, despite yielding some actionable data to describe the signaling function or 

physiological state under study, is often criticized for ignoring the correlated biological 

relevance of the multiple factors arranged in the large dataset that do not individually 

demonstrate significant differential regulation. Hence, we assume that genes and proteins 

function together and interact with each other in relevant groups and in specific 

microdomains but the analysis of the datasets often does not include this biologically vital 

information. However, if we consider that functional signaling responses or physiological 

states are the functional composite of multiple linked networks then an appreciation of the 

entire set in a mechanism analogous to signaling networks is needed. Gene-class, or 

pathway-level testing, integrates factor annotation and significance signaling pathway 

population tests (with geneset enrichment analysis) for coordinated changes at the system 

level. These approaches can both increase power for detecting differential factor expression 

and allow for a better understanding of the underlying biological processes associated with 

variations in signal transduction outcome. One of the earliest developed processes that 

allowed facile classification of factor function was Gene Ontology (http://

www.geneontology.org/index.shtml) analysis.

3.1. Gene Ontology Classification

To create a rational and physiological/pharmacologically relevant appreciation of large 

datasets the first most reasonable goal is to look for methods in which to cluster the factors 

that are related to each other either by function, linkage in a metabolic process, or by 

subcellular localization. The number of these associations and the strength of observing 

multiple factors possessing the same associations within a large dataset provides the first 

level of “contextual” relevance of the mass dataset. An exemplar of the importance of 

elucidating common functional attributes for factors would be a protein such as actin, which 

conceivably may be directly involved in approximately 90% of all cellular processes either 

directly or distant by just one level from nearly all the factors in the dataset. To begin to 

appreciate what particular functional relevance the presence of actin has in one's dataset, the 

ability to look for functional groups in which to assign actin would start to narrow down the 

number of functional effects that the experimental changes in actin may be inducing. One of 
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the primary levels of analysis of mass datasets to yield functional metabolic insights into its 

nature is the use of functional Gene Ontology (GO) analysis.

After many of the genomes of the major experimental eukaryotic organisms were fully 

sequenced, it became clear that a large majority of the genes controlling the fundamental 

biological processes and signaling pathways were common across multiple species. 

Therefore, an analytical method to allow inference and analogy of data between the diverse 

experimental organisms was required to potentially identify conserved signaling 

mechanisms. The GO project is an ongoing academic effort to address the need for 

consistent descriptions of gene products in different databases. The project began in 1998 as 

a collaboration between three model organism databases, FlyBase (Drosophila: http://

flybase.org/), the Saccharomyces Genome Database (SGD: http://www.yeastgenome.org/) 

and the Mouse Genome Database (MGD: http://www.informatics.jax.org/). Since inception, 

the GO Consortium has grown to include many databases, including several of the world's 

major repositories for plant, animal, and microbial genomes. Functional biological 

knowledge is inherently complex and so cannot readily be integrated into existing databases 

of molecular (for example, sequence) data. An ontology is a formal way of representing 

knowledge in which concepts are described both by their meaning and their relationship to 

each other. Unique identifiers that are associated with each concept in biological ontologies 

(bio-ontologies) can be used for linking to and querying molecular databases.

The Gene Ontology Consortium (http://www.geneontology.org/GO.doc.shtml) was 

developed to provide a dynamic and controllable functional terminology syntax that can be 

used to accommodate the exponential increase in knowledge of factor connectivity in 

functional metabolic pathways. To initiate a mechanism by which factors (genes initially) 

could be associated with an expanding list of signaling functions, three major ontological 

databases were created, freely available on the internet (http://www.geneontology.org). 

These three databases would assist in assigning biologically relevant information to 

identified factors so that associations between functions and factors in a dataset can be 

ascertained and the relative significance of these within the dataset can be assessed. 

Biological Gene Ontology has two fundamental components: the ontologies themselves, 

which are the defined terms and the structured relationships between them (GO ontology), 

and the associations between gene products and the terms (GO annotations). GO provides 

both ontologies and annotations for three distinct areas of cell biology: molecular function, 

biological process, and cellular component or location.

3.2. Gene Ontology Categorization

The three main GO categories commonly used to cluster factors into related and biologically 

relevant groups are as follows: biological process (GObp), molecular function (GOmf), and 

cellular component (GOcc). Biological process, molecular function, and cellular component 

are all attributes of genes, gene products, or gene-product groups. Each of these may be 

assigned independently to factors in a dataset. The relationships between a given factor and 

biological process, molecular function, and cellular component are one-to-many, reflecting 

the biological reality that a particular protein may function in several processes, contain 

domains that carry out diverse molecular functions, and participate in multiple alternative 
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interactions with other proteins, organelles, or locations in the cell. Within all of these three 

subgroups, there are hierarchies of GO terms ranging from extremely broad categories that 

can encompass hundreds of factors to GO terms that may only be associated with a handful 

of factors. An ontology comprises a set of well-defined terms with well-defined 

relationships. The ontological structure itself reflects the current representation of biological 

knowledge and therefore should be considered highly plastic and can act as a guide for 

organizing new data. Data can be annotated to varying levels depending on the amount and 

completeness of the available information. This flexibility also allows users to narrow or 

widen the focus of queries (31). The Gene Ontologies are formalized representations of 

current molecular and cellular biology knowledge. The GO ontology functional 

classification structure can be represented as a directed acyclic graph (DAG) in which the 

terms are nodes and the relationships among them are edges. Key characteristics of a DAG 

in the context of GO are that: parent–progeny relationships are defined, with parent terms 

representing more general biochemical functions than their progeny terms; and, unlike a 

simple tree (Fig. 3), a term in a DAG can have multiple parents. These characteristics of the 

GO structure facilitate facile grouping, searching, and analysis of multiple relevant factors.

