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Abstract

Analysis of rare genetic variants has focused on region-based analysis wherein a subset of the 

variants within a genomic region is tested for association with a complex trait. Two important 

practical challenges have emerged. First, it is difficult to choose which test to use. Second, it is 

unclear which group of variants within a region should be tested. Both depend on the unknown 

true state of nature. Therefore, we develop the Multi-Kernel SKAT (MK-SKAT) which tests 

across a range of rare variant tests and groupings. Specifically, we demonstrate that several 

popular rare variant tests are special cases of the sequence kernel association test which compares 

pair-wise similarity in trait value to similarity in the rare variant genotypes between subjects as 

measured through a kernel function. Choosing a particular test is equivalent to choosing a kernel. 
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Similarly, choosing which group of variants to test also reduces to choosing a kernel. Thus, MK-

SKAT uses perturbation to test across a range of kernels. Simulations and real data analyses show 

that our framework controls type I error while maintaining high power across settings: MK-SKAT 

loses power when compared to the kernel for a particular scenario but has much greater power 

than poor choices.
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1. INTRODUCTION

Identification of genetic variants influencing complex phenotypes and disease is a major 

goal of modern human genetics research. So far, despite the success of genome wide 

association studies (GWAS) [9], newly discovered trait-associated genetic variants still fail 

to explain a large proportion of the heritability of complex traits [6]. It is hoped that with the 

advent of accessible DNA sequencing technology [18, 17, 2], investigators can uncover 

more of the socalled missing heritability. Some of the added information contained in 

sequencing data includes rare variants, that is variants with minor alleles whose population 

frequency is low. This contrasts with microarray technology which typically focuses on 

common variants that have relatively high minor allele frequency (MAF). Rare variants 

associated with disease have already been reported [4, 25, 22]. However, important 

distinctions between the analysis of common variants and rare variants must be made [3]. 

Most importantly, the standard analysis of common variants focuses on analysis of each 

individual variant, one-by-one. Yet, power decreases with lower MAF such that standard 

approaches for common variants are vastly underpowered for analysis of rare variants. Also, 

multiple comparison corrections are a concern since the number of variants is dramatically 

larger.

To address the limitations of using standard analytical approaches for variants, investigators 

have turned to region based approaches for rare variant association testing. In this class of 

approaches, multiple genetic variants within a region, typically a biologically meaningful 

unit such as a single gene or an exon, are simultaneously considered together. The 

cumulative effect of the entire group of variants, or more often a subgroup of the variants 

(e.g. those with MAF <1%), is assessed for association with the phenotype. Grouping the 

variants and testing only the cumulative effect allows aggregation of effects across several 

variants. It also addresses the multiple comparison correction concern by substantially 

decreasing the number of tests performed. A wide range of methods have been developed 

with varying characteristics and underlying principles [19, 13, 20, 16, 21, 27].

Despite the success of current approaches for rare variant testing [4, 25, 22], a number of 

practical concerns have arisen. In particular, given the wide range of testing approaches 

which are optimized toward different scenarios, it is unclear which method to use for any 

particular data set. Furthermore, it is unclear which strategy to use for grouping variants, e.g. 

grouping variants with MAF <3% vs <1%, within a region. Unfortunately, the answer to 

both questions depends on the underlying true state of nature which is unknown prior to 
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analysis. Knowledge on this would preclude need for analysis. Selecting the “best” (often 

most significant) result after conducting analyses using multiple methods or multiple group 

strategies would lead to severely inflated type I error and increased false positives. Although 

some recent work has been done on omnibus testing across different grouping strategies [23, 

14] or across different testing approaches [12], few methods consider both the testing 

approach and the grouping strategy simultaneously.

