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Abstract

Despite the known dangers of driver fatigue, it is a difficult construct to study empirically. 

Different forms of task-induced fatigue may differ in their effects on driver performance and 

safety. Desmond and Hancock (2001) defined active and passive fatigue states that reflect 

different styles of workload regulation. In 2 driving simulator studies we investigated the 

multidimensional subjective states and safety outcomes associated with active and passive fatigue. 

Wind gusts were used to induce active fatigue, and full vehicle automation to induce passive 

fatigue. Drive duration was independently manipulated to track the development of fatigue states 

over time. Participants were undergraduate students. Study 1 (N = 108) focused on subjective 

response and associated cognitive stress processes, while Study 2 (N = 168) tested fatigue effects 

on vehicle control and alertness. In both studies the 2 fatigue manipulations produced different 

patterns of subjective response reflecting different styles of workload regulation, appraisal, and 

coping. Active fatigue was associated with distress, overload, and heightened coping efforts, 

whereas passive fatigue corresponded to large-magnitude declines in task engagement, cognitive 

underload, and reduced challenge appraisal. Study 2 showed that only passive fatigue reduced 

alertness, operationalized as speed of braking and steering responses to an emergency event. 

Passive fatigue also increased crash probability, but did not affect a measure of vehicle control. 
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Findings support theories that see fatigue as an outcome of strategies for managing workload. The 

distinction between active and passive fatigue is important for assessment of fatigue and for 

evaluating automated driving systems which may induce dangerous levels of passive fatigue.
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Driver fatigue is a serious safety problem that costs many people their lives (Lee, 2006; 

Neubauer, Matthews, & Saxby, 2012). Fatigue has been implicated in approximately 35% of 

all fatal crashes occurring in rural areas and 12% of those in urban areas (Hartley, 2004). 

Driver fatigue has multiple sources including circadian rhythms and sleep disturbance 

(Wijesuriya, Tran, & Craig, 2007; Williamson et al., 2011). The present study is concerned 

with the task-induced “cognitive fatigue” that is derived directly from prolonged 

performance of demanding or cognitively involving tasks (Ackerman, 2011). Specifically, 

we investigated whether two forms of task-induced fatigue, active and passive fatigue 

(Desmond & Hancock, 2001), differed in their impacts on the driver’s subjective states, 

cognitive processing, and objective performance.

Brown (2001) suggested that excessive workload, if prolonged, results in “strain” that is 

experienced as fatigue. Studies show that professional drivers exposed to higher workloads 

are more vulnerable to fatigue (Feyer & Williamson, 2001; Morrow & Crum, 2004), and 

prolonged, high workloads may deplete attentional resources and impair sustained attention 

(Matthews, Davies, Westerman, & Stammers, 2000; Warm, Parasuraman, & Matthews, 

2008). Hence, reducing workload may alleviate driver fatigue and resource depletion. 

Indeed, automobile manufacturers promote automated technology that lowers driver 

workload as a safety-enhancing feature (Cottrell & Barton, 2013; Funke, Matthews, Warm, 

& Emo, 2007; Ma & Kaber, 2005). Existing systems of this kind include Adaptive Cruise 

Control (ACC) and active steering (AS); future advancements in automation supporting 

driverless vehicles promise to reduce driver workload further. However, there may be 

different forms of task-induced fatigue, depending on the cognitive load of the task, and the 

driver’s strategy for workload regulation. Specifically, Desmond and Hancock (2001) 

distinguished between active fatigue, associated with cognitive overload, and passive fatigue 

derived from underload and monotony. Workload reduction may be effective only for active 

fatigue, with passive fatigue calling for different countermeasures (May & Baldwin, 2009). 

In the present study, we investigated how these states can be understood in relation to 

contemporary cognitive theories of stress and workload-regulation, as well as their effects 

on safety.

Active Versus Passive Fatigue

Equating fatigue with the strain of prolonged high workload (Brown, 2001) is known to be 

an oversimplification. Brown (2001) himself pointed out that the engineering metaphor of 

strain breaks down in that fatigued operators are aware of their own potential impairment, 

and may develop adaptive strategies for performance in consequence. The adaptive 

regulation of stress and fatigue has been elaborated in Hockey’s (1997, 2011, 2012) 
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compensatory control model (CCM), which differentiates “strain” and “disengagement” 

modes for handling prolonged high-demand/low-control task environments. Broadly, strain 

is experienced as a combination of effort, negative emotion, and fatigue when the operator 

strives to maintain performance despite high demands and lack of control. However, fatigue 

often leads to setting reduced goals for performance that allows for alleviation of discomfort 

through reduced effort, leading to disengagement from the task and potential performance 

impairment.

Adaptive workload regulation may be disrupted in both overload and underload conditions 

(Hancock & Warm, 1989). Desmond and Hancock (2001, p. 601) defined active fatigue as 

the state change resulting from “continuous and prolonged, task-related psychomotor 

adjustment.” For example, driving on a busy freeway necessitates frequent steering and 

pedal responses. Thus, active fatigue is associated with high cognitive workload. By 

contrast, passive fatigue develops when there is a requirement for “system monitoring with 

either rare or even no overt perceptual-motor requirements” (Desmond & Hancock, 2001, p. 

601). Desmond and Hancock (2001) see active driver fatigue as the form more typically 

experienced during driving. However, passive fatigue may be induced by driving in low-

workload conditions, requiring infrequent use of the controls (especially if cruise control is 

engaged), but continued vigilance for hazards. Truckers driving on straight highways of low 

traffic density may be vulnerable. Vehicle automation increasingly places drivers in 

supervisory roles, which reduces active control and encourages passive fatigue (Desmond, 

Hancock, & Monette, 1998; May & Baldwin, 2009). Given recent advancements in 

automated vehicle technology (e.g., ACC), it is important to test for safety risks in 

automated vehicle operation under fatigue.

Both active and passive fatigue may generate core features of the subjective fatigue 

response, such as tiredness and aversion to effort (e.g., Fairclough, 2001; Philip et al., 2005). 

Differences in the subjective expression of the two fatigue types may be assessed using 

multidimensional measurement frameworks. Matthews et al. (2002) and Matthews, Szalma, 

Panganiban, Neubauer, and Warm (2013) developed a hierarchical factor model of the 

affective, motivational, and cognitive states experienced in performance settings. Eleven 

primary factors support three higher-order factors: task engagement, distress, and worry. 

Factors are measured by the Dundee Stress State Questionnaire (DSSQ: Matthews et al., 

2002). Fatigue corresponds most closely to loss of task engagement, which is defined by 

energy, interest in the task, and concentration. Task engagement declines especially when 

the task is monotonous and affords little scope for active control by the operator (Matthews 

et al., 2002; Matthews, Saxby, Funke, Emo, & Desmond, 2011; Matthews et al., 2013). Both 

forms of fatigue should depress engagement, but the effect should be larger in magnitude for 

passive fatigue. By contrast, distress is elevated when workload is high (Funke et al., 2007; 

Matthews & Campbell, 2009), implying that active fatigue may be associated with 

heightened distress.