GObp terms refer to biological objectives to which the factor contributes. The process is 

accomplished via one or more ordered assemblies of molecular functions. The specific 

functional processes often involve a chemical or physical transformation of a protein or a 

gene, for example, broad (high level) GObp terms are “cell communication” or “negative 

regulation of cellular process.” Examples of more specific (lower level) process terms 

include, “pyrimidine metabolism” or “cAMP biosynthesis” and the most specific GObp 

terms include items such as “cytoplasmic sequestering of transcription factor” or “protein 

import into mitochondrial matrix.” GOmf terms are defined as a biochemical activity 

(including specific binding to ligands or structures) of an individual factor. This definition 

also applies to the capability that a factor carries as a potential. GOmf terms describe only 

what the factor can carry out without specifying where or when the biochemical event 

actually occurs. Examples of broad functional terms are “enzyme,” “transporter,” or 

“ligand.” Examples of narrower functional terms are “Insulysin activity” or “Peptide YY 

receptor activity.” GOcc terms refer to the subcellular localization in the cell where the 

given factor is active. GOcc terms includes such terms as “ribosome” or “proteasome,” 

“nuclear membrane” or “Golgi apparatus” specifying where multiple factors would be 

found. An important note, however, with respect to the usage of GO terms is the fact that 

due to the multispecies nature of their inception, GO terms may often not be fully 

transferable across species boundaries. Therefore, not all GO terms are applicable to all 

organisms; however, the full gamut of GO terminology is meant to be as inclusive as 

possible.

3.3. Application of Gene Ontology Annotation

The GO project is currently one of the most widely used biological annotation databases for 

bioinformatic computational analyses. Upon interrogation of NCBI-Pubmed (http://

www.ncbi.nlm.nih.gov/sites/entrez) there are currently over 2605 publications citing gene 

ontology as a crucial technique in functional signaling annotation, despite the first citation 

only occurring in 1997. GO annotation of datasets has been demonstrated to be vital for a 
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variety of applications, for example, genome sequencing (32), network modeling (33), text 

data mining (34, 35), and for applied clinical situations (36). One of the first large-scale 

applications of GO term analysis of mass datasets was the creation of gene-GO term 

matrices, generating heatmap structures, to annotate sections of the Drosophila 

Melanogaster genome (37, 38). The ability to show increases in relevance (demonstrated by 

heatmap clusters) of certain GO terms ascribed to a subfamily of factors often represents the 

first level of revelation of the potential functional outputs of the experimental dataset (Fig. 

4). The application of the appropriate GO terms to a dataset of significant factors is the first 

step in the process by which the statistical elucidation of the most likely clustering of the 

factors to a certain set of GO terms that can predict biologically relevant actions. There are 

now a plethora of excellent computational devices to achieve this first level of dataset 

functional analysis (Table 1). For the majority of the analytical tools indicated in Table 1, 

GO term annotation is used to analyze results from mass analytical techniques, primarily 

gene arrays but also more recently from quantitative proteomic studies. For these datasets, 

GO annotations are applied to greatly simplify and to determine which biological processes, 

functions and/or cellular locations are significantly over- or under-represented in the whole 

group of factors. This classification facilitates the determination of what new functions can 

be inferred on the basis of the data and how the given factors are distributed across a 

predefined set of biological GO term categories. As the primary goal of analysis of mass 

datasets is the revelation of physiologically/biologically relevant predictive functions that 

are distinct between the control and experimental scenarios, a quantitative assessment of the 

presence or absence of certain GO term groups is vital. The relative over- or under-

representation of certain GO term groups can then be statistically assessed using various 

techniques.

3.4. Functional GO Term Enrichment and Categorization

Clustering of functionally correlated factors into common GO term groups can be used to 

infer which specific signaling functions the genes/proteins may be creating. The co-

expression of these factors and the most common similarities in their functional common 

GO term annotation can demonstrate a potential predictive output of the dataset. The goal of 

mass analytical experimentation is the generation of differential datasets that, with variable 

isolation, can be linked to a biochemical function, physiological response, or even an 

organismal phenotype. This generation of a functional signaling “profile” of the dataset will 

allow correlation of factor expression to resultant function, with the most profoundly 

enriched factor clusters in the dataset being more reliably linked to the resultant output. 

Practically the “profile” of the dataset is often conducted by determining which GO terms 

are represented differently, in a significant fashion more or less often than expected by 

chance within the factor set compared to say their expression in a reference set (39–42). The 

most commonly applied approach for this is the calculation of “enrichment” for each GO 

term (i.e., a higher proportion of factors with certain common annotations among the 

differentially expressed factors than among all of the background factors in the study). The 

main problem here is that any enrichment value can occur just by chance. Therefore, 

enrichment alone should not be interpreted as unequivocal evidence implicating the GO 

term in the phenomenon studied without application of an appropriate statistical test. More 

sophisticated approaches calculate the probability of observing a particular enrichment value 

Maudsley et al. Page 10

Methods Mol Biol. Author manuscript; available in PMC 2016 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



just by chance using a binomial model (43). This is a good approximation for large reference 

sets (e.g., whole-genome microarrays). However, it has been demonstrated that in many 

practical examples, better-suited models include the hypergeometric distribution or the Chi-

squared (44) distribution, both of which take into consideration how the probabilities change 

when a factor is picked. More recent approaches perform the analysis while considering 

information about the relative position of the GO terms in the hierarchical tree (Fig. 3, 45–

47).