To address this problem, we propose the multi-kernel sequence kernel association test (MK-

SKAT). In this article, we show that many commonly used testing approaches are equivalent 

to particular cases of the sequence kernel association test (SKAT). SKAT is a similiarity 

based analysis approach for rare variant testing wherein pair-wise similarity between 

individuals based on their rare variant profiles is measured via a kernel function and then 

compared to pairwise similarity in phenotype. Specifically, the currently used methods are 

equivalent to versions of SKAT using different kernel functions. We further show that 

different choices of grouping strategies are also equivalent to using the SKAT with different 

kernel functions. Consequently, the question of selecting a test to use as well as selecting a 

grouping strategy reduces to the problem of selecting an appropriate kernel function. This 

equivalence then leads us to exploit perturbation based procedures for omnibus testing 

across multiple kernels (and accordingly multiple grouping and rare variant testing 

approaches) [26]. We conduct simulations and a real data application to validate our 

approach and show that our proposed method loses a small amount of power when 

compared to the optimal grouping and testing approach, but offers considerably more power 

over poor choices.

Broadly speaking, the main contribution of this work is to address a practical problem faced 

by applied statistical researchers interested in analyzing sequencing association studies. In 

addition, we explicitly draw the connections between SKAT and several other rare variant 

tests and grouping strategies which then enables utility of our previously developed 

perturbation testing framework [26]. Although the perturbation framework underlies the 

statistical mechanisms for generating a p-value, we emphasize that the current project differs 

significantly from our previous work in terms of the overall objective and the application to 

rare variants. Furthermore, to accommodate features specific to rare variant sequencing 

studies, i.e. larger number of kernels (corresponding to different tests and grouping 

strategies) as well as the larger number of variants which are not highly correlated, we also 

make some technical modifications to the perturbation procedure to improve computation.

The remainder of this paper is organized as follows. In the next section, we first review the 

generic SKAT method and describe how different testing approaches and different 

groupings all correspond to SKAT under different kernels. We then present the proposed 

MK-SKAT approach for testing across different tests and groupings. We show results from 

some representative simulation studies and from real data to illustrate our approach. We 

conclude with a brief discussion.
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2. METHODS

Within this article, we describe our methodology within the context of analyzing a single 

gene region. However, the approach can be applied to multiple regions separately, with 

appropriate control for multiple comparisons. We let yi denote the phenotype for the ith 

individual in the study (i = 1, …, n), and Xi be a vector of environmental or demographic 

variables for which we would like to adjust. For dichotomous phenotypes we let yi = 0 or 1 

for controls and cases, respectively. For each given region, we let Zi be the vector of genetic 

variants within the region coded under the additive model. The objective is to test for an 

association between y and all the variants in Z or a subset of the variants in Z while 

adjusting for X. We let  denote the indices of the variants within Z that we would like to 

test. For instance  may be the indices of the variants with MAF < 1% or the 

nonsynonymous variants. In doing so, one may select a subset of the variants in the region to 

test or one may test all of the variants within the region. Clearly, restricting attention to the 

truly causal variants would result in the highest power; however, which variants are causal is 

unknown. At the same time, there are a range of tests to choose from. Determining which 

group of variants to test and which test to use poses a grand challenge for geneticists.

In this section, we first review the SKAT method and draw connections between SKAT and 

several other important tests. We describe how the questions of which test to use and which 

variants to test can be recast as a question of kernel choice. We then develop the MK-SKAT 

to construct an omnibus test that simultaneously considers multiple tests and grouping 

strategies.

2.1 Connections between SKAT and other methods

2.1.1 SKAT—SKAT is a similarity based test that operates by comparing pair-wise 

genotypic similarity between individuals to pair-wise phenotypic similarity, with correlation 

suggestive of association. Mathematically, SKAT uses the linear model for quantitative 

traits

and the logistic model for case/control studies

where α0 is an intercept term, α is the vector of regression coefficients for the covariates, 

and εi has mean zero and variance σ2. The variants of interest Z i for the i-th individual are 

related to the outcome only through the function h(·) which is a general function lying in a 

functional space generated by a positive definite kernel function K(·, ·). Intuitively, K(Z i, 

Z i′) measures similarity between i-th and i′-th individuals in the study based on Z , the 

variants of interest. This function fully specifies the relationship between the variants and 
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the outcome. If one sets , which is the linear kernel, then this implies 

that the function h(Z i) = Σj∈  βjZij, i.e. h(·) is linear and the outcome depends on the 

variants in a linear manner. By specifying a different kernel, one may specify an alternative 

model. Under the default SKAT parameters,  where wj is 

equal to the beta probability density function with parameters 1 and 25 evaluated at the 

MAF for the j-th variant. Also by default,  is set to be the entire group of both common and 

rare variants within a region. This corresponds to a linear model but with additional up-

weighting for the effect of rarer variants.