Cognitive Stress Process in Fatigue

The term fatigue can refer both to external agents (sleep loss, circadian rhythms, and 

prolonged performance) and to the psychophysiological state changes induced by those 
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agents (e.g., tiredness, slow-wave brain activity). The present research aimed to use different 

task scenarios as the external sources of fatigue, together with assessments of subjective 

state change. Thus, active fatigue potentially defines both an external task-based 

manipulation and a pattern of subjective state response. The two perspectives on fatigue are 

integrated within the transactional theory of driver stress and fatigue. The theory attributes 

state change to the dynamic interplay between external demands and the operator’s attempts 

to understand and manage those demands (Lazarus, 1999;Matthews, 2001, 2002). Appraisal 

and coping processes mediate the impact of the traffic environment on driver state responses 

(Matthews, 2002; Neubauer et al., 2012). Coping strategies include active management of 

task demands (task–focus), management of internal discomfort (emotion–focus) and 

avoidance of noxious situations (Endler & Parker, 1990; Lazarus, 1999). The workload-

regulation processes described in leading theories of fatigue and performance (Hancock & 

Warm, 1989; Hockey, 2012; Szalma & Hancock, 2008) may be associated with distinct 

styles of appraisal and coping.

Each of the three state factors defined by Matthews et al. (2002) corresponds to a distinctive 

pattern of appraisal and coping (see Matthews, Warm, Reinerman, Langheim, & Saxby, 

2010; Matthews et al., 2013, for reviews). For example, engagement correlates especially 

with challenge appraisal, high task focus, and low avoidance. Thus, loss of engagement 

produced by passive fatigue should be associated with congruent changes in these processes. 

Similarly, if active fatigue elevates distress, it should also influence the cognitive processes 

underpinning the distress response to overload (e.g., Matthews & Campbell, 2009): 

appraisals of threat and lack of controllability of the task environment, and increased use of 

emotion-focused coping.

According to the transactional model, cognitive stress processes may also generate 

performance change (Matthews, 2001, 2002). Passive but not active fatigue is expected to 

reduce task-focused coping, leading to loss of performance. The overload associated with 

active fatigue may produce Hockey’s (1997) “strain” mode, in which the driver is able to 

fully or partially compensate for the impact of stress on performance by maintaining effort. 

In this case, active fatigue effects on performance should be less severe than those of passive 

fatigue.

Matthews and Desmond (2002) addressed some of these issues in a simulator study. 

Following fatigue induction, drivers showed significant performance impairments (increased 

heading error) on straight road sections, but not on curved road sections, for which workload 

was higher. Drivers may have underestimated task demands in the low-workload, straight 

road sections and withdrawn necessary task focus and effort, accordingly. The fatigue 

impairment was attributed to maladaptive regulation of underload (Hancock & Warm, 

1989), including lowering of performance standards (Hockey, 1997). Fatigue reduced task-

directed effort, as shown both by lowered scores on a scale for task-focused coping, and by 

reduced frequency of smaller-magnitude steering movements on straight sections. The 

compensatory effort associated with strain (Hockey, 1997) may have served to maintain 

performance on curved road sections. However, while road curvature may have influenced 

the type of fatigue experienced, no attempt was made to distinguish active and passive 

fatigue operationally.

Saxby et al. Page 4

J Exp Psychol Appl. Author manuscript; available in PMC 2016 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Two studies were run using a driving simulator to test for differential effects of active and 

passive fatigue inductions on subjective state and performance. Study 1 tested three driving 

simulation scenarios (active, passive, and control) as a way to elicit and differentiate 

between active and passive fatigue in relation to different patterns of multidimensional state 

response, cognitive stress processes, and mental workload. Study 2 employed these 

scenarios, followed by a performance assessment phase, in order to investigate the impact of 

the fatigue manipulations on driving performance and safety. We present the two studies 

separately, followed by a general discussion of their implications for fatigue theory, driver 

fatigue assessment, and vehicle automation.

Study 1

Study 1 was conducted to validate driving scenarios for inducing active and passive fatigue, 

by showing that they elicited different patterns of workload, state, and cognitive stress 

processes. Only limited attention has been given to designing standard scenarios that allow 

researchers to investigate the effects of stress and fatigue on performance (Matthews et al., 

2011). In fact, the development of appropriate simulator program scenarios is one of the 

challenges to overcome in driving research (Rosenthal, Allen, Christos, & Aphonso, 2004; 

Klee & Radwan, 2004). Important factors that are likely to induce fatigue include length of 

drive, lack of variability in stimulation, and workload (Oron-Gilad & Hancock, 2005).

For Study 1, we developed two scenarios derived from the Desmond and Hancock (2001) 

definitions of active and passive fatigue, quoted previously. In the active fatigue scenario, 

drivers were exposed to frequent wind gusts requiring corrective steering movements. In the 

passive fatigue scenario, the vehicle was fully automated. The driver had only to monitor the 

automation, with no control movements needed. In a control condition, the participant drove 

normally. Three types of outcome variable were assessed: mental workload, subjective 

states, and cognitive stress processes. Hypotheses were derived from Desmond and 

Hancock’s (2001) conceptual account of active and passive fatigue, and empirical studies 

that link stress processes and workload to subjective state response (Matthews et al., 2013).

Hypothesis 1: Mental workload should be highest in the active fatigue condition and 

lowest in the passive fatigue condition.

Hypothesis 2: Passive fatigue is characterized by monotony and reduced frequency of 

vehicle control responses. Hence, it should produce low levels of task engagement, 

reduced challenge appraisal, and a preference for avoidance rather than task-focused 

coping.

Hypothesis 3: Active fatigue is characterized by cognitive overload and the need for 

frequent control responses to prevent performance impairment. Hence, it should 

produce stress symptoms associated with overload including distress, appraisals of 

threat and low controllability, and emotion-focused coping, in addition to loss of task of 

engagement (less than in passive fatigue).

Hypothesis 4: The effects of fatigue are expected to cumulate over time, so that the 

patterns of response just described should increase in magnitude with increasing drive 

duration.
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Method

Participants—There were 108 participants (66 women, 42 men). All were undergraduates 

at the University of Cincinnati and ranged in age from 18–40 (M = 19.92 years, SD = 2.65). 

All participants had a valid driver’s license. Participants with visual impairments were 

required to wear corrective lenses as indicated by their driver’s license. Cellular phones and 

watches were removed from participants prior to the start of the drive.

Design—Two parameters of the simulated drive, fatigue condition and task duration, were 

manipulated independently to create a 3 (fatigue condition) × 3 (drive duration) between-

subjects design, with 12 participants assigned at random to each condition.

Task simulation—A Systems Technology, Inc., STISIM Model 400 simulator, was used. 