Two types of questions can be addressed when performing functional GO term profiling: 

hypothesis-generating queries, for example, “which GO terms are significant in a particular 

set of factors?” or hypothesis-driven queries. An unbiased search for significant GO term 

associations can be performed with a standard “bottom-up” approach: for every progeny GO 

term, p-values for the factors are directly associated with it. If any term is significant, then 

analysis is not propagated to factors above it in the hierarchy. This would provide the most 

specific node that is significant in that particular DAG branch. If a term is not significant, 

the annotations are propagated to its parent and are recalculated with the parent term. The 

factor analysis will then propagate upward until a significant node is found or until the root 

is reached. To minimize false discovery rates, it may be more prudent in the future to 

precollapse many of the possible DAG branches to prevent “overtesting” of the dataset. To 

do this, a specific section of the tree organization may be reduced before any p-values are 

calculated, on the basis of the biological hypotheses tested. Unfortunately, most tools that 

are currently available are limited to performing analysis either at a fixed depth or with all 

nodes, thus preventing the customized collapsing of the GO that could improve significance 

in most circumstances. However, one of the more recently developed GO term analytical 

tools, QuickGO, was created to specifically facilitate this form of flexible analysis (31). 

QuickGO (http://www.ebi.ac.uk/QuickGO) allows users to individually tailor annotation 

sets using multiple filtering options as well as to construct specific and targeted subsets of 

the GO terms, called “GO slims” to “map-up” annotations allowing a general overview of 

the attributes of a set of factors. Collections of initial enriched GO terms primary dataset 

analysis can then be employed to construct a desired GO slim analytical subset. Broad “first 

pass” analysis annotations can then be “mapped up” or “slimmed” to these selected GO 

terms. Predetermined GO slims created by groups in the GO Consortium can also be used. 

However, it is likely for anything other than primary discovery analysis that the majority of 

users in the future will be primarily interested in using their personal GO slims based on 

empirical data from other experimental sources.

Another common application of GO is to categorize genes on the basis of a relatively small 

set of heavily factor-populated high-level GO terms. Results of the functional categorization 

are frequently shown as pie charts or bar charts (48) based on the number or p-value of the 

factors present in that GO term group from the primary dataset. This involves the mapping 

of a set of annotations for the factors of interest to a specified subset of high-level GO terms. 

This is a typical way of providing an overview of the broad biology encoded by a 

differential expression patterns (49).

Maudsley et al. Page 11

Methods Mol Biol. Author manuscript; available in PMC 2016 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ebi.ac.uk/QuickGO


4. Geneset Enrichment and Pathway Analysis

While GO-based annotation techniques provide an excellent appreciation of the biologically 

relevant biases in a dataset there are additional, more in-depth, formats that can be applied to 

mass datasets. For example, analysis can be focused upon individual chemical molecular 

activity, promoter and regulatory network analysis, or by employing the vast-accumulated 

knowledge from the literature to carry out metabolic signaling pathway analysis. Signaling 

pathway analysis focuses on physical and functional interactions between factors within a 

preset signal transduction framework rather than taking the factor-centered view of GO-

based database analyses (50). The simplest forms of pathway analysis analyze the 

distribution of factors within the dataset into precompiled functional signaling pathways in 

order to elucidate the most likely functional signaling relationships between the individual 

factors in the dataset. This is typically conducted using a process termed geneset enrichment 

analysis (GSEA). As this was primarily developed for genomics, the term GSEA has 

remained although this can be directly applied to proteomic data as well. GSEA typically 

employs predefined factor sets to identify significant biological changes in microarray/

proteomic datasets. The EcoCyc database was perhaps one of the first computational 

attempts to methodically apply pathway analysis (51, 52). There are various efforts aimed 

toward the establishment of an accepted standard or ontology to represent functional 

pathway data. Defined signaling pathways usually include three major classes, (1) the 

molecules involved in the pathways, (2) the chemical reactions in which these molecules are 

involved, and (3) the location of the reactions. A pathway ontology should not only 

represent all these three classes of data, but also capture the intricate relationships among 

them. For example, a molecule can be related to a reaction as a reactant or a product. The 

transition from a reactant to a product can be affected by another molecule called a modifier. 

The modifier can exert various effects to the transition, such as catalysis, stimulation, 

inhibition, or modulation. Furthermore, the relationship between reactions and cellular 

components describes the location of these reactions. Such a higher level of functional 

correlation cannot be adequately captured using GObp as it does not capture all the dynamic 

inter-relationships in the pathways.

4.1. Statistical Analysis of Pathway Enrichment

Pathway enrichment analysis is a statistical approach used to discover a statistically 

significant representation of a functional pathway class within a selection of factors from a 

heterogeneous factor population. Enrichment analysis can be applied in any situation where 

important physiological/pharmacological activity is suspected in the choice of a subset of 

members from a reference dataset. Enrichment analysis requires calculations on thousands 

of sets against thousands of candidate classifiers, generating often large output datasets 

containing both significant and nonsignificant data. There are multiple freely available 

pathway databases and facile calculation programs now able to facilitate these 

computational issues for molecular biologists (Table 2). As with GO term analysis, there are 

several important issues to consider with respect to the enrichment analysis. The appropriate 

choice of the reference dataset with which the experimental dataset is compared is vital. 

Unlike many simple statistical algorithms for accurate enrichment analysis, the 

accommodation of nonindependent association of factors is required. This allows 
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empirically known physiological interactions to be included into the enrichment inference. 

