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Abstract

The pancreas is one of the earliest- and most commonly- affected organs in patients with cystic 

fibrosis (CF). Studying the pathogenesis of pancreatic disease is limited in CF patients due to its 

early clinical onset, co-morbidities and lack of tissue samples from early phases of disease. In 

recent years, several new CF animal models have been developed that have advanced our 

understanding of both CF exocrine and endocrine pancreatic disease. Additionally, these models 

have helped us better define the influence of pancreatic lesions on CF disease progression in other 

organs such as the gastrointestinal tract and lung.

Keywords

cystic fibrosis; pancreas; diabetes; cystic fibrosis transmembrane conductance regulator; 
pathology; pancreatic insufficiency

Introduction

Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane 

conductance regulator (CFTR) [1]. CFTR is a chloride and bicarbonate channel that 

contributes to fluid secretion by epithelial cells and the hydration of secreted mucus [2,3]. In 

CF, deficient CFTR leads to abnormal fluid secretions causing dysfunction in organ systems 

including the lung, gastrointestinal tract, liver, male reproductive tract and pancreas. Lung 

disease is often associated with morbidity and mortality in CF patients and is often the organ 

most associated with CF [4]. Nonetheless, pancreatic disease in CF has the highest 

penetrance and is one of the earliest affected organs [5,6]. Here we review CF pancreatic 

disease and highlight recent advancements using animal models to better define CF pancreas 

pathogenesis and its relationship to lung and gastrointestinal disease.
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Current animal models of CF

Historically, most animal model research on CF had been performed in mouse strains with 

mutated Cftr [7,8]. However, CF mice do not exhibit the same key pathologies seen with 

human disease. For instance, while gastrointestinal obstruction is common in many CF 

mouse models, they do not have significant pancreatic or lung disease [7,8]. The lack of 

pathology in key organs of the mouse led to the development of other CF animal models 

(Table 1). In recent years new CFTR-deficient animal models have been developed 

including the pig [9], ferret [10], rat [11] and zebrafish [12,13]. Animal modelling of CF in 

large animal species has advantages because these animals more closely resemble humans in 

terms of their lung structure, function and size [7,14–16]. Of course, small animal models 

also have distinct advantages, which include ease of handling and housing as well as 

availability of reagents and tools for genetic manipulation [8,12]. Of interest to this review, 

we focus on animal models that exhibit pancreatic pathology for translational study 

including the pig [17], ferret [18] and zebrafish [12].

CF pancreatic disease

The term “cystic fibrosis” is named after the fibrocystic lesions in the pancreas noted by Dr. 

Dorothy Andersen in a seminal report of paediatric autopsy cases [19,20]. How does 

deficient CFTR lead to pancreatic disease? CFTR is expressed on the apical membrane of 

epithelial cells in the small pancreatic ducts and facilitates the transport of chloride and 

bicarbonate that produces alkaline fluid in ducts [5,21]. An important function of pancreatic 

ductal epithelial cells is the absorption of chloride and the secretion of bicarbonate [22]. 

Bicarbonate is a key buffer for pancreatic fluid and functions to neutralize gastric acid and 

provide an optimal pH for the function of digestive enzymes [23]. The mechanism for ductal 

secretion of bicarbonate is not completely understood, but is thought to be a two-step 

process. First, secretion is stimulated in the proximal duct causing accumulation of 

bicarbonate within the ductal cell cytoplasm leading to an osmotic secretion of the anion. 

This process, coupled with sodium influx, causes the proximal duct to absorb a portion of 

the chloride and secrete bicarbonate, via CFTR, along with a large amount of pancreatic 

fluid. Within the distal pancreatic duct, CFTR primarily functions as a bicarbonate channel 

due to the low chloride content of the pancreatic fluid in this region [22]. CFTR also 

contributes to fluid secretion to flush pancreatic pro-enzymes into the duodenum. In CF, 

altered composition of pancreatic secretions include lower pH, reduced secretory volume 

and higher protein content; these factors are thought to alter zymogen secretions leading to 

obstruction [5,24–26]. These changes can be seen as early as seventeen weeks gestational 

age in utero, with obstruction of small ducts and acini. With progression, acinus plugging 

and dilation cause epithelial injury and destruction accompanied by inflammation, fibrosis 

and fatty infiltration/replacement [21,27,28]. CF pancreata with advanced disease may have 

only islets or rare ducts in a sea of adipose tissue that has replaced the destroyed pancreas. 

Pancreatic obstructions are initially composed of abnormal zymogen secretions, but over the 

course of disease include mucus accumulation from metaplastic epithelium lining ducts [26].

Patients are classified into 6 different groups based on their CFTR mutation [29–31]. Those 

within classes I, II, III, IV, and VI have mutations that often render CFTR absent or non-
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functional and are commonly pancreatic insufficient (PI), requiring lifelong pancreatic 

enzyme replacement. Approximately 85% of CF patients fall into these classes, while the 

remainder, or those within class V or mild class IV, are generally pancreatic sufficient (PS) 

due to less severe CFTR mutations [5]. Of course, those that are considered PS do not 

escape pancreatic disease completely. Pancreatic destruction is still detectable as evidenced 

by elevated levels of serum immunoreactive trypsinogen, but often does not reach the point 

clinically that it affects normal digestion [32]. Interestingly, CF patients that are PS are more 

prone to recurrent bouts of acute and/or chronic pancreatitis compared to PI patients [33–

35], suggesting sustained partially impaired function of the pancreatic ducts. It has been 

demonstrated via genetic studies that there is a significant association between acute 

pancreatitis and mutations of CFTR, which is not surprising based on the key role CFTR 

plays in pancreatic ductal secretions [36].