It was equipped with a car seat, full-size steering wheel (Logitech MOMO Racing Force 

Feedback Wheel), and pedals. Speed sensitive “steering feel” was provided by a torque 

motor. A 42-in high-definition Westinghouse LVM-42w2 Liquid Crystal Display video 

monitor displayed the roadway and instruments. The three programmed drive conditions 

(active, passive, and control) consisted of the same road geometry (e.g., straights, curves, 

hills) and the same background scenery. There was oncoming traffic, but no vehicles in the 

driver’s lane. Drive durations were 10, 30, and 50 minutes. The road geometry for the 10-

min drive was simply repeated three times for the 30-min drive and five times for the 50-

min drive. Background scenery was altered across 10-min repetitions to prevent boredom 

effects, given that monotonous background scenery alone impacts driver fatigue and 

performance (Thiffault & Bergeron, 2003). Features of the scenery included schools, 

grocery stores, farms, factories, gas stations, shopping centers, and walking roadside 

pedestrians. Active fatigue was elicited by programming simulated wind gusts, which 

required frequent steering and acceleration changes. In the passive fatigue condition, speed 

and steering were fully automated. Drivers were informed about the automation, and they 

were told to monitor for a critical signal indicating an automation failure. In this case, one of 

two red diamonds located in the top left and top right of the display would turn to a 

downward-pointing arrow. The driver was to respond by pressing the turn signal control. 

Although automation never actually failed, this feature ensured that drivers were at least 

somewhat engaged in the supervision of the automated system and not “sleeping at the 

wheel.” The control condition lacked simulated wind gusts and participants were in full 

control of the vehicle.

Questionnaire measures—The DSSQ (Matthews et al., 2002) assesses 11 scales for 

mood, motivation, and cognition in performance settings, grouped into three higher-order 

factors associated with task engagement (energy, task motivation, concentration), distress 

(tension, unpleasant mood, low confidence), and worry (self-focus, low self-esteem, task-

related thoughts, task-unrelated thoughts). These three factors were estimated from the 11 

primary scales using regression weights obtained from a large normative sample (Matthews 

et al., 2002). They are scaled as standard scores. Primary scales α values ranged from .74–.

89 (Matthews et al., 2002); data on validity are reviewed by Matthews et al. (2013). 

Workload was measured using an embedded version of the NASA-TLX (Hart & Staveland, 
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1988) that required participants to rate six workload components on 0–10 scales, postdrive. 

Overall workload was computed as an average of the ratings, ranging from 0–10.

The Appraisal of Life Events scale (ALE: Ferguson, Matthews, & Cox, 1999) measured 

threat and challenge (six items per scale). These authors reported α values of 0.83 and 0.86, 

respectively. An additional 8-item scale for uncontrollability (Matthews & Campbell, 2009) 

was also included (α = .74). Participants rated the task on various attributes, such as 

“frightening” (threat), “stimulating” (challenge), and “likely to get out of control” 

(uncontrollability). The ALE was validated in studies of life event stressors (Ferguson et al., 

1999), and the extended scale in a study of stress induced by time pressure (Matthews & 

Campbell, 2009). The Coping Inventory for Task Situations (CITS: Matthews & Campbell, 

1998) assesses three basic coping strategies differentiated by Endler and Parker (1990), with 

items relevant to performance environments. Sample items refer to “making every effort to 

meet one’s goals” (task-focused coping), “blaming oneself for becoming too emotional” 

(emotion-focused coping), and “staying detached from the situation” (avoidance). Matthews 

and Campbell (1998) showed α values for the scales ranging from 0.84–0.86, as well as 

appropriate sensitivity to task demands.

Procedure—Table 1 specifies the exact sequence of events for both Study 1 and Study 2. 

In both studies, participants first completed measures of dispositional driver stress not 

reported here, followed by the pretask DSSQ. After a 3-min practice drive, they performed 

in the experimental condition to which they were assigned, followed by the posttask DSSQ, 

including Task Load Index (TLX), ALE and CITS.

Results

Mental workload—Three of the outcome measures proved to be sensitive to both fatigue 

condition and duration; they are graphed in Figure 1. The upper panel shows workload. 

Workload was highest in the active fatigue condition. The figure also suggests an interactive 

effect of condition and duration on workload. In the control condition, workload rose with 

time, but it was stable in the other two conditions. In the whole sample, mean (and SD) of 

workload was 4.61 (1.80), a value a little below the scale midpoint of 5, indicating moderate 

cognitive demand. Effects of task conditions were analyzed using a 3 × 3 (fatigue condition 

× duration) between-subjects ANOVA. Significant main effects of fatigue condition, F(2, 

99) = 44.50, p < .01, partial η2 = .47, and duration, F(2, 99) = 4.23, p < .05, partial η2 = .08, 

were found, and the interaction between the two factors was also significant, F(4, 99) = 

2.60, p < .05, partial η2 = .10. Post hoc Sidak tests were run to test Hypothesis 1. The Sidak 

test is a variation of the Bonferroni test, which is slightly more powerful as it allows for 

additional control for experimental error with multiple comparisons (De Muth, 2006). The 

Sidak tests revealed that workload levels were significantly higher in the active fatigue 

condition compared to the passive fatigue and control conditions, p < .01 in all cases. In 

addition, drivers in the passive fatigue condition experienced significantly lower perceived 

workload compared to those in the control conditions (p < .05).
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Subjective state—Analyses of subjective state tested whether task-induced changes in 

state were influenced by the experimental manipulations. We also checked that the groups 

were equated on the state variables prior to the drives.

Figure 2 shows state change scores (posttest-score–pretest score) as a function of condition, 

averaged across duration. Means (and SDs) for predrive task engagement, distress, and 

worry were, respectively, .31 (.87), −.48 (.87), and .10 (.93). Compared to the normative 

mean of zero, the sample were somewhat elevated in engagement and low in distress; 

perhaps due to (misplaced) anticipation of enjoyment of the driving simulator. To test for 

preexisting differences in subjective state scales between groups, we analyzed each pretask 

scale using a series of 3 (drive duration) × 3 (fatigue condition) between-subjects ANOVAs. 

Analyses showed no significant pretest differences.

Active fatigue was distinguished by a large magnitude increase in distress, passive fatigue 

by a large decrease in task engagement. A series of 3 × 3 × 2 (fatigue condition × duration × 

phase) mixed-model ANOVAs was used to analyze the effects of experimental 

manipulations on the three DSSQ factors, testing Hypotheses 2 and 3. Phase contrasted pre- 

and postdrive states. The main effect of phase, indicating a state change over time, was 

significant for task engagement, F(1, 99) = 85.03, p < .01, partial η2 = .46, distress, F(1, 99) 

= 138.44, p < .01, partial η2 = .58, and worry, F(1, 99) = 5.04, p < .05, partial η2 = .05. In 

the pooled data, engagement declined from pre- to posttask by .67 SD, distress increased by .

93 SD, and worry decreased by .13 SD. Main effects of phase were moderated by various 

significant interactions with fatigue condition and duration. Next, we report these 

interactions for each DSSQ factor in turn.

Figure 1 (middle panel) shows task engagement as a function of condition and duration. It 

illustrates two significant interactions: phase × condition, F(2, 99) = 15.05, p < .01, partial 

η2 = .23, and phase × duration, F(2, 99) = 13.29, p < .01, partial η2 = .21. Task engagement 

declined most strongly in the passive condition, followed by the control and active 

conditions (see also Figure 2). Planned follow-up ANOVAs confirmed that the main effect 

of phase was independently significant in active, F(1, 33) = 5.22, p < .05, partial η2 = .14, 

passive, F(1, 33) = 93.49, p < .01, partial η2 = .74, and control conditions, F(1, 33) = 15.79, 

p < .01, partial η2 = .32. Sidak tests run to compare postdrive engagement means showed a 

significant difference between active and passive conditions (p < .01). Mean engagement in 

the control condition was lower than in the active condition (p < .05), but higher than in the 

passive condition (p < .05).

