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Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species.
Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active
area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US
and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA
viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities,
paralysis, or death of adults or larvae. RNA interference (RNAI) is an important antiviral defense mechanism in insects, including
honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and
mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune
mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and

result in the discovery of additional mechanisms of immunity in metazoans.

1. Introduction

Honey bees (Apis mellifera) contribute vital pollination ser-
vices to agricultural crops and native landscapes, accounting
for over $15 billion/year in economic value in the US [1]. In
addition, the honey bee is a model organism for epigenetic,
behavioral, and host-pathogen interaction studies [2-10].
Since 2006, the US and parts of Europe have experienced high
annual colony losses (~33% annual loss in the US) [9, 11-
13]. In the US, colony mortalities are partially attributed to
Colony Collapse Disorder (CCD) [14-19]. These losses have
stimulated greater interest in investigating honey bee biology,
including the role of pathogens in colony mortalities and the
role of the RNA interference (RNAi) mechanism in honey bee
antiviral defense.

Pathogen incidence and abundance have been positively
associated with CCD-affected colonies in the US [I5, 19,
20] and colony losses in the US [21, 22], Canada [23], and
European countries, including, Spain [24], Ttaly [25, 26],
Belgium [27], and Germany [28]. In the US, Israeli acute

paralysis virus (IAPV) was more abundant in colonies with
less food stores and less developing bees/brood [29], and
Lake Sinai viruses (LSV) 1 and 2 were more abundant in
weak/less populated colonies from a small sample cohort
[22]; however, this correlation was not seen in a larger
sample cohort [30]. Honey bees are infected by a wide
variety of pathogens (i.e., viruses, bacteria, microsporidia,
and trypanosomatids) and also suffer from ectoparasitic
mite (Varroa destructor) infestation (reviewed in [31]). The
majority of honey bee pathogens are positive sense, single-
stranded RNA viruses. The short-interfering RNA (siRNA)
pathway of RNA interference (RNAi) is a major antiviral
immune mechanism in solitary insects (reviewed in [32]) and
is involved in honey bee antiviral defense.

RNAI is a post-transcriptional, sequence-specific, gene
regulation mechanism conserved across several phyla,
including plants, invertebrates, and mammals (reviewed in
[33]). RNAi-mediated gene knockdown is a useful tool for
assessing gene function in honey bees and other organisms
for which additional reverse genetic tools are not available.
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While experimental introduction of virus sequence-specific
dsRNA reduced honey bee virus infections in adults and
larvae [29, 34-39], introduction of non-sequence-specific
dsRNA also resulted in virus reduction and altered gene
expression [38]. This is consistent with global changes in
honey bee gene expression, including untargeted genes (i.e.,
oft-target effects), observed from administration of dsRNA
[40, 41]. Together these results suggest that dsSRNA not only
serves as the substrate for RNAi-mediated gene regulation
but also may function as a trigger of gene regulatory signal
transduction cascades. Future studies aimed at determining
the relative contribution of RNAi and other honey bee
antiviral defense pathways will be important for the
development of strategies that limit virus infection and for
investigating immune gene function in bees. In this review,
we discuss RNAI as a tool for gene knockdown in honey
bees, the role of the siRNA pathway of RNAI in honey bee
antiviral defense, and additional honey bee antiviral defense
pathways, including evidence of a non-sequence-specific
dsRNA-stimulated immune pathway in honey bees.