In addition, as with GO term analysis, multiple-testing errors need to be accounted for as 

lack of independence among factor classifiers (seen in many datasets), for example, the 

hierarchical organization of multiple ontologies, often complicates estimation of false 

discovery. A simple paradigm for the statistical elucidation of enrichment analysis for a 

given signaling pathway is depicted in Fig. 5. As with all technological applications 

subsequent iterations and developments can quickly surpass previous techniques. For 

example, in recent years the use of simple GSEA has been largely replaced by a parametric 

version of this process (PAGE, parametric geneset enrichment analysis; 53). GSEA employs 

a distribution-free, nonparametric approach to the analysis of the significance of population 

(normally at least two factors in each pathway are required for effective “population” of that 

pathway) of signaling pathways by the input dataset. PAGE and other parametric GSEA 

tools use a Central Limit Theorem, which states that “when the sampling size is large 

enough, distribution of an average of sampled observations is normal regardless of the 

nature of parent distribution.” Statistical PAGE analysis intentionally directs the analysis of 

predefined signaling pathways in datasets rather than of individual factors. To generate easy 

to appreciate data with respect to differential metabolic/physiological states, PAGE uses the 

fold change between the control and experimental groups to calculate Z-scores of the 

predefined gene sets (various database sources can be used) and normal distribution to 

assign statistical significance to the gene sets (53). The list of all of the factors used in the 

dataset and their Z-scores are put into the analysis and Z-scores are assigned to the 

functional signaling sets within each experimental group. Traditional large dataset analysis 

requires that individual genes have significantly different expression levels in order for them 

to be considered differentially regulated. PAGE specifically takes into account that factors 

are both co-regulated and co-present, to help populate discrete signaling pathways. 

Therefore, it is possible that factors individually may not be significantly regulated above or 

below baseline, but significant regulation of pathways can be generated by such factors by 

grouping them significantly into the predefined signaling sets. By looking at groups of 

factors involved in a specific function, significant differences between their relative 

population may represent a biologically meaningful result. The polarity (up or 

downregulated) of the respective PAGE signaling pathway is determined by the sum of the 

Z-scores of the factors present in the experimental dataset that then fall into the set of 

factors used to describe the predetermined signaling pathway.

4.2. Pathway Analysis Applications

GSEA is especially powerful for the largest datasets that will have an increased likelihood of 

retrieved factor identity variation between experiments (especially the case for MS-based 

proteomics) or when there are subtle differences between control and experimental 

paradigms. With respect to the latter issue, a specific example of the power of GSEA 

techniques was the successful demonstration of prediction of significant metabolic pathway 

activation (oxidative phosphorylation) from a human dataset in which no one single gene out 

of 20,000 tested yielded an individually significant perturbation between control and 

diabetic patient muscle tissue (54). Thus the ability to apply significance of predicted 

functional output no longer rests upon individual factors but on co-expression and coherent 

regulation of these factors, reflecting the coordinated, interconnected nature of metabolic 

Maudsley et al. Page 13

Methods Mol Biol. Author manuscript; available in PMC 2016 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pathways themselves. Therefore, across diverse samples the signaling functionality can be 

correlated even if the identity of the regulated factors are not identical but still fall within the 

same functional preset pathway. Such flexibility is crucial for the analysis of MS-based 

quantitative proteomic data as the detection of exactly the same stream of proteins is highly 

unlikely over what can be long term experiments (10–20 h of run time).

In complex biological systems, coordinated metabolic functions are created by the 

summation of multiple interconnected pathways forming networks of varying sizes and 

relative importance. Using statistical processes to specifically search for these may greatly 

expand our understanding of the subtleties of disease processes or drug responses. Not only 

can these techniques be used for the investigation of dynamic experimental responses but 

may also illuminate how cells/tissues/animals react in response to spontaneous disease or 

genetically implied pathophysiology (48). Hence, not only may “disease-causing” networks 

of factors exist; “disease-management” factor networks are also likely as flexible and 

reactive biological systems attempt to ameliorate perturbations and achieve homeostasis.

With respect to the practical implementation of pathway analysis for large datasets there are 

multiple excellent databases of precompiled pathways available for pathway analysis as well 

as freely accessible software applications to perform the analysis (Table 2). However, not all 

signaling pathways are equally suitable for various experimental paradigms. For example, 

metabolic signaling pathways are controlled to a large extent by protein-based events that 

are not observable on microarrays as only steady-state levels of mRNAs are monitored. 

Kinase-based signaling cascades also do not necessarily involve changes in mRNA levels. 

The best case for microarray-based pathway analysis is transcriptional-signaling pathways 

that are directly coupled to de novo transcription. One of earliest developed tools for 

pathway analysis is the GenMAPP tool (55) that allots factors to preset pathways, as well as 

allowing user-based pathway generation. There are many excellent Web-based Pathway 

analysis tools such as Pathway Miner that provides ranking of the gene/pathway groups via 

a Fisher's exact test on top of the gene–pathway association analysis (56) and WebGestalt, 

that can generate GO DAG diagrams as well as KEGG and BioCarta pathway enrichment 

analysis (57). An example of the practical workflow and functioning of pathway analysis 

tools (e.g., WebGestalt) is depicted in Fig. 6. An extensive list of available programs is 

listed in Table 2. These tools often share similar lists of signaling pathways consisting of the 

relative factors allotted to them based on meta-literature searches. Again, as with the 

analytical tools themselves there are multiple sources of rationally created signaling and 

metabolic pathways. Some of the most commonly employed are the KEGG database (http://

www.genome.jp/kegg/pathway.html) of metabolic and signaling pathways (58), the 

BioCarta database (http://www.biocarta.com/genes/index.asp) and the excellent and 

authoritative MIT/Harvard Broad Institute Molecular Signatures Database (MsigDB: http://

www.broadinstitute.org/gsea/msigdb/). All of these databases provide easy open access to 

the pathways and associated diagrams for use with geneset enrichment software. In addition 

to these excellent resources for metabolic pathway analysis, correlated investigational 

technologies employing similar methodologies of functional inference are now widely used 

for transcription promoter analysis, protein–protein interaction and resultant mammalian 
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phenotype prediction (Table 3). These analysis modules can often be used to supplement 

and support findings derived from GO and signaling pathway analysis.

5. Future Aspects for Signaling Pathway Analysis

The combined employment of mass data collection and signaling pathway analytical tools is 

likely to revolutionize signal transduction research in the next several decades. The ability to 

accurately appreciate and perhaps predict a global cellular impact of physiological or 

pharmacological perturbations may facilitate an understanding of disease etiology and 

eventual drug control of disease at the level of the factor network rather than the linear 

signaling pathway level. The appreciation of a network hypothesis for biological activity 

presents many important new avenues for signal transduction and pharmacological research. 