Figure 1 (middle panel) also illustrates the phase × duration interaction. Loss of engagement 

tended to be higher at longer durations. Sidak tests comparing posttask scores showed that 

the means for 10 and 50 min differed significantly (p < .01), but neither differed 

significantly from the 30-min mean. The figure suggests an earlier decline in engagement in 

the passive than in the other two conditions, but the phase × condition × duration interaction 

was nonsignificant.

For distress, there was a significant phase × fatigue condition interaction, F(2, 99) = 7.31, p 

< .01, partial η2 = .13, but the phase × duration interaction was not significant. The main 
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effect of condition was also significant, F(2, 99) = 3.11, p < .01, partial η2 = .06. Figure 2 

shows that distress increased from pre- to postdrive, especially in the active fatigue 

condition. Sidak tests for postdrive means confirmed that distress was higher in the active 

than in the passive (p < .01) and control (p < .05) conditions, but passive and control 

conditions did not differ significantly.

For worry, the phase × duration interaction was significant, F(2, 99) = 3.83, p < .05, partial 

η2 = .07. Posttask means (and SDs) for the 10-, 30- and 50-min durations were −.57 (0.85), .

05 (1.03), and −.24 (.95). Sidak tests showed a significant difference (p < .05) between 10 

and 30 min only. Short duration drives depressed worry below the pretask level of .10, but 

worry returned to values close to baseline at longer durations. The elevations of worry seen 

in field studies (Desmond & Matthews, 2009) may not be evident over the relatively short 

durations used here.

Appraisal and coping—Figure 3 shows the means for ALE and CITS data, suggesting 

higher values for all variables in the active compared to the passive condition. ALE and 

CITS data were analyzed using a series of 3 × 3 (fatigue condition × duration) ANOVAs. 

Main effects of fatigue condition were significant for threat, F(2, 99) = 12.55, p < .01, 

partial η2 = .20; challenge, F(2, 99) = 18.59, p < .01, partial η2 = .27; uncontrollability, F(2, 

99) = 24.91, p < .01, partial η2 = .34; task-focus, F(2, 99) = 3.29, p < .05, partial η2 = .06; 

and emotion-focus, F(2, 99) = 24.91, p < .01, partial η2 = .25. Sidak tests showed that 

individuals in the active fatigue condition had significantly higher levels (p < .05 or better) 

of all five variables compared to the control condition. Means in active and passive 

conditions also differed significantly for all variables except for task-focused coping. The 

only difference between passive and control conditions was for challenge appraisal (p < .05), 

which was lower in the passive fatigue condition.

Three appraisal and coping dimensions proved to be sensitive to duration as illustrated in 

Figure 4. Main effects of duration were significant for uncontrollability, F(2, 99) = 3.29, p 

< .05, partial η2 = .06, and for emotion-focused coping, F(2, 99) = 4.32, p < .05, partial η2 

= .08. Figure 4 suggests a curvilinear effect of duration on both variables, with highest 

scores obtained at 30 min. Two significant (p < .05) differences in means for these variables 

were revealed by Sidak tests. Uncontrollability was higher at 30 min compared to 10 min, 

and emotion-focus was lower at 50 min compared to 30 min. Thus, uncontrollability reached 

a maximum at 30 min, whereas use of emotion-focus tended to decline at the longest 

duration. Finally, there was a significant interactive effect of condition and duration for 

challenge, F(4, 99) = 2.50, p < .05, partial η2 = .09. The interactive effect of condition and 

duration on challenge is shown in Figure 1 (lower panel). Temporal change in challenge was 

largely limited to the control condition, in which challenge was initially high, but declined to 

a level similar to passive fatigue at the 50 min duration.

Table 2 summarizes the characteristics of active and passive fatigue based on the analyses of 

subjective measures. Each entry corresponds to a significant difference between the fatigue 

condition and the control condition, as confirmed by the Sidak test.
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Discussion

Study 1 confirmed that the active and passive fatigue conditions elicited qualitatively 

different patterns of subjective state, stress process, and workload response, mostly as 

predicted from the Desmond and Hancock (2001) theory. In addition, the influence of 

duration on state change differed for the two fatigue inductions. Results also suggested that 

wind gust and automation manipulations are effective techniques for inducing fatigue in 

simulator studies.

Consistent with Hypothesis 1, workload was highest in the active fatigue condition, and 

lowest in passive fatigue. Thus, the findings conflict with a simplistic strain model in which 

high workload directly elicits fatigue. Passive fatigue effects, specified in Hypothesis 2, 

were partly confirmed. As expected, loss of task engagement, the primary index of fatigue 

state, was greatest in the passive fatigue condition. Furthermore, challenge appraisal was 

lowest in passive fatigue, despite efforts to reduce monotony through interesting background 

scenery (see Thiffault & Bergeron, 2003). Methodologically, configuring the simulator to 

manipulate perceived challenge may thus be the key to controlling passive fatigue 

experimentally. However, predicted effects of passive fatigue on coping were not found, 

implying that participants remained motivated toward maintaining performance standards. 

Thus, the lack of challenge afforded by automated driving may be the primary influence on 

the large-magnitude loss of engagement induced by the passive fatigue manipulation.

The predicted effects of the active fatigue manipulation (Hypothesis 3) were largely 

confirmed. Active fatigue produced a stable, large-magnitude increase in distress; task 

engagement was actually higher in the active fatigue condition than in the control condition. 

Active fatigue also had wide-ranging impacts on stress processes. The task was appraised as 

more threatening, challenging, and uncontrollable, and both task-focused and emotion-

focused coping were elevated. Broadly, the task was as much stressful as fatiguing, and the 

response pattern was suggestive of Hockey’s (1997) “strain mode,” in which compensatory 

effort is applied to maintain task focus and performance under cognitive load. The increase 

in emotion-focus might be interpreted as a consequence of the loss of control experienced 

due to the simulated wind gusts.

We expected that fatigue states would become more pronounced over time (Hypothesis 4). 

In fact, effects of duration were typically of smaller magnitude than those of fatigue 

condition. As predicted, task engagement decreased over time; indeed, the effect of duration 

was independently significant in all three conditions, and so all can be said to be “fatiguing.” 

Similarly, in a study of real driving, Desmond and Matthews (2009) found that trip duration 

was negatively correlated with energetic arousal, one of the components of task engagement. 

However, effects of duration on the stress process variables were modest and, in the cases of 

uncontrollability and emotion-focus, nonmonotonic. Challenge declined only in the control 

condition, implying that normal simulated driving was initially interesting, but became 

monotonous over time. Thus, low and/or declining challenge may contribute to loss of 

engagement, but it cannot fully account for the temporal trend in the fatigue state.