2. RNA Silencing: Machinery and Functions

RNA silencing is a mechanism of post-transcriptional gene
regulation conserved across several phyla that encompasses
three distinct pathways (reviewed in [32, 42]), including
the short-interfering RNA (siRNA), microRNA (miRNA),
and piwi-interacting RNA (piRNA) pathways. Each of these
pathways is characterized by its unique biological function
and involvement of distinct proteins. The siRNA pathway is
involved in antiviral defense in plants and invertebrates, but
its function in mammalian immunology is debated (reviewed
in [43-45]). This pathway is triggered by cytosolic dsRNA
produced by replicating viruses or introduced experimen-
tally. Double-stranded RNA is recognized and cleaved by the
RNAse III enzyme, Dicer (Dicer-2 in Drosophila [46, 47]
and Dicer-like in Apis mellifera [48]), into 21-22bp short-
interfering RNAs (siRNAs) (reviewed in [49]) (Figure 1). siR-
NAs are short dsRNAs with 5 monophosphate ends and two
nucleotide overhangs at their 3’ hydroxyl-termini (reviewed
in [50]). The siRNAs are subsequently bound by Argonaute
(AGO2), an endoribonuclease and catalytic component of
the multiprotein RNA-induced silencing complex (RISC).
One strand of the siRNA, the passenger strand, is then
released, leaving the other strand, the guide strand, to target
complementary viral and transposon sequences for cleavage
(reviewed in [50]). miRNAs are derived from endogenous
nuclear-encoded short-hairpin RNAs that are processed into
shorter hairpin RNAs (pre-miRNA), cleaved by Dicer into
21-22bp segments in the cytosol and incorporated into
RISC (reviewed in [50]). The miRNA-containing RISC then
targets complementary host-encoded mRNA transcripts for
degradation or translational inhibition. Conversely, miRNAs
can serve to induce transcription and translation of mRNA,
reduce nonsense-mediated RNA decay, and improve mRNA
stability (reviewed in [51]). miRNAs can function in antiviral
response via targeting of viral nucleic acid and host gene
regulation (reviewed in [51]). piRNAs, which are larger than
siRNAs and miRNAs (24-32 nucleotides (nts)), are generated
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FIGURE 1: RNAi and non-sequence-specific dsSRNA mediated antivi-
ral defense in honey bees. The short-interfering RNA (siRNA) path-
way of RNA interference (RNAi) is important for honey bee antiviral
defense and experimental gene knockdown. Although not yet fully
characterized, the honey bee RNAi-pathway is likely induced by Am
Dicer-like cleavage of viral dsRNA into 21-22 bp siRNAs. Following
cleavage, siRNA is bound by AGO2 (Argonaute-2), the catalytic
subunit of the multiprotein RISC (RNA-induced silencing complex).
The passenger strand is then released and the guide strand aids RISC
in targeting and cleaving complementary viral genome sequences. In
Drosophila melanogaster, Dicer-2 also acts as a dsRNA sensor which,
when bound to dsRNA, initiates a signal transduction cascade that
results in increased expression of Dm Vago and, in turn, increased
expression of Jak-STAT pathway-associated genes. In honey bees,
nonspecific dsSRNA-mediated reduction in virus abundance [38]
may involve Am Dicer-like and Am vago, but the mechanism(s)
of this response have not been fully characterized. This figure is
adapted from [10].

in a Dicer-independent manner from single-stranded RNA
precursors transcribed from genomic regions (reviewed in
[49, 52, 53]). piRNAs are involved in transposon silencing,
epigenome regulation, and antiviral defense (reviewed in
[49, 52, 53]). The focus of this review is on the use of the
siRNA/RNAi pathway in experimental gene knockdown and
its role in antiviral defense in honey bees. Further use of the
term “RNAi” in this review is in regard to the siRNA pathway.

3. RNAi-Mediated Knockdown of
Endogenous Gene Expression

RNAI is involved in antiviral defense and endogenous gene
regulation. This mechanism can also be triggered experimen-
tally to study gene function in organisms for which the tools
for facile gene knockout are not available. RNAi-mediated
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gene knockdown has been used to study gene function in
different honey bee developmental stages, including embryos
[54-60], larvae [3, 56, 61-68], pupae [56, 69, 70], and fully
developed adult honey bees [2, 4, 71-83] (reviewed in [84]).
Importantly, these studies have demonstrated that the RNAi
machinery is functional in honey bees.

The variable efficacy of RNAi-mediated gene knockdown
observed in honey bees is likely gene-, dsRNA trigger-, and
tissue-specific. The most effective use of RNAi-mediated
gene knockdown in adult bees has been targeting of the
hemolymph (insect blood) protein vitellogenin; vitellogenin
expression was reduced at the mRNA (>75%) and protein
levels in several studies [2, 72-74, 76, 81]. The efficacy of vitel-
logenin RNAi-mediated knockdown in honey bees is likely, in
part, a consequence of its involvement in a positive regulatory
feedback loop in which vitellogenin and juvenile hormone
mutually suppress each other [72, 85]. In short, bees with
less vitellogenin produce less vitellogenin. RNAi-mediated
knockdown of vitellogenin in several studies has provided
evidence for its role in aging by acting as an antioxidant
[73] and in the timing of foraging behavior [74, 76]. The
high efficiency of RNAi-mediated knockdown of honey bee
vitellogenin may be partially attributed to enhanced targeting
of siRNAs and dsRNAs to the fat body where vitellogenin is
produced [86]. Similarly, intra-abdominal injection of either
dsRNA or siRNA targeted against the glycerol-3-phosphate
dehydrogenase (amGPdh) gene significantly decreased amG-
Pdh transcripts in the fatty body (i.e., >70% decrease), but
not in the ovaries, flight muscles, or head [78]. For com-
parison, a study that aimed to silence octopamine receptor
expression via injection of dsRNA into the antennae observed
~40% decreased expression [71]. In addition, silencing of
the hypopharyngeal amylase via dsRNA injection into the
abdomen resulted in ~30% decreased expression in the
hypopharyngeal glands [87]. The fat body is the site for insect
humoral immunity (e.g., antimicrobial peptide production)
and is involved in many metabolic processes (reviewed in
[86, 88]). Therefore, gene knockdown studies in the fat body
may be useful for studying honey bee metabolic and immune
pathways.