For example, the ability to identify “keystone” factors within a network that exert the most 

profound actions upon the state of a given pathological network may facilitate the creation 

of indirect pharmacological strategies. Such agents may be able to ensure a profound 

regulation of the keystone factors via modulation of multiple parts of the signaling network 

that have subsequent synergistic actions upon the keystones. These agents may be therefore 

more efficacious in smaller doses as their effects are amplified greatly by the reinforced 

network before hitting the keystone itself. In addition, as they may be inducing regulation of 

the network keystone through multiple mechanisms, such therapeutics may be more resistant 

to the development of desensitization, tolerance, or resistance. Hence these agents may 

present a polypharmacological network profile, but through careful knowledge-based design 

may effectively result in a more discrete resultant phenotypic action.

One important consideration of signaling pathway analysis that is often overlooked is the 

huge potential for temporal plasticity in signaling networks. The majority of mass analytical 

datasets are usually “snapshots” in time, as the expense of gaining multiple, temporally 

distinct, datasets is currently prohibitive. However, as the cost of mass analysis is likely to 

be reduced, our conversion of signaling pathways from rigid to plastic will undoubtedly 

assist in the greater appreciation of how signaling systems are integrated to form the basis of 

complicated physiological states and also drug responses. An understanding of the 

therapeutic at effective temporal windows may increase the potentiation of drug efficacy, 

again allowing a potential reduction in applied dose, thus minimizing side-effects or contra-

indications. At a very crude level we are already demonstrating such a temporal drug 

response concept by the use of “chronotherapeutics” for anti-cancer drugs (59).

In conclusion, it is clear that the relentless increase in the intricacy of our understanding of 

molecular signaling has presented many challenges both in technological methodology and 

in computational analysis. Our ability to combine these two approaches for diagnostic and 

predictive capacities will only serve to improve our appreciation of disease pathophysiology 

and the mechanism of action of pharmacological agents. Appreciating these two coordinated 

factors at a systemic network level may allow the generation of far more efficacious and 

better-tolerated drug treatments for a wide variety of diseases and pathophysiological states.
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Fig. 1. 
Contextuality of dataset housekeeping reliability. Accepting a high level of connectivity of 

signaling factors introduces the likelihood of disruption of potential “housekeeping” factors. 

In paradigm A where a relatively selective activation of a target that possesses only minimal 

connectivity with the greater network of factors does not perceptibly disrupt the chosen 

housekeeper and therefore creates a de facto housekeeping factor. However, in paradigm B 

where the target factor is multiply connected to other factors in the network an increased 

likelihood of the loss of housekeeper reliability is seen (a). The potential effects of the 

connectivity in the network of the target factor and the target selectivity of a biological 

perturbing action (α, highly selective acting on minimal targets, β moderately selective 

acting on several targets, γ poorly selective acting on multiple targets). Highly connected 

targets possess a greater chance of disrupting housekeeping reliability and perturbations to 

the network that are nonselective are also likely to disrupt housekeeping reliability (b).
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Fig. 2. 
Principle of isobaric mass-tags in quantitative mass spectrometry. (a) Several combinations 

of different-sized reporters of iTRAQ tags facilitate quantification of up to 8 different 

samples (masses from 113 to 121, excluding 120 as this corresponds to phenylalanine). 

Quantitative information is obtained from relative intensities of reporter ions in MS/MS 

spectrum. TMT (tandem mass tag: Thermo Electron Corporation) has the same property 

with iTRAQ but has different reporter and balancer chemistry. (b) In SILAC, isobaric amino 

acids are metabolically incorporated into all the cellular proteins. Animals can be fed and 
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bred through multiple generations using feed with differential amino acid composition 

[SILAM: 60]. The equal amount of samples are combined and then applied to LC-MS/MS 

analysis. Quantitative information is obtained from relative intensities of light- and heavy-

peptide ions in MS spectrum. (c) A representative analytical procedure of quantitative MS. 

In the bottom-up approach, complex peptide mixtures are fractionated through strong cation-

exchange chromatography (SCX), which is essential for reducing sample complexity and 

increasing the number of identified peptides. Each fraction is analyzed through reverse-

phase (RP) LC-MS/MS. For the nonisotopic study, quantitative information is obtained 

through peak intensity of specific peptides in ion chromatogram and more widely through 

counting finally matched MS/MS spectra and statistical manipulation. In case of using 

isobaric-tags, differentially labeled samples are combined before SCX chromatography. 

Quantitative information is obtained from MS or MS/MS spectrum, dependent on the 

property of isobaric tag. (d) Modes of sample preparation, labeling, and mixing for MS 

analysis. For mass-tag labeling procedures such as iTRAQ the individual extraction of 

proteins, then peptides from each sample is followed by individual mass-tag labeling and 

then mixing for single-run MS analysis. For stable isotope incorporation procedures, 

sufficient cell passages or animal generations in the presence of differential isotopes is 

required before mixing for single-run MS analysis.
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Fig. 3. 
Representation of ontological structures. Ontology of biologically relevant factors can be 

represented in a simple graphical structure in which parent Gene Ontology terms give rise to 

progeny terms (a). Parent terms are typically of a broad nature with their successive progeny 

possessing increasingly specific annotation (level 1 to 4). This simple graphical ontology 

representation though can be governed by both directed and nondirected rules. Directed 

ontological relationships imply a classical hierarchical parent–progeny linking between the 

terms, that is, parent–progeny relationships are directed downward from less complex terms 

to more complex terms (black arrows, panel A). However, as broad-level parent terms may 

lead to multiple more specific ontological terms the simple one-parent one-progeny 
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relationship may be less likely to reflect physiological systems than the one-parent multiple-

progeny ontology (b). Undirected ontological representations, however, may allow 

nondirected progeny to parent relationships (c). Undirected representations may lead to 

cyclic closed relationship loops. If, however, all of the ontological relationships are directed 

then it is possible to represent biological linkages into a directed acyclic graph (DAG). (d) 