Study 1 confirmed that manipulations of active and passive fatigue elicited differing patterns 

of state response and cognitive stress processes, consistent with existing theories (Desmond 
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& Hancock, 2001; Hockey, 2012; Matthews, 2001; May & Baldwin, 2009). However, 

subjective state changes do not indicate directly how active and passive fatigue may 

influence safety. Thus, Study 2 compared the effects of active versus passive fatigue on 

objective performance measures, including a measure of lateral control of the vehicle, as 

well as braking and steering response times to an emergency event.

Study 2

Although Study 1 confirmed that manipulations of active and passive fatigue elicited 

differing patterns of state response, subjective state change does not necessarily signal 

performance impairment (Hockey, 1997). Nevertheless, the distinct fatigue states observed 

in Study 1 might impact driver performance and safety differently. Low task engagement 

has been linked to impairments in vigilance (Matthews, Warm, Reinerman, Langheim, 

Washburn et al., 2010), visual search (Matthews et al., 2011), and impaired executive 

control (Matthews & Zeidner, 2012). Distress, which overlaps with anxiety, is also linked to 

a variety of deficits in attention and working memory (Eysenck & Derakshan, 

2011;Matthews & Campbell, 2010). Study 2 was designed to test how active and passive 

fatigue inductions influence objective performance.

Active fatigue increases the risk of overload of attention. Cognitive stress processes elicited 

by overload, especially perceived lack of control and emotion-focused coping, divert 

attention from the task (Matthews & Campbell, 2009). Other research suggests drivers may 

manage overload relatively well. In Hockey’s (1997, 2012) account of “strain” mode, 

compensatory effort often preserves performance effectively. Driver stress is more 

damaging to performance in underload than in overload conditions (Matthews, 2002). 

Similarly, Matthews and Desmond (2002) found that fatigue impaired vehicle control only 

during low-workload driving.

To test the hypothesis that passive fatigue produces larger performance deficits than active 

fatigue, a modified version of Study 1 was conducted. A short supplementary drive was 

performed following fatigue induction, so that performance could be assessed under the 

same task conditions. During this drive, a critical emergency event requiring rapid evasive 

response was programmed, providing a direct test of driver alertness. We also used durations 

of 10 and 30 min only, given that in Study 1 the latter was long enough to provoke 

substantial loss of engagement, and to differentiate the three participant groups. It was also 

hypothesized that fatigue condition would have similar effects on subjective state and 

cognitive processes to those seen in Study 1.

Method

Participants—One-hundred and 68 (108 women, 60 men) University of Cincinnati 

undergraduates took part in this study. Ages ranged from 18–30 (M = 19.43 years, SD = 

1.86). All participants had a valid driver’s license for a mean duration of 3.52 years (SD = 

1.97). Participants with visual impairments were required to wear corrective lenses as 

indicated by their driver’s license. Cellular phones and watches were removed from 

participants prior to the start of the drive.
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Design—A 2 (drive duration) × 3 (fatigue condition) between-subjects design was used. 

Twenty-eight participants were assigned at random to each of the six cells of the design. 

Drive durations were 10 and 30 minutes; fatigue conditions were passive, active and a 

control condition.

Task simulations—Tasks were similar to those of Study 1 with the following differences. 

The number and intensity of wind gusts were increased in the active fatigue condition in 

order to elevate workload levels. Also, additional elements of road geometry (e.g., more 

hills and road curvature) were included and background scenery was elaborated to include 

sandy beaches, bicycle races, tunnels, more roadside towns, and “mountain zones.” The 

intent was to maintain task interest in the control condition. The supplementary drive used 

for performance assessment lasted 4 min and began immediately following the main drive 

(i.e., after 10 or 30 min). The road was flat and straight with oncoming traffic, but no traffic 

in the driver’s lane. Wind gusts were turned off for the active fatigue condition and 

automation was terminated for the passive fatigue condition. At approximately 2 min and 30 

s into the supplementary drive, an emergency event was introduced (a parked van 

unexpectedly pulled out in front of the participant’s vehicle). Performance was assessed by 

measuring standard deviation of lateral position (SDLP) as well as braking and steering 

response times (RTs) to the event.

Procedure—Questionnaires were completed pre- and postdrive as in Study 1. Performance 

(SDLP) was assessed in the 3-min practice phase, in order to assess any initial differences in 

driving skill between groups. The supplementary drive immediately followed the main 

drive. Participants in the passive fatigue condition were informed in advance that they would 

need to regain control of the vehicle should automation fail, which took place between main 

and supplementary drives.

Results

Workload—A 2 (drive duration) × 3 (fatigue condition) between-subjects ANOVA was 

conducted to analyze for effects on perceived mental workload. A significant main effect 

was found for condition, F(2, 162) = 5.82, p < .01, partial η2 = .07. As in Study 1, post hoc 

Sidak tests revealed that workload was significantly higher in the active fatigue condition 

than the passive condition, p < .01. There were no main or interactive effects of duration.

Subjective state—Means (and SDs) for predrive task engagement, distress and worry 

were, respectively, .23 (.86), −.35 (.79) and −.07 (1.01). Predrive DSSQ scores were 

analyzed using a series of 2 (drive duration) × 3 (fatigue condition) between-subjects 

ANOVAs. Analyses for task engagement and worry showed no significant pretest 

differences, p < .05. The ANOVA for distress showed a significant condition × duration 

interaction, F(2, 162) = 3.07, p = .05; however, post hoc Sidak tests were not significant, p 

> .05. The small magnitude of effect combined with the nonsignificant post hoc tests implies 

minor preexisting differences in distress.

Figure 5 shows state changes as a function of fatigue condition, averaged across duration. 

Similar to Study 1, the largest decline in engagement was seen in the passive condition, and 
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decreases in worry were small in all conditions. Contrasting with Study 1, increases in 

distress were similar in all conditions. Effects on state were analyzed using 3 × 2 × 2 

(fatigue condition × duration × phase) mixed-model ANOVAs. The main effect of phase 

was significant for task engagement, F(1, 162) = 35.04, p < .01, partial η2 = .18; distress, 

F(1, 162) = 136.95, p < .01, partial η2 = .46; and worry, F(1, 162) = 21.26, p < .01, partial 

η2 = .12. Averaged across all conditions, means (and SDs) for the three states in the posttask 

data were, respectively, −.08 (.99), .40 (.91), and −.30 (1.07). Relative to baseline, 

engagement decreased (Δ = −.31 SD), distress increased (Δ = .75), and worry decreased (Δ = 

−.23).

Further interactions between factors were found only for task engagement. The effect of 

phase was modified by both condition and duration, as shown in Figure 6. A significant 

condition × phase interaction, F(2, 162) = 4.19, p < .05, partial η2 = .05, confirmed the 

sensitivity of engagement to passive fatigue. Post hoc Sidak tests conducted on the postdrive 

scores revealed that the passive fatigue condition elicited significantly lower task 

engagement compared to the active fatigue condition, p < .01. Means in the control 

condition did not differ significantly from those in the other two conditions.

Figure 6 shows that engagement declined across time, especially in the passive fatigue 

condition. The duration × phase interaction was indeed significant for task engagement, F(1, 

162) = 22.57, p < .05, partial η2 = .12, as was the main effect of duration, F(1, 162) = 6.58, p 

< .05, partial η2 = .04. However, although there was a significant condition × duration 

interaction, F(1, 162) = 3.65, p < .05, partial η2 = .04, the condition × duration × phase 

interaction was nonsignificant. No further effects of the task variables were found for 

distress or worry, p > .05.