To test the effect of the rare variants under SKAT corresponds to testing H0 : h(Z ) = 0. 

Defining the kernel matrix, K, to be the n-by-n matrix with i, i′-th term equal to K(Z i, 

Z i′), for quantitative traits, we construct the variance component score statistic

where ŷ = α̂0 + Xα̂ with α̂
0, α̂, and σ̂ estimated under H0. For dichotomous traits, we can 

construct a similar score statistic

where ŷ = logit−1(α̂0 +Xα̂) and α̂
0, α̂ are again estimated under H0. To obtain a p-value for 

significance, asymptotically,  is a mixture of chi-squared distributions, with 

weights λj equal to the eigenvalues of  where P0 = D − DX(X′DX)−1X′D with D 
= I for quantitative traits and D = diag{ŷi(1 − ŷi)} for dichotomous traits. This null 

distribution can be approximated using moment matching approaches [15] or exact methods 

[5].

2.1.2 Existing methods and grouping strategies as special cases of the SKAT
—A wide range of region-based analysis approaches of rare variants have been proposed. 

Generally, however, they tend to fall within two classes: burden-based approaches and 

similarity-based approaches. Burden-based tests generally operate by collapsing the rare 

variants within a region into a single value using (possibly weighted) averaging and then 

testing for association by regressing the phenotype on the collapsed variable or applying 

appropriate permutation-based approaches. Letting  denote the indices of the rare variants 

over which we would like to collapse, then the cohort allelic sum test (CAST) and combined 

multivariate collapsing (CMC) collapses the genetic variants within a region to a single 

binary variable
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which is an indicator for whether the ith individual has any rare variants within the region. In 

a slight variation, the count-based collapsing method computes the collapsed variable as

which is the total number of rare variants within the region. To place a higher weight on 

variants which are rarer, the weighted count collapsing method collapses the variants in 

into

where wj is a weight for the jth variant which is inversely related to the MAF for the jth 

variant. To test whether the rare variants are related to the phenotype, the outcome is 

regressed on the collapsed variable and possible covariates using the models

or

for quantitative and dichotomous traits, respectively. Testing for the rare variant effect then 

corresponds to testing H0 : βC = 0 which can be done using a standard 1-df test. The burden-

based rare variant association tests are similar in that they sum over all of the rare variant 

genetic information. Thus, they are most powerful when the effects of the variants are truly 

associated with the outcome and with common direction of effect, that is, all variants are 

deleterious or all variants are protective. Power is lost when effects are opposite in directions 

or non-causal variants are included in .

Similarity-based tests were proposed to address the power loss due to variants with opposing 

effects. This class includes SKAT, and compares pair-wise similarity between individuals in 

terms of their genotype values to pair-wise similarity in phenotype, with correlation 

suggestive of association. Also included within this class is the C-alpha test which tests for 

an over-dispersion of the variance resulting from a rare variant effect rather than a change in 
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the mean effect. By testing variance rather than net effect, the test is powerful to detect 

genetic association when the effects of the variants are not all in the same direction.

It has been previously noted that individual tests are equivalent to SKAT under particular 

kernel functions [27, 12]. For example, the C-alpha test is equivalent to SKAT using the 

kernel function K(Z i, Z i′) = Σj∈  ZijZi′j. Further, each of the burden based methods 

operate by using a univariable summary of the rare variants in  such that the outcome is a 

simple linear function of the collapsed variable Ci. Therefore, each of the CAST/CMC, 

count-based collapsing, and weighted count-based collapsing can be viewed as SKAT with a 

linear kernel constructed based on the collapsed variable. Thus we have the following tests 

and corresponding kernels:

• (Default) SKAT: K(Z i, Z i′) = Σj∈  wjZijZi′j

• C-alpha: K(Z i, Z i′) = Σj∈  ZijZi′j

• CAST (Binary Collapsing): K(Z i, Z i′) = I(Σj∈  Zij > 0)I(Σj∈  Zi′j > 0)

• Count-Based Collapsing: K(Z i, Z i′) = {Σj∈  Zij}{Σj∈  Zi′j}

• Weighted Count-Based Collapsing: K(Z i, Z i′) = {Σj∈  wjZij}{Σj∈  wjZi′j}

Given that many individual tests reduce to SKAT under different kernel, then the problem of 

choosing a particular test reduces to the problem of choosing a particular kernel.

