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Abstract

A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters 

has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The 

catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high 

resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 

MHz phased array. Both of these catheters operate on a commercial imaging system with standard 

software. Multiple EP mapping sensors were mounted as ring electrodes near the arrays for 

electrocardiographic synchronization of ultrasound images and used for unique integration with 

EP mapping technologies. To help establish the catheters’ ability for integration with EP 

interventional procedures, tests were performed in vivo in a porcine animal model to demonstrate 

both useful intracardiac echocardiographic (ICE) visualization and simultaneous 3-D positional 

information using integrated electroanatomical mapping techniques. The catheters also performed 

well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and 

ventricular structures. The companion paper of this work discusses the catheter design of the side-

looking catheter with special attention to acoustic lens design. The third device in development is 

a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to 

permit use of the available catheter lumen for adjunctive therapy tools.

I. Introduction

Intracardiac echocardiography (ICE) imaging catheters are increasingly being used to guide 

interventional electrophysiology (EP) therapeutic procedures because they offer real-time, 

direct observations and improved procedural guidance over that of fluoroscopy alone [1]. 

Improved interventional image guidance can certainly lead to improved clinical outcomes. 

Recent reports have shown procedural improvements for atrial fibrillation using ICE 

integrated with other available imaging modalities [2], [3]. We have taken this integration 

approach by building and testing a multifunctional catheter capable of both EP sensing and 

ICE imaging functions.

A. Arrhythmias and Interventional Procedures in Electrophysiology

Atrial fibrillation (AF), the most common cardiac dysrhythmia, now affects more than 2.2 

million adults in the United States alone and was the discharge diagnosis for 465,000 

hospitalizations in 2003 [4]. Because cardiac dysrhythmia is more prevalent in ages beyond 

60 years, the yearly rate of increase in the patient population with AF is expected to peak by 

2030 due to the growing population of aging baby boomers, resulting in an expected 5.6 

million U.S. patients by 2050 [5].
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Nonpharmacologic therapies using catheter-based procedures are becoming more common 

to treat both left and right side superventricular arrhythmias. Many successful catheter-based 

interventional procedures to treat superventricular arrhythmias have evolved from invasive 

surgical techniques developed in the 1980s. In the late 1990s, there was a transition to 

radiofrequency ablation catheter-based approaches for many superventricular arrhythmias 

[6].

Both atrial chambers can be accessed and treated by minimally invasive catheter-based EP 

therapies. Catheters are usually inserted into the patient’s femoral vein to access the low-

pressure right side of the heart. They are typically guided by fluoroscopic means via the 

inferior vena cava to the right atrium, allowing immediate access to the right atrioventricular 

(AV) sulcus, the coronary sinus, and sites on the right atrial walls including the atrial 

septum. By first using EP diagnostic catheters to map heart wall electrical pathways, the 

interventionalist can then use therapeutic radiofrequency ablation (RFA) catheters to ablate 

along specific endocardial paths to isolate aberrant electrical conduction paths disturbing 

normal sinus rhythm. Left atrial procedures to correct AF are more difficult than right side 

procedures. Common access to the left atrium is achieved by first crossing the thin atrial 

septal wall and locating the pulmonary vein ostia, typical targets for ablation therapy to 

correct AF arrhythmias. Currently there are many therapeutic approaches to ablate 

undesirable endocardial conduction pathways, including catheter devices producing 

electrical RF energy, high-intensity focused ultrasound energy, laser energy, and even 

catheters designed to use cryogenic energy absorption techniques [7]–[9].

B. Conventional Interventional EP Guidance and Early ICE Development

ICE catheter designs have existed for some time [10], [11], although multi-site use was not 

seen until the late 1980s and early 1990s when catheters with wire-driven rotating 

piezoelectric transducers were used clinically [12]– [15]. These early mechanical ICE 

catheters [16] were typically large (e.g., 10F), were not directly steerable (needed a steerable 

sheath), had limited tissue penetration due to a small circular aperture effecting transmitted 

power and depth of focus, a slow frame rate (30 Hz), and were incapable of high-quality 

Doppler or tissue velocity imaging (TVI).

A technological progenitor 10F phased-array device has been used in key studies since 2000 

[17]–[19], and in 2005, an 8F version (AcuNav, Siemens Medical Solutions USA, Inc., 

Malvern, PA) of the device was approved for human use.