Appraisal and coping—Figure 7 shows that ALE and CITS means were highest in the 

active condition for all scales except avoidance coping. Data were analyzed using 3 × 2 

(fatigue condition × duration) ANOVAs. Main effects of condition were found for threat, 

F(2, 162) = 5.06, p < .05, partial η2 = .06; challenge, F(2, 162) = 3.49, p < .05, partial η2 = .

04; and task-focused coping, F(2, 162) = 3.26, p < .05, partial η2 = .04. Post hoc Sidak tests 

revealed that challenge, threat, and task-focus were all significantly higher (p < .05) in active 

than in passive fatigue; the test for uncontrollability fell short of significance (p = .058). 

Also, uncontrollability was higher in the active fatigue than in the control condition (p < .

05). The only other significant effect was the main effect of duration on challenge appraisal, 

F(2, 162) = 15.17, p < .01, partial η2 = .09. Mean challenge declined from 11.85 at 10 min 

to 8.35 at 30 min.

Performance measures—A 3 × 2 (fatigue condition × duration) ANOVA revealed no 

significant differences in baseline SDLP across conditions during the initial performance 

phase, F(2, 162) = .67, p > .05, partial η2 = .01. We analyzed vehicle control data prior to 

the critical event—that is, the van suddenly pulling in front of participants—after the 

conclusion of the main drive (fatigue induction). Precritical event SDLP was sampled during 

a two min 30 s interval, divided into five 30 s sections. We also analyzed response latencies 

for use of the controls following the critical event, as the van pulled into the road in front of 

the driver.
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Precritical event SDLP—Individuals in the passive drive had to gain control of steering 

after automation shut down. Figure 8 shows SDLP as a function of 30 s section and fatigue 

condition, confirming higher SDLP during the first 30 s section. Thus, data from the last 

four sections only were analyzed, using a 2 (drive duration) × 3 (fatigue condition) × 4 

(section) mixed-model ANOVA. The only significant effect was the main effect of 

condition, F(2, 162) = 3.69, p < .05, partial η2 = 03. Post hoc Sidak tests showed that the 

passive fatigue condition led to significantly (p < .05) lower SDLP (M = .75, SD = .26) 

compared to the active fatigue condition (M = .89, SD = .30).

Response times—Mean braking and steering RTs for participants in the active, passive, 

and control conditions are illustrated in Figure 9. Braking and steering (swerving) RTs to the 

unexpected event were recorded. Drivers who did not respond at all using the specified 

control were excluded from the relevant analysis, leaving ns of 146 and 157 for the steering 

and braking analyses, respectively. For steering reaction time (RT), a main effect of 

condition was found, F(2, 140) = 4.03, p < .05, partial η2 = .05. Post hoc Sidak tests 

revealed that individuals in the active condition (M = .65, SD = .58) had significantly faster 

steering RTs than those in the passive condition (M = 1.02, SD = .73). A main effect of 

condition was found for braking, F(2, 151) = 6.92, p < .01, partial η2 = .08. Drivers in the 

active condition (M = 1.16, SD = .30) and control condition (M = 1.22, SD = .28) had faster 

braking RTs than those in the passive condition (M = 1.38, SD = .35), p < .01.

Collision data—The majority of drivers collided with the van; Figure 10 gives the 

frequencies (out of 28) for drivers who avoided collision in each condition. Drivers in the 

active fatigue condition were most likely to avoid collision, followed by those in the control 

and passive fatigue conditions. Individuals in the 10-min drive were more likely to avoid 

collision than during the 30-min drive. Indeed, no drivers in the 30-min passive fatigue 

condition were able to avoid collision. A chi-square test was performed to examine the 

relation between the three fatigue conditions and the frequency of collision avoidance, on 

the basis of the 3 × 2 contingency table relating frequencies of colliders and noncolliders to 

condition. Duration was not included because expected frequencies in some cells of the 

contingency table fell below 5, violating an assumption of the test. The relative proportions 

of colliders in the three conditions deviated significantly from chance expectations, χ2(2, N 

= 168) = 9.04, p < .05.

Discussion

As in Study 1, task engagement and challenge appraisal were lowest in the passive fatigue 

condition. Increasing drive duration also tended to depress engagement and challenge. 

Duration and fatigue condition had additive effect on these variables. As in Study 1, active 

fatigue elevated task-focused coping and appraisals of threat and uncontrollability. 

However, unlike the previous study, distress was elevated across all conditions, and 

condition did not influence emotion-focused coping. A difference between the studies is 

that, in Study 2, drivers rated how they felt in the supplementary drive, which was the same 

for all drivers, whereas in Study 1 drivers rated how they felt in the latter part of the relevant 

fatigue condition. Thus, Study 2 picked up aftereffects of the fatigue manipulations that 

persisted into the supplementary drive. Lowered engagement in passive fatigue 
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demonstrated such persistence, but the elevation of distress and emotion-focus produced by 

active fatigue in Study 1 may be more transient. Also, the emergency event may have 

provoked similar distress responses in all three conditions.

Drivers in the passive fatigue condition had the slowest steering and braking RTs to the 

unexpected event. They were also most likely to collide with the van. Thus, placing drivers 

in supervisory roles as opposed to being actively engaged in the driving task impairs 

performance as well as subjective state. Young and Stanton (2007) also found that braking 

RTs were slowed by automated driving. Unexpectedly, vehicle control (measured by SDLP) 

was actually best in the passive fatigue condition. Although SDLP is widely used to measure 

driver performance (Brookhuis, De Waard, & Fairclough, 2003), it may not be a valid index 

of driver alertness. In fact, reduced SDLP may not always indicate better performance. In a 

study involving conversation and driving, Becic et al. (2010) noted, “A variably moving 

system is potentially a more responsive system; thus, the greater variability in the 

continuous driving measures when there is no conversation may help explain nonconversing 

drivers’ faster reactions to sudden external events” (pp. 6). Reduced SDLP may to an extent 

signal limits on the driver’s attention and ability to respond quickly and effectively.

General Discussion

Together, Studies 1 and 2 confirmed the theoretical and practical utility of Desmond and 

Hancock’s (2001) model of active and passive fatigue, and validated simulator 

methodologies for eliciting these states. In both studies, the passive fatigue conditions 

produced large-magnitude loss of task engagement, together with reductions in challenge 

and task-focus, and slowed responding to the emergency event in Study 2. Active fatigue 

combined stress—illustrated most consistently by elevations of threat and uncontrollability 

appraisals, and elevated distress in Study 1—with at most modest loss of engagement. 

Active fatigue did not impair performance. Fatigue responses somewhat resembling passive 

fatigue were also seen in the control condition, especially at the longest duration in Study 1. 