We have, thus far, focused on testing the variants in a particular group, . In practice 

however, one must also choose, a priori, a group of variants to test. For example, one may 

apply each of the tests to all of the variants in the region or one could restrict the variants of 

interest to just the variants with <3% MAF, < 1% MAF, or <0.5% MAF, depending on how 

one wishes to define “rare”. Additionally the investigator may want to restrict to a set of 

only non-synonymous variants or those that are predicted to be “harmful” by Polyphen-2 [1] 

or other software for predicting function. Use of different choices of variants can easily be 

translated into a problem of kernel choice by simply restricting  to be different sets of 

variants. For example, we can define 3% to be the variants with MAF < 3% and 0.5% to be 

the variants with MAF < 0.5%. Then if we are interested in the C-alpha test, we can apply it 

to the variants with MAF < 3% or < 0.5% by constructing the kernels 

 and , respectively 

and test using the usual SKAT procedure. Therefore, it follows that the problem of choosing 

which group of variants to test also reduces to the problem of choosing a particular kernel.

2.2 Multi-kernel sequence kernel association test

The questions facing researchers interested in rare variant analysis are first, which is the 

most powerful test to use for a given data set, and second, which is the best group of variants 

to test within a particular region? As noted earlier, these questions can be reduced to a 

question of kernel choice: which kernel, from among a group of candidates, will yield 

highest power? Despite transforming the problem, the answer to this question requires prior 

knowledge of which variants are causal and what is their effect size and direction, 

knowledge which is rarely available (since this would preclude the need for analysis). As a 
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solution, one may choose to test under all candidate kernels and report the best p-value, but 

this clearly leads to inflated type I error. However, by exploiting the connections between 

SKAT and other tests, we can utilize a perturbation strategy, related to the approach of Wu 

et al. [26], to incorporate many tests and groupings while conserving type I error.

Our proposed unifying method, the multi-kernel SKAT (MK-SKAT), simultaneously 

considers several test and variant grouping choices at once and constructs an omnibus test. 

The idea behind the approach is that it constructs kernels based on each candidate test and 

grouping approach. For example, one may test using CAST, count-based collapsing, C-

alpha, and the default SKAT with 3 grouping strategies per test (MAF <3%, <1%, or <0.5%) 

for a total of 12 combinations corresponding then to 12 candidate kernels. MK-SKAT then 

conducts an omnibus test using a modified version of the perturbation approach of Wu et al. 

[26] to test across all of the candidate kernels. Operationally, the strategy applies SKAT 

with each of the kernels, takes the minimum p-value, and then uses perturbation based 

techniques to correct for having taking the minimum p-value. A single p-value is reported.

The intuition behind the procedure is that asymptotically σ̂−1(yi − ŷi) will be approximately 

normal such that we can replace it with a simulated normal random variable. Using the same 

simulated normals for each candidate kernel allows for capture of the correlation between 

tests. The full MK-SKAT procedure is as follows:

1. For each combination of candidate testing procedure and each candidate grouping 

procedure, construct a corresponding kernel matrix, Kℓ, to obtain a total of L 

candidate kernels.

2. Using each candidate kernel, Kℓ, obtain a corresponding score statistic as Qℓ and p-

value for significance pℓ.

3. Find the minimum p-value: pmin = min1≤ℓ≤L pℓ

4. For ℓ ∈ 1, …, L, compute Λℓ = diag(λℓ,1, …, λℓ,mℓ), and Vℓ = [vℓ,1, vℓ,2, …, vℓ,mℓ] 

where λℓ,1 ≥ λℓ,2 ≥ … ≥ λℓ,mℓ are the mℓ positive eigenvalues of  with 

corresponding eigenvectors vℓ,1, vℓ,2, …, vℓ,mℓ

5. Generate  with each .

6. For each ℓ ∈ 1, …, L, rotate r* using the eigenvectors to generate .

7. Compute  for each ℓ and obtain a corresponding p-value, , by 

comparing  to the distribution function estimated for Qℓ and obtain the upper tail 

probability exceeding . We set .