4. RNAIi in Antiviral Defense

The siRNA/RNAI is a major antiviral defense mechanism in
solitary insects, including fruit flies and mosquitos (reviewed
in [89]). The piwi-interacting RNA (piRNA) pathway has
also been linked with antiviral response in insects via the
detection of piRNA-sized viral RNAs in persistently infected
Drosophila ovarian sheath cells and the discovery of ping-
pong dependent piRNAs in arbovirus-infected Aedes spp.
(reviewed in [49, 90]). miRNAs may have contrasting roles
in insect-virus infection; virally derived miRNAs can disrupt
host cell transcription and translation, but host miRNAs may
be used to target and disrupt viral nucleic acid (reviewed in
[51]). However, the roles of the miRNA and piRNA pathways
in honey bee antiviral defense are not well characterized; thus,
in this review, we focus on the siRNA pathway of RNAI.

The honey bee genome encodes the siRNA/RNAi
machinery dicer-like, ago-2, and r2d2 [48, 91], and bees

are readily infected by positive sense, single-stranded RNA
viruses (reviewed in [92]). These single-stranded RNA
viruses generate double stranded RNA intermediates during
their replication cycle and likely have significant secondary
RNA structure within their genomes [92, 93], either of which
may serve as Am Dicer-like substrates and trigger the honey
bee siRNA pathway (Figure 1).

The role of RNAi in honey bee antiviral defense was
first demonstrated when bees fed Israeli acute paralysis virus
(IAPV) and IAPV-specific dsRNA had reduced IAPV levels
as compared to bees fed only virus [34]. In addition, IAPV-
specific siRNAs were detected by Northern blot analysis in the
IAPV-specific dsRNA treated bees [34], indicating that the
dsRNA and virus genomes were cleaved by Dicer-like and/or
AGO2. TAPV replication was also decreased in bees fed
siRNAs targeting the Internal Ribosomal Entry Site (IRES)
of TAPV [39]. Similar results were obtained when larvae
and adult bees fed dsRNA targeting Deformed wing virus
(DWV) had reduced mortality, virus load, and deformed
wing symptoms [37]. The effect of dsSRNA administration
on the outcome of virus infection was also examined in the
Eastern honey bee, Apis ceranae [36]. In turn, there has been
commercial/agricultural interest in utilizing RNAi-mediated
antiviral treatments in honey bee colonies (reviewed in [35,
94, 95]). Initial field studies suggested that feeding honey bees
IAPV-specific dsRNA resulted in increased honey production
and larger colony size [35]; however, additional research is
needed to confirm the mechanism of action and further
investigate additional biological effects of dsRNA/siRNA
treatments.

RNAi-mediated antiviral defense in naturally infected
bees, which were not fed either dsSRNA or siRNA triggers,
was documented and characterized by sequencing small RNA
libraries [96]. Small RNA sequence data indicated that bees
from CCD-affected colonies had higher amounts of 22nt
siRNAs spanning the genomes of IAPV, Kashmir bee virus
(KBV), and Deformed wing virus (DWV) as compared to
non-CCD colonies. Most of the IAPV-specific siRNAs were
negative sense, indicating their role as guide strands that
target RISC to viral genomes/mRNAs [96]. Moreover, DWV
virus levels were broadly proportional to the abundance
of DWV-specific siRNAs in both orally infected and mite-
vectored infections in developing bees [97]. Transcriptome
(RNASeq) sequence data also indicated the role of the
RNAi machinery in antiviral defense, as the expression of
Argonaute-2 and Dicer-like were greater in bees experimen-
tally infected with IAPV as compared to mock-infected
controls [6]. Intriguingly, transcriptional level regulation of
the Drosophila RNAi genes in response to virus infection has
not yet been documented [98, 99], suggesting that regulation
of antiviral defense mechanisms in honey bees and fruit flies
may differ.