Thus, both states are associated with characteristic patterns of cognitive stress processes, 

defining differing styles of workload regulation, broadly as suggested by existing fatigue 

theory (Hockey, 1997; Matthews, 2001). Passive fatigue poses a more immediate threat to 

safety than active fatigue, implying that caution is needed in the development and 

implementation of automated vehicle systems. Indeed, the results suggest that reducing 

mental workload via automation may actually exacerbate passive fatigue, and impair the 

safety-critical performance abilities of alertness and fast response to hazards. We will 

discuss further the theoretical and practical implications of the present findings.

Theoretical Implications

Fatigue, task demands, and coping—Broadly, findings support Hancock and Warm’s 

(1989) effort regulation theory, which asserts that operator discomfort reflects dynamic 

instability in workload management, rather than level of workload per se. Active and passive 

fatigue reflect dysfunction in workload regulation associated with overload and underload, 

respectively. Similarly, in terms of Hockey’s (1997, 2011, 2012) control theory, active 

fatigue might correspond to adaption to workload through strain (effort with distress), 

whereas passive fatigue could be a form of disengagement (distress without effort).
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Findings with the cognitive stress process measures illuminate the differing styles of 

workload regulation associated with active and passive fatigue. In fact, active fatigue 

resembles Hockey’s strain mode (effort with distress), but passive fatigue differs from 

Hockey’s (2011) description of disengagement mode in two respects. First, although effort 

reduction produces distress but not fatigue, the passive fatigue manipulation elicited the 

lowest levels of task engagement. Second, the coping findings here do not suggest any 

voluntary attempt to manage fatigue by effort reduction. Passive fatigue produced less task 

focus than active fatigue, but task focus did not differ in passive and control conditions. 

Avoidance was insensitive to the fatigue manipulation. Moreover, CITS means suggested 

that task focus was the predominant mode of coping in all conditions, as in most 

performance settings (Matthews & Campbell, 1998). Fatigued drivers may be effort averse 

(Brown, 2001), but participants did not simply “give up” on the task. By contrast, vigilance 

tasks evoke more pronounced changes in coping, including decreases in task focus and 

increases in avoidance (Matthews, Warm, Reinerman, Langheim, Washburn et al., 2010).

Lack of control and fatigue—Active and passive fatigue might both be forms of 

Hockey’s (2011, 2012) strain mode, differing in the strength of activation of task goals. 

Hockey (2011) describes fatigue as a state of goal conflict, in which fatigue reflects 

awareness of both the need for high task-directed effort and of failure to maintain task goals. 

On monotonous tasks, such as vigilance, goal activation decays as cognitive fatigue 

develops. Frequent exogenous demands for control activities, as with wind gusts, maintain 

task goal activation, alleviating the goal conflict and hence fatigue. In automated driving, 

however, the driver must maintain endogenous attention to goals, which may be difficult to 

sustain, eliciting the passive fatigue response. Goal activation may be especially hard to 

sustain if the task lacks intrinsic interest, as shown here by the effects of passive fatigue on 

challenge appraisal, and if the task is highly constrained, as shown by results from vigilance 

studies (Szalma et al., 2004). Tasks that allow the operator more scope for controlling task 

demands help to maintain task engagement (Matthews, Warm, Reinerman, Langheim, & 

Saxby, 2010).

Task duration and fatigue—Dynamic control theories (Hancock & Warm, 1989) 

suggest that sustaining workload management in demanding performance should lead to 

increasing state changes over time. Here, state and process differences between the 

conditions became evident over fairly short durations, and certainly after 30 min. Task 

engagement and challenge appraisal were the variables most prone to show phase × duration 

interactions. In Study 1, challenge declined with duration only in the passive fatigue 

condition, showing a dissociation between duration effects on challenge and on task 

engagement, which declined in all three conditions. Coping was not consistently affected by 

duration. Thus, loss of task engagement cannot be fully attributed to temporal changes in 

appraisal and coping variables. The effects of duration may also reflect self-regulative 

processes that the current cognitive measures fail to index, such as metacognitions of fatigue 

(Maher-Edwards, Fernie, Murphy, Wells, & Spada, 2011), and/or implicit processes that are 

not well measured by self-report (Matthews, Desmond & Hitchcock, 2012).
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Effects of active versus passive fatigue on performance—Drivers in the passive 

fatigue condition combined more accurate vehicle control with significantly delayed brake 

and steering RTs. Detrimental effects of fatigue on alertness may be attributed either to loss 

of attentional resources, as in vigilance (Warm et al., 2008), or to strategic reduction in 

allocation of effort (Hockey, 1997). The two mechanisms may be dissociated by testing for 

moderator effects of workload: increasing workload should exacerbate performance effects 

due to resource insufficiency, and alleviate effects due to effort underallocation. In 

simulated driving, both fatigue (Matthews & Desmond, 2002) and stress (Matthews, Sparkes 

& Bygrave, 1996) effects are more prevalent when task demands are low, supporting an 

effort-regulation hypothesis. On-road studies also demonstrate driver vulnerability to 

underload (Oron-Gilad & Ronen, 2007). The present data fit this explanation, in that fatigue 

was more harmful in the lowest workload condition (i.e., passive fatigue induction). 

However, with no workload manipulation during the performance assessment phase of the 

drive, the explanation remains tentative. It cannot be excluded that passive fatigue effects on 

alertness are mediated by the loss of resources associated with low task engagement 

(Matthews, Warm, Reinerman, Langheim, Washburn et al., 2010).

Applications

We highlight two applications for the research. First, the qualitative differences between 

active and passive fatigue show the importance of multidimensional assessment of fatigue 

states in applied settings. Second, the ease with which passive fatigue is induced has 

implications for use of automation in vehicles.

Implications for driver fatigue assessment—Performance measures are often 

considered the “gold standard” for fatigue measurement. Nevertheless, despite the 

limitations of self-reports (see Ingre, Akerstedt, Peters, Anund, & Kecklund, 2006), the 

present studies reveal the utility of multivariate subjective measures in differentiating 

qualitatively different fatigue states and behavioral prediction. For example, the “improved” 

vehicle control shown by the drivers in the passive fatigue condition fails to align with their 

likelihood of collision and decreased response times. Rather, the loss of safety associated 

with passive fatigue may be best predicted from state and process indicators, that is, the 

combination of low workload, decreased task engagement and low challenge. The rapid 

onset of the passive fatigue state suggests that subjective scales may pick up vulnerabilities 

to performance deterioration that occur prior to performance change. In the Hancock and 

Warm (1989) model, subjective discomfort serves as an early warning of dynamic 

instability.

Practical contexts in which objective measures should be supplemented with 

multidimensional subjective measures include the evaluation of safe work shift durations for 

commercial drivers, and evaluation of driver populations especially sensitive to fatigue 

including less experienced drivers (Belz, Robinson, & Casali, 2004), and those with clinical 

disorders such as Parkinson’s disease (Zesiewicz et al., 2002). Given concerns about in-

vehicle technologies, multidimensional assessment should also be used in evaluating the 

impact of automated systems during extended-duration driving. We focus here on driving, 

but findings may generalize to other venues for human–computer interaction (Szalma & 
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Hancock, 2008). Relevant industrial and transportation contexts that feature automation 

include process control (Sauer, Kao & Wastell, 2012) and operation of remotely piloted 

vehicles (Tvaryanas & MacPherson, 2009).