8. Repeat (5)–(7) B times to obtain  for some large number B.

9. The final p-value for significance is estimated as
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It is important to note that direct use of the p-value is necessary rather than using 

the maximum score statistic since the raw score statistics have different degrees of 

freedom.

As noted earlier, this procedure is closely related to the general perturbation procedure 

previously used for testing across multiple kernels [26]. However, some technical 

modifications have been made to tailor the procedure towards the current application. In 

particular, the previous procedure required generation of a large augmented matrix with 

dimensionality equal to the sum of the number of nonzero eigenvalues from all of the 

kernels under consideration followed by eigen decomposition of the augmented matrix. This 

can be slow if the rank of the individual kernels is high (i.e. many variants with low 

correlation) and if many kernels are under consideration (i.e. many combinations of 

groupings and possible tests); both of these can be true in rare variant studies. In contrast, 

the present strategy requires simulation of more normal random variables but bypasses the 

need for working with a large, augmented matrix.

Two key features of our test ensure that type I error is conserved despite the application of 

multiple tests and grouping. First, our test requires uninformed selection of tests and variant 

groupings. In contrast, using the data to select a single optimal test would not conserve type 

I error. Second, while it is true that the p-values of the test/grouping combinations are 

correlated, as some tests are in fact nested, our perturbation method properly captures the 

correlation and thus retains type I error control.

By capturing the correlation, our approach can accommodate a large number of tests and 

groups as a long as they are highly correlated. Perfect correlation across tests would be 

equivalent to conducting just a single test. Thus, under such scenarios, the increase in cost is 

primarily computational. If the correlation between kernels is low, there is the potential for 

larger power loss, though this is counterbalanced by the fact that one of the competing 

kernels may have much higher power. Therefore, we generally recommend inclusion of a 

broad range of tests and grouping strategies.

Although this strategy also generates a monte carlo p-value, there are two advantages in 

comparison to permutation. First, covariates and variants can be correlated. In contrast, in 

order for permutation to be valid, the variants must be uncorrelated with the covariates. 

Second, the MK-SKAT procedure is more computationally efficient since the computation 

now relies only on generating and then rotating n normal random variables while all other 

parameters remain the same. In contrast, permutation requires complete re-estimation of the 

kernel matrices, P0 matrices, eigen-decompositions, and distribution parameters.

2.3 Simulations

We conducted a series of simulations to verify that the proposed MK-SKAT procedure is 

valid in terms of controlling type I error and has reasonable power compared to the 

individual tests across which the MK-SKAT is combining.

2.3.1 Type I error—To demonstrate that the proposed methods are valid tests, in terms of 

protecting type I error, we conducted a series of simulations under null models for both 
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continuous and dichotomous traits. We used a coalescent model to simulate a region with 

100 variants in 104 haplotypes with LD structure representative of a European population 

[24]. Eighty-five of the simulated variants had a true MAF less than 3% and 80 had a MAF 

less than 1%. We then paired haplotypes to simulate n = 1,000 or 2,000 diploid individuals. 

For type I error simulations, we simulated quantitative outcomes for each individual without 

regard to the genotype values under the null model:

where Xi1 ~ ber(0.506), Xi2 ~ N(29.2, 21.1), and εi ~ N(0, 1). For dichotomous outcomes, we 

simulated n/2 cases and n/2 controls from the null logistic model:

where Xi1 ~ ber(0.506) but Xi2 ~ N(0, 1).