C. Opportunities for Interventional Guidance of EP Therapies

To treat atrial fibrillation, ICE can provide important guidance not only identifying key 

anatomic structures, but also in direct ablation guidance and avoidance of therapeutic 

procedure complications such as microemboli production during ablation and thrombus 

formation on sheaths and catheters [2], [20]. Other complications ICE can help identify 

include esophageal imaging to avoid atrial-esophageal fistulas [21], [22], and phrenic nerve 

damage in ablations of the right atrium (RA), right superior pulmonary vein (RSPV), or the 

superior vena cava (SVC) [7].
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Considerable work has been done in a wide range of imaging modalities to produce 

guidance superior to that of fluoroscopy and endocardial potential mapping alone [2], [3]. In 

addition to transesophogeal echocardiography (TEE) and ICE, there are efforts to add other 

modalities such as multidetector computed tomography (MDCT), magnetic resonance 

angiography (MRA), and electroanatomical mapping to the guidance tool set for EP.

With the use of MRA-imaging techniques in EP cases, observations have been made 

regarding the oblong shape of the PV ostia, and as many as 38% of patients observed had 

unusual anatomical features that may have contributed to their condition. MRA may be 

useful in post ablation follow-up to screen for PV stenoses [23]. Recent studies have been 

performed with a canine model to evaluate an image integration system for catheter ablation 

with 3-D computed tomography (CT) images in real time to explore anatomy-function 

interconnection theories in AF [24]. Similar integration studies with a multislice CT 

(MSCT) imaging system and an image integration platform have been reported on human 

patients in Europe [25].

A novel method for endocardial electroanatomical mapping based on magnetic field-sensing 

technology (CARTO, Biosense Webster, Diamond Bar, CA) was reported in the mid-1990s 

and remains a popular way to combine 3-D spatial position information with the EP 

mapping data of endocardial surface potentials [26], [27]. Additional studies using this 

technology have been conducted [28] showing efficacy as well as the very real potential for 

reducing fluoroscopy radiation exposure [29].

To better use electroanatomic visual display features describing a fairly coarse volume-space 

of a cardiac electrical road-map, a more advanced integrated guidance tool has been 

developed to combine very precise noninvasive imaging data from preacquired CT or MR 

images (CartoMerge, Biosense Webster), with reports from several groups [24], [30]. A new 

catheter is now offered to integrate ICE and CARTO, the SoundStar (Biosense Webster, 

Diamond Bar, CA).

Alternative engineering methods have been introduced recently to provide a volumetric 

cardiovascular image using catheter-based impedance tomography or “electroanatomical 

mapping” (LocaLisa, Medtronic, Minneapolis, MN, and Ensite NavX, St. Jude Medical, St. 

Paul, MN). Both of these methods employ the use of low-frequency electric field gradients, 

rather than an explicit magnetic field tracking as with the CARTO method. The electric field 

gradients are detected with simple catheter-based electrodes providing spatial data to 

calculate an instantaneous back-projected electrode position in 3-D space. Numerous 

electrodes on many catheters can be tracked in position with reproducible electrode 

localization to within 1 mm spatial accuracy [31]. An early version of this type of 

electroanatomical mapping has been shown to provide premapped EP data for post-

processing integration with rotational ICE with particular value for anatomically based 

arrhythmia ablations [32].

Ultrasound itself has acted as a spatial referencing method using a triangulation approach to 

establish a 3-D position in body tissue (RPM, Boston Scientific, Natick, MA). Validation 

studies have reported some success [33]. The growing importance of non-fluoro mapping 
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tools has prompted a recent study comparing some of the more promising mapping systems 

[34] with particular acknowledgment of the attributes pertaining to the NavX mapping 

technique by the author conducting the comparison study.

D. Fluoroscopic Exposure: Therapeutic Complications and Reduction Need

Significant radiation exposure reduction is a strong motivator in the development of real-

time functional guidance methods to improve clinical outcomes and reduce undesirably long 

fluoroscopic exposures. Since fluoroscopy remains the current standard for EP therapeutic 

guidance to direct catheter position and movement, the consequence for patients is long 

periods of radiation exposure during ablation procedures taking as long as 3 h [35]. Average 

exposure times of 20 min [36] and 22 min [37] for isthmus ablation procedures to correct 

atrial flutter in the readily accessible right atrium are not uncommon. EP ablation therapy in 

the LA can expose patients to more than 21 [38] to 50 [39] min of fluoroscopic radiation. An 

average fluoroscopy exposure time during cardiac resynchronization device implantation 

procedures can be 35 min or longer [40]. Extensive fluoroscopic exposures can be hazardous 

to the patient and practitioner alike, especially if the particular fluoroscopy equipment is 

substandard in minimizing radiation exposure levels.