An example of an actual DAG from input signaling data. The three major classes of 

ontology (GObp, GOmf, GOcc) are shown. GO term specificity increases with descent into 

progeny branches of the DAG. Therefore, the most statistically significantly populated 

ontology terms are found in the lowest areas of the DAG diagram (e.g., circled GO term 

groups).
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Fig. 4. 
Heatmap clustering for Gene Ontology annotation. Functional annotation of factor datasets 

using analytical tools such as DAVID (Database for Annotation, Visualization and 

Integrated Discovery: http://david.abcc.ncifcrf.gov/) allow the creation of visual factor 

heatmap clusters according to their most commonly descriptive GO terms. A large input 

dataset is broken down into smaller clusters that demonstrate commonality of related GO 

terms. The degree of correlation intensity between the input factors and the GO terms that 

most closely link the majority of the factors is demonstrated by the increased presence of 

correlating blocks (grey). Hence, in the figure depicted the GO terms (arranged horizontally) 

on the far left (end of arrow) are more likely to describe the functional output of the 

vertically arranged factor list.
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Fig. 5. 
Functional factor enrichment. To identify functional categories with significantly enriched 

factor numbers within the input experimental dataset comparison is needed between the 

input dataset with a reference dataset. The input dataset needs in this case to be a subset of 

the reference dataset. For a theoretical scenario we may have n factors in the experimental 

dataset (a) and m factors in the reference dataset (b). For a given functional category of 

interest (e.g., a KEGG signaling pathway, c) there may be k number of factors from A and j 

number of factors from B. Based on the reference dataset (b) the expected value of k (ke) is 

depicted in panel A. If k exceeds ke then the specific category C is said to be enriched. 

Derivation of the index of the degree of pathway C enrichment (r) in the experimental 

dataset A is depicted in panel B. Analysis of the significance of the enrichment of pathway 

C in dataset B compared to dataset A, using a hypergeometric test is demonstrated in panel 

C. If, however, datasets A and B are independent, a Fisher's exact test may be more 

appropriate (d). Advanced pathway analysis software such as WebGestalt also allow the 

user to reduce their scope of pathway analysis in a similar manner to GO slims, for example, 

inspecting tissue-specific enrichment. For another factor, there may be d examples of a 

selected factor in all tissues and b examples for all factors in all tissues. In addition, if there 

are c number of a selected factor in a selected tissue and a number of all factors in that 

tissue, the over-representation of the specific factor in that tissue can be calculated as 

depicted (e). Calculation of the significance of over-representation in the specific tissue is 

depicted in panel (f). Mathematical under-representation of the specific factor in the selected 

tissue is described by the equation in panel (g) with the significance of the under-

representation denoted in panel (h).
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Fig. 6. 
Archetypical Pathway Analysis workflow. A typical flow of information processing to 

create a metabolic signaling output pathway using the WebGestalt analytic process is 

demonstrated in a series of logical steps. After data retrieval from mass analytical techniques 

primary statistical analysis can be employed using empirically derived cutoffs or whole-

dataset data may be used instead. After uploading, the data can be converted to various 

identifiers, for example, Locus Links, Uniprot, or Unigene symbols. The software allows 

simple dataset Boolean operations as well before the two major forms of dataset analysis, 

that is, molecular or non-molecular-based. Non-molecular-based analyses include the 

investigation of enriched tissue or chromosome-specific expression of factors in the dataset. 

In addition, Pubmed (Gene-Association publication database) or GRIF (Gene expression 

into Function: http://generifs_basic.gz) Tables demonstrate co-expression of various factors 

in the dataset within the same publications. Multiple forms of biological signaling 

information can also be generated in parallel to these outputs. With selection of appropriate 

comparative base datasets (built-in) statistical enrichment of factors in the primary dataset 

into protein domain tables (Pfam: http://pfam.sanger.ac.uk/), directed acyclic gene 

ontologies (DAG) or discrete KEGG/BioCarta signaling pathways is determined.
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Table 1

Computational programs for Gene Ontology term analysis of large datasets

Applications URL

GO term retrieval

AmiGO http://amigo.geneontology.org/cgi-bin/amigo/go.cgi

CGAP GO browser http://cgap.nci.nih.gov/

COBrA http://www.xspan.org/

Comparative toxicogenomics database http://www.mdibl.org/

DAVID http://david.abcc.ncifcrf.gov/

DynGO http://gauss.dbb.georgetown.edu/liblab/

Gene-class expression http://gdm.fmrp.usp.br/

GeneInfoViz http://www.utmem.edu/

GenNav http://www.nlm.nih.gov/

GO consortium http://geneontology.org

GOblet http://www.molgen.mpg.de/

GoFish http://llama.med.harvard.edu/

GONUTS http://www.ecolicommunity.org/

MGI GO browser http://www.informatics.jax.org/

Onto-express http://vortex.cs.wayne.edu/projects.htm

Ontology evolution explorer (OnEX) http://www.izbi.uni-leipzig.de/index.php

Ontology lookup service http://www.ebi.ac.uk/

PANDORA http://www.huji.ac.il/huji/eng/index_e.htm

QuickGO http://www.ebi.ac.uk/QuickGO/

TAIR keyword browser http://www.arabidopsis.org/

Tk-GO http://www.illuminae.com/

GO term functional annotation

Blast2GO http://bioinfo.cipf.es/

g:Profiler http://www.ut.ee/

GeneTools http://www.microarray.no/index.php?section=1

GOanna http://www.agbase.msstate.edu/

GoAnnotator http://xldb.fc.ul.pt/

GOCat http://eagl.unige.ch/GOCat/

GoPubMed http://gopubmed.org/web/gopubmed/

GOtcha http://www.compbio.dundee.ac.uk/Software/GOtcha/gotcha.html

InGOt (proprietary) http://www.inpharmatica.co.uk/ingot/

InterProScan http://www.ebi.ac.uk/Tools/InterProScan/

Manatee http://manatee.sourceforge.net/

PubSearch http://pubsearch.stanford.edu/

GO cluster analysis

BiNGO http://www.psb.ugent.be/cbd/papers/BiNGO/

CLASSIFI http://pathcuric1.swmed.edu/pathdb/classifi.html

CLENCH http://www.stanford.edu/~nigam/cgi-bin/doku-wiki/doku.php?id=clench
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Applications URL