Like many insect-infecting viruses, some honey bee
viruses have likely evolved specific mechanisms to counteract
RNAi-mediated antiviral defense, including virus-encoded
suppressors of RNAi (VSR). For example, the B2 protein
dimer of Flock house virus binds dsRNA, subsequently pre-
venting Dicer-2 cleavage of long dsRNA [100, 101] and siRNA
loading into RISC [101]. Dicistroviruses encode protein 1A, a



VSR with differential modes of action (e.g., it binds to Dicer-2
or AGO2) and efficacy that varies by virus (reviewed in [90]).
Based on analysis of VSR-expressing viruses (i.e., Drosophila
Cvirus and Cricket paralysis virus), the presence of the highly
conserved DVExXNPGP motif and upstream coding sequences
are indicative of the ability to express VSR proteins [102, 103].
Sequence analysis revealed that the honey bee dicistroviruses
IAPV and KBV and Acute bee paralysis virus (ABPV) contain
a DVEXNPGP motif at the 5" terminus of their genomes,
suggesting these honey bee-infecting viruses may encode a
VSR [29]. Experimental feeding of naturally IAPV-infected
bees with siRNAs targeting the putative IAPV-encoded RNAi
suppressor decreased IAPV loads at least three times more
than treatment with siRNAs targeting the IAPV IRES [29, 39].
Better understanding of the importance of RNAi in honey
bee antiviral defense and the means by which viruses may
evade the honey bee antiviral response will facilitate the
manipulation of these mechanisms in the lab as well as their
potential application in the field setting.

The dsRNA uptake mechanisms in insects and their
relationship to systemic RNAi and antiviral defense are
not completely understood. Current studies suggest that
there are at least two mechanisms of dsRNA uptake in
insects: transmembrane channel-mediated uptake (reviewed
in [104]) and endocytosis-mediated uptake [105-107]. SID-
1 (systemic RNA defective), a dsRNA-transporting trans-
membrane protein originally identified in C. elegans [108,
109], has been implicated in facilitating systemic RNAi in
honey bees; bees injected with dsRNA had over three times
greater expression of SID-1 than controls [110]. C. elegans
also encodes additional SID proteins, SID-2, SID-3, and SID-
5, which have also been implicated in dsRNA uptake but
have not been identified in the honey bee genome [111-113].
Honey bees encode for one SID-1 ortholog with two protein
isoforms (XP_006565236.1 and XP_006565237.1), which both
share ~25% amino acid identity with the C. elegans SID-1
(NP_504372.2) [114]. In addition, transgenic Drosophila S2
cells expressing the C. elegans SID-1 protein had improved
dsRNA uptake [109]. Interestingly, SID-1 is not present in
all insect genomes (reviewed in [104]), including Drosophila
[115], and is not required for systemic RNAi in locusts
[116]. Proteins involved in phagocytosis and endocytosis may
function in dsRNA uptake, as the scavenger receptors SR-CI
and Eater and the endocytosis-associated proteins clathrin
heavy chain and H+ ATPase are important for dsSRNA uptake
in Drosophila S2 cells [105, 106]. Investigating dsRNA uptake
and systemic RNAi will be an important step towards further
characterizing honey bee antiviral response.

Double-stranded RNA treatment of honey bees has also
been employed to reduce gene expression in honey bee-
associated parasites including the microsporidia Nosema cer-
anae [117] and the ectoparasitic mite Varroa destructor [118].
Honey bees inoculated with Nosema spores and fed dsRNA
targeting Nosema-specific ADP/ATP genes had reduced
Nosema spore count, and Nosema had lower expression of
the targeted genes [117]. Likewise, when bees were fed dsRNA
targeting mite sequence-specific housekeeping genes, mites
had lower levels of the targeted transcripts [118]. Interestingly,
long, unprocessed dsRNAs were detected in bee hemolymph
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three days after feeding dsRNA [118]. The biological relevance
of dsRNA as a systemically active molecule in naturally
infected honey bees is unknown, but it is remarkable that
orally introduced dsRNA remains stable enough to spread
throughout the honey bee host and into associated parasites
117, 118].