Although fluoroscopic techniques have been available for years, the first known necrotic 

injury from radiation did not appear in the medical literature until 1996 [41]. As late as 

December 2004, the authoritative committee from the American College of Cardiology 

Foundation, American Heart Association, and the American College of Physicians Task 

Force on Clinical Competence and Training recommended no firm quantifiable limits on 

tolerable exposure levels. Recently, in June 2005, the FDA [42] has recommended relatively 

modest upper limits on fluoroscopic exposure, although there are more restrictive 

maximums for both patient and operator mandated in the United Kingdom since 2000 [43].

Although it is convenient to quantify exposure casually in minutes of exposure, the accepted 

quantification unit of absorbed dose is the gray (Gy), which for diagnostic radiology is also 

equal to an equivalent dose, the sievert (Sv). The common total exposure metric is taken as 

the gray per unit time, times an area of exposure, times the time used, usually stated in dose-

area-product (DAP) units of centigray centimeter squared, or cGy-cm2. A patient 

undergoing an AF ablation procedure, for example, may experience a DAP exposure of 

2590 cGy-cm2 [36], and if one assumes a 10 cm square exposure, the total dose is then 0.26 

Gy (or 0.26 Sv). For reference, a typical equivalent annual dose of radiation from natural 

sources is 2.5 mSv; for patients undergoing fluoroscopic exposure of a small region of the 

body, transient erythema (skin redness) can occur at 2 Sv, permanent skin epilation at 7 Sv, 

and late onset dermal necrosis at levels above 10 to 12 Sv [41]. For whole body exposure, 

the Center for Disease Control [44] has determined that the lethal dose for 50% of a 

population within 60 d of exposure is 2.5 to 5 Gy (i.e., 2.5 to 5 Sv for a fluoroscopic 

exposure).

The potential for significant radiation exposures is a true concern if there happens to be a 

case combining a high-exposure fluoroscope with a lengthy procedure in a young patient. 

An example is given [41] of an atrophic indurated plaque forming two years later on the skin 

of a 17 year old following an EP ablation procedure that used approximately 100 min of 
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fluoroscopy; the corresponding dose to skin was estimated to be 10 gray. One study [45] 

conducted as a survey of diagnostic fluoroscopy machines from various hospitals in the 

Netherlands showed that there were substantial variations in exposure rates, with the highest 

exposure rate at 15 times that of the least. With the highest-dose fluoroscopic device, a 

patient could receive 1 Sv in as little as 7 min of exposure. Thus a lengthy, but not 

uncommon, 50-min procedural exposure with this level of radiation could produce an 

alarming total equivalent dose of more than 7 Sv to a region of the chest.

There have been only a few studies focused specifically on fluoroscopic radiation exposures 

to patients during EP procedures; attention to patient exposure rates and measurement 

accuracy is still in development. One recent study [46] stated that patients undergoing RF 

ablation procedures for paroxysmal AF with long duration exposures that averaged 57 min 

produced an effective dose of (only) 0.0011 Sv on average. Improvements in radiation 

exposimetry in a clinical setting are apparently still in development because another author 

[47] strongly questions this dubious result.

Serious efforts to diminish unnecessary radiation exposure have been conducted by groups 

integrating various mapping tools to display electrical data collected along with anatomical 

3-D location. The CARTO system has been employed by investigators [35], [37], [39], [48], 

all showing significantly decreased radiation exposure. Additionally, the LocaLisa system 

was used [49], [50] with 35% and 50% reduction in fluoroscopic radiation exposure, and the 

NavX system [35], [36], [38], [51], provided marked reductions that offer compelling 

rationale for the utility of these guidance systems.

Guiding interventional EP therapies is clearly challenging. Among the issues are: 1) 

adequate endocardial electrical mapping, 2) identification of appropriate landmarks and 

recognition of individual variants in anatomy, 3) specific site guidance of ablation devices, 

and 4) the determination of therapeutic success while the heart is in motion, and importantly, 

while radiation exposure is held to a minimum.