ClueGO http://www.ici.upmc.fr/cluego/

DAVID http://david.abcc.ncifcrf.gov/

EASE http://david.abcc.ncifcrf.gov/content.jsp?file=/ease/ease1.htm&type=1

eGOn v2.0 http://www.genetools.microarray.ntnu.no/com-mon/intro.php

ermineJ http://bioinformatics.ubc.ca/ermineJ/

FIVA http://bioinformatics.biol.rug.nl/standalone/fiva/

FuncAssociate http://llama.med.harvard.edu/cgi/func/funcassociate

FuncExpression http://www.plexdb.org/plex.php?database=Barley/funcexpression.php

FunCluster http://corneliu.henegar.info/FunCluster.htm

FunNet http://www.funnet.info/

G-SESAME http://bioinformatics.clemson.edu/G-SESAME/

GENECODIS http://genecodis.dacya.ucm.es/

GFINDer: genome function http://www.medinfopoli.polimi.it/GFINDer/

GOALIE http://bioinformatics.nyu.edu/Projects/GOALIE/

GOdist http://basalganglia.huji.ac.il/links.htm

GOEAST http://omicslab.genetics.ac.cn/GOEAST/

Gene ontology explorer (GOEx) http://pcarvalho.com/patternlab/goex.shtml

GoMiner and MatchMiner http://discover.nci.nih.gov/gominer/htgm.jsp

GOrilla http://cbl-gorilla.cs.technion.ac.il/

GOstat http://gostat.wehi.edu.au/

GoSurfer http://bioinformatics.bioen.uiuc.edu/gosurfer/

GOTM (gene ontology tree machine) http://bioinfo.vanderbilt.edu/gotm/

GOToolBox http://burgundy.cmmt.ubc.ca/GOToolBox/

GraphWeb http://biit.cs.ut.ee/graphweb/

L2L http://depts.washington.edu/l2l/

MAPPFinder http://www.genmapp.org/

MetaGP http://metagp.ism.ac.jp/

MultiExperiment viewer http://www.tm4.org/mev/

The ontologizer http://compbio.charite.de/index.php/ontologizer2.html

Probe explorer http://probeexplorer.cicancer.org/principal.php

ProfCom http://webclu.bio.wzw.tum.de/profcom/

SeqExpress http://www.seqexpress.com/

SerbGO http://estbioinfo.stat.ub.es/apli/serbgov131/index.php

Source http://smd.stanford.edu/cgi-bin/source/sourceSearch

STEM: short time-series expression miner http://www.cs.cmu.edu/~jernst/stem/

T-Profiler http://www.t-profiler.org/

THEA http://thea.unice.fr/index-en.html
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Table 2

Computational programs for signaling and metabolic pathway analysis of large datasets

Applications URL

Signaling pathway databases

BBID http://bbid.grc.nia.nih.gov/

BioCarta http://www.biocarta.com/genes/index.asp

BioModels - biomodels database http://www.ebi.ac.uk/biomodels-main/

DOQCS - database of quantitative cellular signaling http://doqcs.ncbs.res.in/

DSM - dynamic signaling maps http://www.hippron.com/hippron/index.html

eMIM - electronic molecular interaction map http://discover.nci.nih.gov/mim/index.jsp

GeneNet - genetic networks http://wwwmgs.bionet.nsc.ru/mgs/gnw/genenet/

GenMAPP - gene microarray pathway profiler http://www.genmapp.org/

GON - genomic object net http://genome.ib.sci.yamaguchi-u.ac.jp/~gon/index.html

HCPIN - human cancer protein interaction network http://nesg.org:9090/HCPIN/

INOH - integrating network objects with hierarchies http://www.inoh.org/

JWS online - online cellular systems modeling http://jjj.biochem.sun.ac.za/

KEGG http://www.genome.jp/kegg/pathway.html

Millipore pathways http://www.millipore.com/pathways/pw/pathways

NetPath http://www.netpath.org/

PANTHER - protein analysis through evolutionary relationships http://www.pantherdb.org/

PC - pathway commons http://www.pathwaycommons.org/pc/

PDS - pathways database system http://nashua.case.edu/pathwaysweb/

PID - NCI-nature pathway interaction database http://pid.nci.nih.gov/

pSTIING http://pstiing.licr.org/

Reactome - reactome knowledgebase http://www.reactome.org/

RGD - rat genome database pathway resource http://rgd.mcw.edu/wg/pathway

ROSPath - reactive oxygen species related signaling pathway http://rospath.ewha.ac.kr/

Signaling gateway - UCSD-nature signaling gateway http://www.signaling-gateway.org/

SigPath - signaling pathway information system http://icb.med.cornell.edu/crt/SigPath/index.xml

SMPDB - small molecule pathway database http://www.smpdb.ca/

SPIKE - signaling pathway integrated knowledge engine http://www.cs.tau.ac.il/~spike/

STCDB - signal transduction classification database http://bibiserv.techfak.uni-bielefeld.de/stcdb/

TRMP - therapeutically relevant multiple pathways database http://bidd.nus.edu.sg/group/trmp/trmp_ns.asp