In total, we simulated 105 data sets as described. We applied the MK-SKAT testing 

procedure to each data set. Specifically, we considered four different testing procedures: 

CAST, count-based collapsing, the C-alpha, and SKAT tests. We also considered three 

different grouping strategies: we set the rare variant grouping, , equal to the variants with 

MAF < 0.5%, variants with MAF < 1%, and variants with MAF < 3%. Under the 

equivalence with SKAT, this yielded a total of 12 different candidate kernels. We estimated 

the type I error rate at the 0.05 level of 1) SKAT with each individual kernel, 2) MK-SKAT 

conditional on a particular testing procedure (i.e. we assumed a fixed test while considering 

multiple groupings), 3) MK-SKAT conditional on a particular grouping strategy (i.e. we 

assumed a fixed grouping while considering multiple tests), and 4) MK-SKAT testing across 

all twelve candidate kernels.

2.3.2 Power—We also assessed the power of the MK-SKAT procedure under three 

different simulation settings. For each setting, we again simulated haplotypes for a region 

containing 100 variants as in the type I error simulations. These were then paired to generate 

n = 1,000 individuals. Then we simulated outcomes under the alternative model for 

quantitative traits:

and for dichotomous traits:

Xi1, Xi2 and εi were as before, but  were the genotypes of the causal variants and β were 

the corresponding regression coefficients which varied across simulation settings. For 

dichotomous outcomes n/2 subjects were sampled as cases with the remaining n/2 set as 

controls.
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Under Setting 1, we considered a quantitative outcome with 50% of the variants with true 

population MAF < 1% randomly selected to be causal. All causal variants were given the 

same effect with β = 0.5. Since a large proportion of the variants were causal and they all 

had the same effect, this scenario favored the burden approaches and particularly count 

based collapsing.

Setting 2 again examined quantitative traits and was identical to Setting 1 except the effects 

of the causal variants were equal to −0.5 and 0.5 with equal probability. Since the causal 

variants had opposing effects, this scenario favored the similarity based tests.

Setting 3 differed from Settings 1 and 2 in that it examined the case where the outcome was 

dichotomous. Of the variants with true MAF < 3%, 20% were randomly selected to be 

causal. All causal variants were again given equal effect size of β = 0.5.

We emphasize that these simulations were not intended to serve as a comprehensive 

comparison of the methods across scenarios nor to understand when individual tests and 

grouping strategies are optimal (since this depends on the true state of nature, which is 

unknown in any real data). Instead, these simulations serve to understand how MK-SKAT 

behaves relative to the best method and grouping strategy.

3. RESULTS

3.1 Type I error and power

Type I error simulation results for quantitative traits and dichotomous traits are shown in 

Table 1 and Table 2, respectively. For quantitative traits, individual methods as well as MK-

SKAT appropriately controlled the type I error at the α = 0.05 level. However, for 

dichotomous traits, the C-alpha test and SKAT test tended to be conservative, reflecting 

previous results [27]. Thus, MK-SKAT tests were conservative as well.

Results of the power analysis for the 3 settings are shown in Tables 3 through 5. In Setting 1 

(Table 3), the count kernel applied to the variants with MAF <1% performed the best, 

followed closely by the CAST kernel applied to the same grouping. This was not surprising 

considering they were best adapted to the true model in which all effects have the same size 

and direction, and only rare variants with MAF <1% are sampled to be causative. The MK-

SKAT which tested over all 12 kernels had a power slightly less than the most powerful 

single kernel. The results of the MK-SKAT testing across all 4 tests at the 1% MAF 

threshold group showed power would be nearly equivalent to the most powerful single 

kernel as well. Also, if one tested the count kernel over the 3 groupings, power would be 

conserved.

In Setting 2, power was dramatically decreased for the count and CAST kernels compared to 

Setting 1 (Table 4). This was due to the true model having bidirectional genetic effect on the 

outcome. Some rare variants increased the outcome, while some decreased the outcome. 

Compared to Setting 1, power was reduced for C-alpha and linear weighted kernels, but not 

to the same extent as count and CAST. C-alpha and linear weighted kernels applied to the 

variants with MAF <1% performed the best in Setting 2. MK-SKAT testing over all 12 

kernels displayed power somewhat less than the most powerful single kernel, but much 
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greater than any of the CAST or count kernels. If one applied MK-SKAT over the three 

groupings of the linear weighted kernel, power would be nearly equivalent to the most 

powerful single kernel. This setting clearly showed the adaptability of the MK-SKAT 

method under variation in the genotype/phenotype structure.