Implications for vehicle automation—Findings support May and Baldwin’s (2009) 

claim that discrimination of active and passive fatigue will lead to improved development 

and implementation of fatigue countermeasures. Countermeasures directed toward crash 

prevention, including lane departure warnings and collision avoidance warning systems, 

should be effective for both types of fatigue. However, automation that reduces workload 

may only be effective for active fatigue. For passive fatigue, May and Baldwin recommend 

delivery of secondary tasks that enhance the novelty and demands of driving. For example, 

Gershon, Ronen, Oron-Gilad, and Shinar (2009) showed that an interactive trivia question 

game was effective in reducing the fatigue of underload.

Existing automated systems such as ACC and AS may increase passive fatigue, and the 

technologies supporting future driverless vehicles may be even more dangerous. The 

impairments in alertness evident in both subjective and behavioral data raise serious 

concerns regarding current safety recommendations pertaining to the use of automated 

systems. For example, statutory institutions (VicRoads, 2007) currently recommend that 

cruise control may help reduce fatigue during long drives. Yet, the present studies support 

existing concerns about vehicle automation (Young & Stanton, 2004, 2007) by 

demonstrating that removing workload when task demands are already low may place 

fatigued drivers at increased risk for accidents. Studies of real-life driving accidents 

demonstrate that underload conditions are often implicated in fatal road crashes involving 

fatigue (Road Safety, 2005). Consequently, even currently used automated systems should 

be used with caution.

Limitations—Obviously, simulator findings may not generalize to real driving. However, 

the patterns of subjective fatigue and stress responses seen in simulator studies correspond, 

at least approximately, to those seen in real drives (Desmond & Matthews, 2009; Matthews, 

2002; Matthews et al., 2011). Furthermore, the tendency of drivers to use task focus rather 

than avoidance coping suggests that they took the task seriously, even in the more trying 

conditions. The controlled environments afforded by simulation may be especially helpful in 

identifying the specific psychological mechanisms and processes that may operate in real 

driving, including loss of attention, choice of coping strategies, decision making, and 

reluctance to apply effort (Fairclough, 2001; Matthews et al., 2011).

The durations used were relatively short; real driving may occupy periods of several hours. 

Certainly, differing patterns of subjective and performance change might emerge over 

durations exceeding one hour. In particular, prolonged active fatigue may come to be more 

hazardous than the present findings suggest, especially if the temporal trend in task 

engagement seen in Study 1 continued. In defense of the present method, patterns of 

subjective response do not differ greatly from those seen in longer-duration real driving 

(Desmond & Matthews, 2009). Indeed, the manipulations seem effective in producing rapid 

state change.Reinerman, Warm, Matthews, and Langheim (2008) showed that a 36-min 
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monotonous simulated drive produced declines in cerebral blood flow velocity (CBFV) 

indicative of loss of alertness.

The present study also focused only on task-induced fatigue. Sleepiness and the effects of 

circadian rhythms may present more severe threats to safety (Williamson et al., 2011). It is 

important to investigate further the role of fatigue from sources other than driving itself. 

Effects of task-induced fatigue may interact with sleepiness (May & Baldwin, 2009), so that 

it may be important to differentiate active and passive fatigue in relation to sleep and 

circadian processes.

Another issue is that Study 2 investigated aftereffects of the fatigue inductions during the 

supplementary drive, rather than measuring performance change during the induction itself. 

A reviewer of an earlier draft of this article made the plausible suggestion that the 

supplementary drive might itself influence fatigue state. In fact, comparison of Figures 1 and 

6 suggests that loss of engagement after 30 min was of similar magnitude in both studies. 

Averaging across conditions, mean postdrive engagement at 30 min was −.30 in Study 1 and 

−.35 in Study 2; the emergency event did not seem to raise engagement. By contrast, the 

lack of effect of fatigue condition on distress in Study 1 might be attributed to the 

emergency event. In general, though, the states experienced by drivers during the emergency 

event correspond to those experienced at the end of the fatigue induction. However, 

performance monitoring during the fatigue induction would add to understanding of safety 

impacts. Future studies might use a secondary detection or memory task to assess attention 

during the induction period, or monitor alertness using psychophysiological indices (Craig 

& Tran, 2012; Reinerman et al., 2008).

Finally, the current methodology provides a snapshot of driver state in various task 

conditions. It allows systematic investigation of workload and duration factors in driver 

fatigue, but questions remain about the generalization of results. Driver fatigue “in the wild” 

may not conform in simple fashion to one or other of the prototypical fatigue states defined 

here. Similarly, while active and passive fatigue can be operationalized as manipulations, 

following the Desmond and Hancock (2001) definitions, they do not necessarily constitute 

discrete psychological states. Further exploration of fatigue states and their performance 

consequences is needed to determine whether fatigue states correspond to discrete, 

qualitatively different adaptive modes, or to a continuous multidimensional space 

representing combinations of the different adaptive strategies varying in graded fashion.
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Figure 1. 
Workload (upper panel), task engagement (middle panel), and challenge appraisal (lower 

panel) by duration and fatigue condition (Study 1). Error bars in all figures are standard 

errors.
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Figure 2. 
Standardized change scores for subjective state factors by fatigue condition (Study 1).
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Figure 3. 
Appraisal and coping scales by condition (Study 1). (Uncontrol. = Uncontrollability)
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Figure 4. 
Uncontrollability and emotion-focus coping over time (Study 1).
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Figure 5. 
Standardized change scores for subjective state factors by fatigue condition (Study 2).
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Figure 6. 
Task engagement by duration and fatigue condition (Study 2).
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Figure 7. 
Appraisal and coping scales by fatigue condition (Study 2). (Uncontrol. = Uncontrollability)
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Figure 8. 
Precritical event SDLP for five 30 s intervals, by fatigue condition (Study 2).
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Figure 9. 
Response times for braking and steering by fatigue condition (Study 2).
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Figure 10. 
Number of participants able to avoid collision by fatigue condition and duration (Study 2).
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Table 1

Sequence of Events for Studies 1 and 2

Study 1 Study 2

1 Informed consent obtained

2 Cell phones and watches removed from participants

3 Dispositional driver stress measure (not reported here) 
completed

4 Pretask DSSQ completed

5 3-minute practice drive

6 Participants assigned to experimental condition; main 
drive completed

7 Posttask DSSQ (including the TLX) completed

8 ALE and CITS completed

1 Informed consent obtained

2 Cell phones and watches removed from participants

3 Dispositional driver stress measure (not reported here) 
completed

4 Pretask DSSQ completed

5 3-minute practice drive

6 Participants assigned to experimental condition; main drive 
completed, followed by 4-min supplementary drive

7 Posttask DSSQ (including the TLX) completed

8 ALE and CITS completed
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Table 2

Summary of Characteristics of Active and Passive Fatigue, Relative to the Control Condition, Based on the 

Outcomes of Post Hoc Sidak Tests (Study 1)

Workload Subjective state Appraisal Coping

Active fatigue High workload High distress High challenge High task focus

High task engagement High threat High emotion focus

High uncontrollability

Passive Fatigue Low workload Low task engagement Low challenge
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