It is interesting that several studies have demonstrated
that dsSRNA/siRNA feeding is an effective strategy to reduce
virus loads in both larval-stage and adult bees, while achiev-
ing effective in vivo gene silencing is difficult in mammalian
model systems (reviewed in [119]). Tail-vein injections of
siRNA in postnatal mice have been an effective strategy
for gene knockdown [120], but overall systemic siRNA
delivery into mammalian systems often requires siRNAs
with chemical modifications such as lipophilic conjugates
or nanoparticle mediated delivery (reviewed [119, 121]).
Preliminary results on the effects of RNAi-mediated treat-
ment of honey bee viruses and parasites are promising,
but additional investigation is required to better understand
the feasibility, effectiveness, and risk of off-target effects.
Additionally, it will be important to develop methods to
functionally test the role of the RNAi machinery via gene
knockout/knockdown. Genome integration of IAPV also
requires further examination [122]. Both genome-integrated
RNA viral sequences, putatively encoding for target nucleic
acid or reverse-transcriptase, and RNAi are involved in
limiting and maintaining persistent virus infections in D.
melanogaster [42,107]. These and other studies will reveal the
role of RNAi in honey bee antiviral defense.

5. Additional Antiviral Defense Mechanisms

Multiple mechanisms are involved in insect immune
responses, including phagocytosis, melanization, and signal
transduction of the Toll, Imd (immune deficiency), and
Jak/STAT (Janus kinase and Signal Transducer and Activator
of Transcription) innate immune response pathways which
result in the production of antimicrobial peptides (AMPs)
and other effector proteins (reviewed in [89, 90, 123]).
There are multiple orthologous proteins utilized by both
insect and mammalian immune pathways (reviewed in
[124, 125]), including Toll-like receptors (TLRs). While
mammalian TLRs recognize and bind specific pathogen
associated molecular patterns, the D. melanogaster Toll
acts downstream of pathogen recognition [90, 123]. Honey
bees encode for all the major components of the Toll, Imd,
JNK, Tor, and Jak-STAT pathways (except upd), AMPs
(i.e., abaecin, hymenoptaecin, apidaecin, and defensin), and
prophenoloxidases [126].

Transcriptional studies of virus-infected honey bees have
implicated the Jak-Stat, Toll, and Imd pathways in antiviral
defense (reviewed in [10]). For example, bees infected with
DWYV had greater expression of the Imd pathway member
dorsal-1A [25], and bees fed IAPV had increased expression
of Toll pathway members (i.e, toll-6, cactus, and the AMP
hymenoptaecin) and Jak/STAT pathway members (i.e., cbl,
stat, pias, and hopscotch) [29]. Nevertheless, not all infection
studies investigating transcriptional responses to the same
virus followed the same trends. In contrast to bees fed IAPV,
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bees from naturally infected IAPV colonies did not have
differential regulation of Jak/STAT or Imd pathways [29].
These inconsistencies may be due to different experimental
factors such as difference in virus isolate/strain utilized,
infection route, age of bees, and tissue examined (reviewed
in [10]). Further investigation of the role of these and other
innate immune pathways in honey bee antiviral defense will
lead to a better understanding of the mechanism(s) of honey
bee antiviral defense and reveal unique honey bee host-virus
interactions.