We are now entering a “virtual anatomy” realm in EP therapeutic guidance where advanced 

integration of non-fluoroscopic imaging modalities is emerging[52], [34]. Using imaging 

modalities such as electroanatomical mapping of the cardiac anatomy, a significant 

reduction in fluoroscopic exposure can be achieved [35], [31], [36], [38]. We believe that 

electroanatomical mapping can be integrated into novel intracardiac imaging catheters to 

add yet another dimension to EP image guidance. Although there are several 

nonfluoroscopic guidance devices currently available [47], the NavX system has the very 

desirable ability to track in 3-D any EP catheter with standard plug connections, making it 

ideal to use with our family of EP-ICE catheters. This feature makes the integration of 3-D 

spatial location and ICE imaging on a single catheter a very straightforward proposition.

II. Methods

A. A Family of Integrated ICE Catheters

Our Bioengineering Research Partnership has targeted several integrated imaging catheter 

designs specifically for electrophysiology therapy guidance. The first of 3 devices, the 
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“HockeyStick” (HS) [53], is a 9Fr (3 mm) combination EP mapping and ICE catheter 

designed to be easily deployed with standard introducer sheaths, possess dual direction 

steering capability, and incorporate fully integrated EP mapping electrodes near the imaging 

tip. A 64-element array was chosen in the first design to operate at a center frequency in the 

range of 7 to 12 MHz with a fractional bandwidth of 50% or greater. The design of this 

catheter is discussed in more detail in the companion paper [54]. The HockeyStick catheter 

is depicted in Fig. 1 as it has been used in the right side of the pig heart.

The second member of the EP-ICE family is the “MicroLinear” (ML) catheter. The most 

recent design is a 9Fr EP capable catheter with a 24-element, 14 MHz phased array mounted 

at the tip for high definition, high-frame rate, forward-looking imaging. A preferred design 

configuration for the ML catheter will include a metal ablation tip surrounding the distal 

array allowing both radio-frequency ablation (RFA) and imaging simultaneously. Prototypes 

of the MicroLinear forward-looking catheter are shown in Fig. 2 and Fig. 3 with our latest 

design version shown in the latter.

The third device is a 9Fr forward-looking 64 capacitive micromachined ultrasonic 

transducer (cMUT) element ring array catheter operating at 10 MHz that ultimately will 

allow the central catheter lumen to be used as a conduit for any of many small wire, fiber, or 

electroded therapy devices that can be used simultaneously with forward-looking imaging. 

The ring array has been used with synthetic aperture imaging techniques in laboratory 

testing [55]–[57] to demonstrate its usefulness. Work to incorporate this ring design into a 

catheter is in progress.

B. Animal Studies

Several animal studies using juvenile Yorkshire pigs have been performed to examine the 

capabilities of the combination catheters. All animal experiments conformed to accepted 

standards for the use of laboratory animals and were performed under an institutionally 

approved protocol at Oregon Health and Science University. Tests were proposed to 

evaluate prototype catheter performance in the areas of mechanical steering and mapping 

sensor use, imaging compatibility with active RF ablation, visualization and guidance of 

ablation catheters, observation of ablation lesion size and bubble formation, general 

compatibility with the imaging system platform (Vingmed Vivid 7, GE Healthcare, Horten, 

Norway), and performance in color flow and strain rate imaging modes.

The multifunctional catheters were introduced in the jugular or femoral vein to advance the 

catheter to the RA from either the superior vena cava (SVC) or inferior vena cava (IVC), 

respectively. While in the RA, the HockeyStick catheters can be used to image the left 

atrium (LA) and the pulmonary veins (PV) of the LA, or the larger left ventricular (LV) or 

right ventricular (RV) chambers.

A special electrical connection interface unit for the catheters was used to allow the easy 

bedside connection of the multifunctional catheters to the imaging system. A separate 

proximal catheter connector was directly connected to an electrical EP sensor signal-

processing system near the bedside.

Stephens et al. Page 7

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2016 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The imaging system beamforming setup parameter files were adjusted to allow for a 

reasonably straightforward adaptation for the use of the imaging catheters on a standard 

imaging platform without the need for custom software. The ease of operational adaptation 

permitted as well the use of advanced imaging modes such as strain rate imaging (SRI) at 

high frame rates. Tissue motion tracking of arrhythmias can be interpreted using SRI data 

derived from tissue velocity imaging (TVI). Experimental designs were proposed to track 

multiple spatial velocity gradients at specific heart wall sites by displaying in real time their 

high fidelity tissue motion (in strain rate as units of time−1) to aid in the assessment of sinus 

rhythm abnormalities.