Setting 3 compared power between methods for a dichotomous outcome (Table 5). The 

linear weighted kernel applied to the variants with MAF <3% performed the best. They were 

best adapted to the true model where only 20% of the variants were truly causal, and rare 

variants with MAF <3% were sampled as causative. MK-SKAT testing over all 12 kernels 

had power slightly greater than the most powerful single kernel, though this is likely to be 

within the range of monte carlo error. If one applied MK-SKAT to the three groupings using 

either the linear weighted or C-alpha kernel, power would nearly equivalent to the most 

powerful single kernel.

Overall, results show that while protecting type I error, the MK-SKAT can achieve power 

close to using the optimal test and grouping strategy. While there is generally some modest 

loss in power relative to the best choice, the proposed omnibus tests offer considerably 

better power than poor choices and represent a reasonable compromise. If one is able to 

restrict attention to a particular group of variants based on prior information or to a 

particular testing procedure based on hypotheses of the underlying model, then power can be 

further increased by restricting the MK-SKAT to fewer tests or fewer groupings.

3.2 Data analysis

We examined the performance of our proposed method on a high-depth sequence data set 

with 2,000 subjects from the CoLaus population-based collection [7]. Briefly, we examined 

a single candidate gene containing 86 variants of which the majority had allele frequency 

less than 3%. Eight variants were non-synomymous and two were predicted to be harmful. 

This gene is a drug target which has been shown to be associated with obesity and 

cardiovascular related outcomes. In addition to genotype information, we had 42 separate 

traits, most of which are related to obesity and cardiovascular measures, and additional 

demographic covariates including age, gender and the top five eigenvalues of genetic 

variability derived from the GWAS data. We illustrate the MK-SKAT procedure by 

applying it to identify which of the 42 outcome traits are associated with the rare variants 

within this candidate gene.

We specifically considered testing using CAST, count based collapsing, weighted count 

based collapsing, the C-alpha, and the default SKAT. For groupings, we considered using all 

of the variants in the region, the variants with MAF <3%, variants with MAF <1%, variants 

with MAF <0.5%, nonsynonymous variants, and variants predicted to be harmful. In total 

we considered 27 different kernels based on combinations of the test choice and grouping 

choice — the CAST, count based collapsing, and weighted count based collapsing were not 

applied to all of the variants. In addition to applying SKAT with each of the candidate 

kernels, we also applied the MK-SKAT testing across all 27 kernels.

Analysis results are presented in Figure 1, with p-values truncated at 10−6. Several p-values 

would have met the threshold for significance and will be presented elsewhere. Given that 

Urrutia et al. Page 12

Stat Interface. Author manuscript; available in PMC 2016 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the candidate gene was selected as a positive control and that many of the outcome measures 

are closely related, these results are in line with what we would anticipate. However, for the 

purposes of illustrating our methodology, the individual p-values are not particularly 

interesting. The key result is that for many traits, using different methods and different 

groupings resulted in very different results in terms of significance. MK-SKAT did not tend 

to have the smallest p-values. In general, MK-SKAT tended to yield results slightly less 

significant than those using the best kernel (choice of test and grouping strategy). However, 

MK-SKAT still performed considerably better than poor choices of kernels.

3.3 Computational run time

We examined the computational efficiency of the MK-SKAT procedure. Specifically, we 

considered the run time associated with running MK-SKAT to analyze a region with p 

observed variants in n individuals assuming that we would like to consider 12 kernels 

constructed by considering count based collapsing, weighted count based collapsing, SKAT 

and C-alpha tests with grouping thresholds of 1%, 3% and 5%. This differs slightly from the 

earlier simulations and was adjusted in order to accommodate the wider range of sample 

sizes and observed variants under consideration. However, the computational results should 

not change as the kernels and relative complexity are still the same. Results are presented in 

the left panel of Figure 2 and show that the run time increases with sample size. Although 

there are some differences in the computation time for situations with different numbers of 

variants, such were small compared to differences in run time from increased sample size. 

This is in part because the kernel machine framework requires working with n×n kernel 

matrices, irrespective of the dimensionality.