TRRD - transcription regulatory regions database http://wwwmgs.bionet.nsc.ru/mgs/gnw/trrd/

WikiPathways - WikiPathways http://wikipathways.org/index.php/WikiPathways

Metabolic pathway databases

aMAZE - protein function and biochemical pathways project http://www.amaze.ulb.ac.be/

BioCyc - biocyc knowledge library http://biocyc.org/

BioModels - biomodels database http://www.ebi.ac.uk/biomodels-main/

Biopath - biochemical pathways database http://www.molecular-networks.com/databases/biopath

BRENDA - braunschweig enzyme database http://www.brenda-enzymes.info/

CellML repository - CellML model repository http://models.cellml.org/
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http://www.molecular-networks.com/databases/biopath
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Applications URL

CPDB - ConsensusPathDB http://cpdb.molgen.mpg.de/

ERGO - ERGO genome analysis and discovery system http://www.ergo-light.com/

ExPASy biochemical pathways http://www.expasy.org/tools/pathways/

GeneNet - genetic networks http://wwwmgs.bionet.nsc.ru/mgs/gnw/genenet/

HMDB - human metabolome database http://www.hmdb.ca/

HumanCyc - encyclopedia of homo sapiens genes and metabolism http://humancyc.org/

IntEnz - integrated relational enzyme database http://www.ebi.ac.uk/intenz/index.jsp

LIGAND - database of chemical compounds and reactions http://www.genome.jp/ligand/

MetaCyc - metabolic pathway database http://metacyc.org/

MetNetDB - metabolic network exchange http://www.metnetdb.org/MetNet_db.htm

MouseCyc - mouse pathway database http://mousecyc.jax.org/

NetBiochem - medical biochemistry resource http://library.med.utah.edu/NetBiochem/NetWelco.htm

PathCase - CASE pathways database system http://nashua.cwru.edu/PathwaysWeb/

PATRIC - PathoSystems resource integration center http://patric.vbi.vt.edu/

PharmGKB http://www.pharmgkb.org/

Pathway analytical applications

Ariadne genomics: pathway studio http://www.ariadnegenomics.com/pathway-studio/

ArrayXPath http://www.snubi.org/software/ArrayXPath/

Biochip core laboratory - CRSD http://140.120.213.10:8080/crsd/

Cpath http://cbio.mskcc.org/software/cpath/

D-GEM (disease-to-gene expression mapper) http://dgem.cs.iupui.edu/

ErmineJ http://www.bioinformatics.ubc.ca/ermineJ/

Gene set enrichment analysis - molecular signatures database http://www.broadinstitute.org/gsea/

GeneTrial http://genetrail.bioinf.uni-sb.de/

GenMAPP http://www.genmapp.org/

Genome expression pathway analysis tool http://gepat.sourceforge.net/

Ingenuity pathway analysis www.ingenuity.com/

KEGG pathway database http://www.genome.jp/kegg/pathway.html

KOBAS: KO-based annotation system http://kobas.cbi.pku.edu.cn/

Onto-express - intelligent systems and bioinformatics laboratory http://vortex.cs.wayne.edu/ontoexpress/

PathExpress http://bioinfoserver.rsbs.anu.edu.au/utils/PathExpress/

PathJam - biological pathway integration tool http://www.pathjam.org/

Pathway miner - genes and their pathways http://www.biorag.org/index.php

PROPA: probabilistic pathway annotation http://www.stat.duke.edu/research/software/west/propa/

VisANT: an integrative platform for network/pathway analysis http://visant.bu.edu/

WebGestalt: Web-based gene set analysis toolkit http://bioinfo.vanderbilt.edu/webgestalt
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Table 3

Databases and computational tools for mass analysis of promoter activity, protein-protein interaction and 

mammalian phenotype annotation

Applications URL

Transcriptional promoter databases/tools

DBTBS http://dbtbs.hgc.jp/

TRED http://rulai.cshl.edu/cgi-bin/TRED/tred.cgi?process=home

Mammalian promoter database http://rulai.cshl.edu/CSHLmpd2/

Eukaryotic promoter database http://www.epd.isb-sib.ch/

DBTSS http://dbtss.hgc.jp/index.html

Jaspar http://jaspar.cgb.ki.se/cgi-bin/jaspar_db.pl

TRRD http://www.mgs.bionet.nsc.ru/mgs/gnw/trrd/

cisRED http://www.cisred.org/

Protein interaction databases/tools

STRING http://string.embl.de/

MIPS http://mips.helmholtz-muenchen.de/proj/ppi/

HPID http://165.246.44.48/hpid/webforms/intro.aspx

EMBL-EBI-IntAct http://www.ebi.ac.uk/intact/main.xhtml

BioGrid http://www.thebiogrid.org/

DIP http://dip.doe-mbi.ucla.edu/dip/Main.cgi

HUGE ppi http://www.kazusa.or.jp/huge/ppi/

KEGG BRITE http://www.genome.jp/brite/brite.html

MINT http://mint.bio.uniroma2.it/mint/Welcome.do

PRIME http://prime.ontology.ims.u-tokyo.ac.jp:8081/

SNAPPIView http://www.compbio.dundee.ac.uk/SNAPPI/downloads.jsp

PPID http://www.anc.ed.ac.uk/mscs/PPID/

Reactome http://www.reactome.org/

Mammalian phenotype databases/tools

Jackson labs mouse genome database http://www.informatics.jax.org/

Phenomics http://www.phenomicDB.de

Polydoms http://polydoms.cchmc.org/polydoms/

Rat genome database http://rgd.mcw.edu/

Phenotype and trait ontology (PATO) http://www.obofoundry.org/

HUGE navigator http://www.hugenavigator.net/

GenomeWeb http://www.biologie.uni-hamburg.de/b-online/library/genomeweb/comp-gen-db.html

IKMC http://www.knockoutmouse.org/
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