A NavX electroanatomical mapping system with multiple lead inputs and full 3-D software 

mapping tools were used to perform both intracardiac volume mapping and integration 

experiments with the HockeyStick catheter.

III. Results

More than 10 pigs weighing in the range of 34 to 55 kg have been studied. ICE imaging was 

performed using a Vingmed Vivid 7 ultrasound system in standard imaging modes, 

including color and pulsed Doppler, tissue Doppler, TVI, SRI, and tissue synchronization 

(TSI) imaging. High frame rates were commonly used at 150 F/sec. Digital scan line data 

were transferred to an offline EchoPAC-PC (GE Healthcare, Milwaukee, WI) for further 

analysis.

The pig studies yielded useful ultrasound imaging-guidance indicators while simultaneous 

tissue ablation was performed using a separate ablation catheter with 50 Watts of RF power 

delivery capability. Both the side-looking HockeyStick catheter (Figs. 1, 4, and 6) and the 

forward-looking MicroLinear catheter designs (Figs. 2, 3, and 5) were successful in the 

imaging of therapeutic RF catheter ablations. The HockeyStick catheter was tested in color 

flow mode, successfully imaging both the aortic outflow track and LA pulmonary vein 

dynamic blood flow.

The short axis view of the LV from the RA in the pig of Fig. 6 shows the ability of the 

HockeyStick to track tissue synchrony using the high frame rate SRI modality available on 

the imaging system platform. Cardiac arrhythmias were induced by using external pacing 

leads to alter the patterns of normal sinus rhythm.

Experiments with HockeyStick ICE catheter and electroanatomical mapping catheter 

integration have been completed. The EP sensor connector of the HockeyStick ICE catheter 

was connected directly to the NavX system, which allowed both the HockeyStick and the 

NavX catheter to be visualized simultaneously on the NavX system. Fig. 1 shows the 

HockeyStick on the right side of the heart in the RA while the NavX catheter is shown in the 

LV after completing the 3-D mapping of that chamber.
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IV. Discussion

A. Imaging Utility of Multifunctional ICE Catheters

Early animal studies targeted general B-Mode imaging of intracardiac features and ablation 

catheters with attention to evaluation of resynchronization pacing using the multifunctional 

nature of the EP-ICE combination catheters equipped with integrated EP sensors. The EP-

ICE catheters were usually advanced to the heart to perform studies of the RA and RV 

without fluoroscopic guidance. In one animal, the EP-ICE catheter entered the patent 

foramen ovale in the intra-atrial septal wall and entered the LA without difficulty. Clear 

delineation of bubble production after prolonged RF ablation was observed. Both the side-

looking HockeyStick catheter and the forward-looking MicroLinear catheter designs have 

been successful in obtaining very useful images of therapeutic RF catheter ablations.

The HockeyStick has been used very successfully to track tissue synchrony using the high 

frame rate SRI modality available on the imaging system platform. This ability can be 

valuable in the assessment of cardiac arrhythmias. High frame rate SRI imaging allows a 

mechanical survey of the effects of the electrical activation and improves the ability to 

detect early contractions in the monitored regions of the myocardium that move first using 

this tissue-tracking technique.

B. Imaging with 3-D Electroanatomical Guidance

Individual intracardiac ECG channel evaluations of arrhythmias have evolved toward 

simultaneous, multichannel mapping, producing much more detail in the temporal 

characterization of specific arrhythmias. With the sheer bulk and complexity of the temporo-

spatial information, it has become increasingly more difficult to maintain a clear perspective 

on the large number of channels of ECG data and as well interpret their significance with 

respect to their specific anatomic locations. Within the last decade, the development of 

computer-based mapping that better records and presents both the spatial and temporal 

characteristics of cardiac activity has become more popular as a natural solution to this 

issue, and in particular as it addresses the need for procedural guidance of therapeutic 

ablation treatments for problems related to arrhythmias.

Electro-anatomical mapping in particular has become a significant guidance tool. The 

technique uses patient-isolated electrical field gradients established by a set of patch 

electrodes attached to the patient’s body in at least 5 key positions. The electrical field 

gradients can be sensed by either a single electrode on a single intracardiac catheter or on as 

many as 64 electrodes from many different catheters. The system can determine the location 

of any single electrode to a spatial accuracy in the range of ±1 mm with a temporal sampling 

rate as high as 1200 per second [31], [34]. The key enabling feature of this technology is its 

adaptability; the only particular requirement for our ICE-imaging catheter is the feature of 

EP electrodes on the catheter tip with a wire path to a connector compatible with the 

electroanatomical system inputs.