As noted earlier, the testing procedure developed in this project is based on our previous 

work [26]. However, technical adjustments were made due to improve computation within 

the context of rare variant analysis with many possible kernels. To illustrate the 

improvement in computation, we further compared the relative computational expense of the 

current MK-SKAT procedure to our previous procedure. The results are presented in the 

right panel of Figure 2 with the relative run times (run time of our current procedure divided 

by run time of the previous procedure) as a function of sample size and number of observed 

variants. When the sample size is large and when the number of variants under consideration 

increases, our current procedure can be considerably faster. On the other hand, when the 

number of variants is modest, then the previous procedure can be slightly faster though the 

difference is small.

4. DISCUSSION

In analysis of genetic rare variants, given the difficulties associated with selecting a test and 

selecting a particular group of variants to test, MK-SKAT allows investigators to 

agnostically consider several different, popular, testing approaches as well as several 

different ways of thresholding the variants. Although there is some loss of power compared 

to the best single test and best grouping, the power is still considerably higher than when 

using a poor choice of test or a poor choice of grouping strategy while still conserving type I 

error.
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Restriction of the MK-SKAT to a smaller set of possible kernels (i.e. smaller set of tests or 

groupings) can yield higher power if the considered kernels are closer to the best test and 

grouping strategy. If such information is available, such as through previous studies of 

common variants within the region or through bioinformatics knowledge, we strongly 

encourage investigators to directly restrict interest to a smaller group of candidate kernels. 

On the other hand, in the absence of reliable prior knowledge, we recommend consideration 

of a wide range of kernels. Importantly, if kernels are very similar to one another, then the 

perturbation procedure will accommodate the correlation and will not penalize the 

significance as much as if the considered kernels are more different.

We acknowledge that the computational expense of MK-SKAT can be high with larger 

sample size, making it difficult to analyze large, genome-wide sequencing studies, but a 

simple approach to decrease this burden would be to first screen using each of the candidate 

kernels individually. If none of the individual kernels are close to significance, then MK-

SKAT is unlikely to yield a significant result. Since the majority of genetic regions are not 

related to outcomes, applying MK-SKAT to only the promising genetic regions can 

considerably reduce the overall computational expense of analyzing any real experiment. 

Further computational improvements may be possible using powerful, new (i.e., parallel or 

grid) computing technologies and represent an area of future research.

Interestingly, while several methods are special cases of SKAT, some other methods are 

special cases of the MK-SKAT. The variable threshold test [23] is equivalent to MK-SKAT 

when the kernels under consideration are based on a single testing approach with only the 

variable grouping being varied. However, we note that use of perturbation still offers 

computational advantage over the threshold test. Similarly, the SKAT-O method [12] is 

equivalent to MK-SKAT in which the variable grouping is fixed but one is considering a 

range of linear combinations of SKAT and collapsing kernels. Thus, in comparison to 

SKAT-O, MK-SKAT would tend to excel when the ideal variable grouping is not chosen for 

SKAT-O. MK-SKAT buffers against a broad range of variable groupings since many can be 

tested simultaneously.

Further methods may also fall within the MK-SKAT framework, but although many popular 

tests can be considered using MK-SKAT, there are certainly many useful tests that fall 

outside. For example, tests that use the outcome information in order to estimate weights for 

variants [11, 10, 8, 14] cannot be applied. While these tests still can be considered special 

cases of SKAT, the kernel is now estimated using the outcome such that standard 

asymptotics for SKAT and the perturbation based techniques for MK-SKAT cannot be used 

to obtain p-values. Further statistical work is needed in order to allow the MK-SKAT 

procedure to encompass these methods.
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Figure 1. 
Real data analysis results. Each column of circles corresponds to the p-values from 

analyzing a different trait while each circle represents the p-value from a different kernel. 

The triangle indicates the p-value from applying MK-SKAT to all of the kernels. p-values 

have been truncated at 10−6. The dashed line indicates the bonferroni significance level.
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Figure 2. 
Computational runtime as a function of sample size for the proposed algorithm (left panel) 

and the relative computational cost of the current procedure relative to a previous procedure 

for multi-kernel testing [26] (current/previous) as a function of the number of variants and 

sample size (right panel).
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