6. Nonspecific dsRNA Triggered
Virus Reduction

In addition to inducing RNAi, dsRNA may also engage a
previously uncharacterized non-sequence-specific immune
pathway in honey bees [38] (Figure 1). Bees coinjected with
Sindbis virus (SINV) and sequence-specific dsSRNA or non-
sequence-specific dsSRNA had similarly decreased viral titers
as compared to bees injected with virus only [38]. Likewise,
adult bees treated with non-virus specific dsRNA (i.e., GFP-
(green fluorescent protein-) targeting) and infected with
DWYV had a greater rate of survival as compared to DWV-
infected bees that received no dsRNA-treatment [37]. In
addition, experimental introduction of nonspecific dsRNA
alone in honey bees perturbs honey bee gene expression
[38, 41]. Transcriptome analysis of honey bee larvae fed
GFP-targeting dsRNA revealed ~1,400 differentially regu-
lated genes (DEGs) [41]. Nine genes had sequence similarity
with 21nt regions of GFP, indicating off-target RNAi [41].
However, most DEGs did not share sequence similarity with
dsRNA-GFP and were reported to function in oxidoreductase
activity, aging, cell homeostasis, morphogenesis, response
to external stimulus and stress, and immune response [41].
Also, bees injected with non-sequence-specific dsRNA had
differential expression, including decreased expression of
several apidaecin AMP family members [38]. In a recent
study that examined the role of RNAi-mediated antiviral
defense in bumblebees (i.e., Bombus terrestris), adults fed
non-sequence-specific dsRNA had increased survival when
infected with IAPV and similar virus titers as compared
to bees fed dsRNA targeting IAPV [127]. Together these
results suggest that honey bees and other members of the
Apidae family may have an alternative dsRNA-stimulated
immune pathway akin to the interferon response in mam-
mals. Mammals have dsRNA recognition receptors such as
Toll-like receptor 3 (TLR3), Protein kinase R (PKR), Retinoic
acid-inducible gene 1 (RIG-I), and Melanomadifferentiation-
associated gene 5 (MDA-5), that when activated, induce
expression of numerous genes that contribute to an antiviral
state (reviewed in [128]). Analogously, non-sequence-specific
dsRNA-mediated immune pathways may be important for
antiviral defense in honey bees.

Nonspecific dsSRNA-triggered antiviral immunity has also
been observed in other arthropods including Chinese oak
silk moth pupae [129], shrimp [130-134], Bombyx mori
larvae [135], and sandfly cells [136], implicating dsRNA as
a viral pathogen associated molecular pattern (PAMP or
VAMP). In addition, there is evidence that Dicer-2 serves

as a pathogen recognition receptor (PRR) of dsRNA in
both D. melanogaster [47] and Culex pipiens f. molestus
mosquito cells [137]. When bound with dsRNA, Dicer-
2 stimulates a signal-transduction cascade that results in
increased expression of vago and Jak-Stat pathway genes
(reviewed in [90, 123]) (Figure 1). Intriguingly, larvae orally
infected with DWV from Varroa infested colonies had
significantly greater expression of the honey bee ortholog of
vago as compared to control larvae from colonies with lower
mite pressure [97]. Though administration of non-sequence-
specific dsSRNA does not always improve survival or reduce
viral titer in virus infected bees [34, 36], it is important to
further examine the mechanisms involved in non-sequence-
specific dsRNA-mediated antiviral immunity in honey
bees.

7. Conclusion

Honey bees are essential pollinators of agricultural crops
and many plant species. Since 2006, annual losses of honey
bee colonies in the US have been high (i.e., averaging 33%).
Pathogen incidence and abundance correlate with CCD, as
well as colony health and loss in multiple studies. Continued
investigation of honey bee host-pathogen interactions is
important to better understand the role of pathogens in
colony losses. Many positive sense single-stranded RNA
viruses infect honey bees. Honey bee virus infections result
in a range of outcomes, likely caused by varying immune
responses due to genetic differences [138, 139], coinfec-
tion with additional pathogens [20, 31, 140], adequate bee
nutrition [141-143], the effect of the bee microbiome [144,
145], and/or exposure to environmental factors including
agrochemicals and weather events [146-149]. The RNAi
mechanism plays a role in honey bee antiviral defense but
the relative contribution of this and other immune pathways
has not been fully elucidated. The efficacy of RNAi-mediated
treatment against honey bee viruses together with the fact
that honey bee viruses encode for putative VSRs supports
that RNAI is an important honey bee antiviral defense mech-
anism. In addition, several studies implicate the involvement
of innate immune pathways (i.e., Jak-Stat, Toll, and Imd) and
non-sequence-specific dsSRNA-mediated immune responses
in honey antiviral defense.

Honey bee gene knockout models are not yet available, so
experimental induction of RNAi has become an important
tool for studying gene function in honey bees. Although
effective RNAi-mediated gene knockdown has been demon-
strated in the fat body, gene knockdown in other tissue types
(e.g., reproductive tissue [78]) remains a challenge. Further
development of honey bee cell culture systems [150-153],
and perhaps the use of the endoribonuclease CRISPR/Cas9-
mediated gene knockout system [154], will also facilitate
future investigations of RNAi and innate immune pathways
in honey bees. Continued investigation of honey bee host-
pathogen interactions and better characterization of the
honey bee immune system may result in implementation of
strategies that benefit honey bee colony health and result in
the discovery of additional evolutionarily conserved immune
mechanisms.
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