A series of pre-clinical studies have been performed that have combined ICE imaging 

capability with catheter localization and tracking in 3-D space in real time. Following an 

initial volumetric mapping with the NavX catheter, the HockeyStick catheter itself could be 
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tracked continuously within the volume, and with the multiple electrode feature the 

orientation of the ICE catheter could also be placed accurately in the intracardiac chamber. 

Since the HockeyStick has a separate EP connector to allow for ECG signal monitoring, the 

electrodes connected to this EP connector allow for a very easy means of connection to the 

NavX system connectors. It is only this simple interconnect that is necessary for the NavX 

system to track the electrode positions in 3-D space. This capability can potentially yield a 

very powerful strategy to enhance the clinical utility of ICE by enabling therapeutic 

procedures, guided by intracardiac echocardiography, with much less dependence on 

hazardous fluoroscopic image guidance. In one of our studies, the navigation and 

manipulation time for achieving ultrasound imaging of an ablation procedure was 

substantially reduced by more than 75% compared with fluoroscopic visualization only.

V. Conclusions

Future intracardiac therapies will likely include devices that have multiple capabilities that 

can improve clinical outcomes with superior guidance features and less dependence on 

fluoroscopy with its potential for hazardous radiation exposure.

A 3-D road map projection of the heart anatomy through the use of electroanatomical 

mapping can be successfully combined with ICE catheters in a very seamless fashion, which 

portends a great future for the success of this technology integration. The future combination 

of electroanatomical mapping and ICE may offer a significant means for improving the 

identification accuracy of therapeutic targets, lessen the lengthy procedural times, and 

decrease the dependence on potentially hazardous fluoroscopic guidance.
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Fig. 1. 
A HockeyStick (HS) catheter tip prototype with a tapered acoustic lens is shown at lower 

left. The upper left shows the HS catheter in approximately the same anterior view right 

atrial position as the right panel, which shows the NavX mapping result of a partially 

mapped volume of the pig left ventricle (LV), aortic outflow (AO) tract, and mitral annulus 

(MA). The HS catheter in the RA is continuously tracked in position along with the light 

colored EP mapping catheter, which was advanced retrograde past the aortic valve and has 

been wrapped back upon itself following a left-side volume-mapping exercise.
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Fig. 2. 
The forward-looking devices: the MicroLinear catheter prototype is shown (top panels), and 

the ring array in recent format (middle panels) along with the earlier ring design in its bench 

testing configuration and as a singulated ring (bottom panels).
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Fig. 3. 
The MicroLinear (ML) catheter is shown in panel A with a small RF ablation wire 

integrated into the device at the tip but under full steering control by the operator. Panels B 

and C are the fluoroscopic and NavX mapping images, respectively, both showing the 

MicroLinear catheter near the RV apex in the pig. Panel D shows the clear delineation of the 

RF ablation wire, and panel E demonstrates the high level of image quality of this small 24-

element phased-array forward-looking catheter.
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Fig. 4. 
HockeyStick catheter imaging the left atrium and left ventricle from the right side of the 

heart at top right, and at lower left the HockeyStick monitors an RF ablation of the 

atrioventricular sulcus region in the right atrium of a pig. The lower right shows color 

Doppler imaging of blood in the aortic outflow tract.
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Fig. 5. 
The forward-looking 14 MHz MicroLinear catheter is shown imaging an RF ablation 

catheter during an ablation sequence while in the RA of a pig. The echogenic tip of the 

ablation catheter and lesion region is clearly seen in the left panel while RF ablation pick-up 

noise is absent. Note the maximum depth displayed here is 2 cm.
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Fig. 6. 
A HockeyStick catheter used for intracardiac strain rate imaging while open chest pacing is 

conducted in the pig. The image frame at upper left shows 5 SRI tissue “target points” at 

various LV wall positions in the short axis view from the RA. Two of the wall target points 

(white and gray arrows at left), tracked according to their 2-D strain rate time plot at right, 

show a loss in phasic synchrony as a result of epicardial pacing electrode stimulation. The 

plot limits are −1.0 to 1.8 s−1 in strain rate, and 0 to 700 msec in time duration. The pig heart 

rate is approximately 150 min−1.
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