The earliest histopathological descriptions of CF indicated that the exocrine pancreas was 

targeted for destruction, but noted that the islets of Langerhans were spared [20]. Even so, 

we now know that the endocrine pancreas is also affected in CF. CF-related diabetes 

(CFRD) is an increasingly recognized complication of CF that occurs in 50% of adults with 

CF [37,38]; even before onset of overt diabetes, children with CF exhibit impaired glucose 

tolerance on testing [39]. Exocrine pancreatic insufficiency (EPI) is an important risk factor 

for CFRD [40]. Onset of disease typically occurs at 18–21 years of age and appears to 

slightly favour (AQ: favour seems wrong choice of word here as this is not a good event.) 

females in comparison to males [41]. CFRD does not fall into either type 1 or 2 diabetes 

categories as it has features of both; it is characterized by both a loss of functional β-cell 

mass as well as also having varying extents of insulin resistance [41,42]. Patients with 

CFRD have decreased pulmonary function and nutritional status with higher mortality 

compared to CF patients without CFRD [43,44]. The two major mechanisms thought to play 

a role in development of CFRD include decreases in islet cell mass and β-cell dysfunction 

[37]. Decreases in islet cell mass have been associated with exocrine destruction, fibrosis 

and fatty infiltration as well as islet amyloid deposition [37]. Oxidative and endoplasmic 

reticulum stress of β-cells have also recently been implicated in CFRD pathogenesis [45,46]. 

Dysfunction of β-cells may occur simultaneously in CFRD due to a multitude of factors 

including dysfunction of the immune system, impaired insulin secretion and altered entero-

insular axis hormones [37]. Chronic inflammation is a common finding in both CF lungs and 

pancreata and may play a role in development of CFRD [47,48]. Low vitamin D levels, 

which are common in CF patients secondary to PI and malabsorption, have been shown to 

cause abnormal immune responses [49]. CFTR may also have a direct role in insulin 

secretion from β-cells [50]. Whatever the mechanism(s) of pathogenesis, CFRD can 

potentially lead to important histopathological findings on autopsy. Islets can usually be 

identified histologically in CF patients with CFRD, although these are oftentimes fewer in 

number [51]. Remaining islets can have significantly fewer insulin-positive cells, glucagon-

positive cells and pancreatic polypeptide-positive cells, with a relative increase in delta cells 

as compared to non-CF islets [41,51,52]. Islets from patients with CFRD also have been 

described to have islet amyloidosis, a common histopathological feature of type II diabetes 

mellitus [51,53]. It has been suggested that CFTR mutations could possibly predispose 

patients to develop amyloidosis because of alterations in the pH within pancreatic islets [54].
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Exocrine pancreatic lesions in animal models of CF

Mouse models

Although there are multiple mouse models of CF, the best models achieve only mild 

exocrine pancreatic disease (AQ: please check this retains your intended meaning) [7,8]. 

Aged CF mice maintained on a liquid diet have shown modest pancreatic disease 

characterized by dilation of pancreatic ducts by inspissated secretions, mild inflammation 

and acinar atrophy [55]. There have also been a few studies reporting pancreatic changes in 

Cftrtm1Unc mice weaned and maintained on a liquid diet. These mice had lower pancreatic 

weight and reduced lipase activity as well as mild dilation of acini and accumulation of 

zymogen in ducts [56,57]. Similarly, another CF mouse model, Cftrtm1CAM mice, had 

plugging in approximately half of the pancreatic ducts, but this was still a fairly mild 

pathological finding with a lack of progressive destruction as seen in humans [58]. More 

recently, a study showed that CF mice fed polyethylene glycol 400 in water had increased 

expression of Muc6 within the pancreas, a mucin that also increases in abundance during 

human CF disease [59]. The relative paucity of pancreatic pathology in CF mouse models 

has been theorized to be due to lower Cftr expression in the pancreas and possibly the 

presence of alternative secretory channels which compensate for the loss of CFTR [7].

Porcine models

Pig models for CF have included null, ΔF508 CFTR mutants and CFTR−/−;Tg 

FABP>pCFTR lines. The Tg FABP>pCFTR line allows for transgenic expression of CFTR 

cDNA under control of the intestinal fatty acid-binding protein (iFABP), which restores 

CFTR expression specifically within the intestine, mitigating the occurrence of neonatal 

intestinal obstruction [9,21,60]. Pigs have separate duct systems transporting pancreatic and 

biliary secretions into the duodenum. This advantage allows for physiologic studies of both 

the pancreatic and liver secretions separately during CF disease [61]. CFTR is localized to 

pancreatic ductal epithelial cells in newborn piglets, similar to humans [61,62].

Newborn CF piglets have a smaller, more granular appearing pancreas than wild type 

controls. Histologically, pancreatic disease ranges from moderate to extensive acinar cell 

destruction, duct dilation, obstruction with zymogen secretions and mild patchy 

inflammation consisting of lymphocytes, neutrophils and macrophages which progresses 

over time [28] (Figure 1A–D). In some cases, dilated ducts can ulcerate and rupture leading 

to pools of free zymogen within the interstitium along with other remodelling such as ductal 

proliferation and fibrosis, similar to what has been described in humans [20,28,63,64]. 

While necrosis and cellular debris can be seen in dilated ducts/acini, increased caspase-3 

immunostaining (AQ: do you mean activated caspase-3 ?) within acini of both newborn and 

fetal CF pigs suggests apoptotic pathways are activated [17]. Pancreatic fluid in CF pigs has 

decreased levels of elastase and chymotrypsin along with a decrease in total amount of 

secretions [61]. As CF pigs age, they develop progressive pancreatic destruction with 

eventual loss of the exocrine pancreatic tissue and replacement by adipose and fibrotic tissue 

within a few months of birth [17]. The acceleration of CF pig pancreatic disease at birth may 

be due to genetic modifiers, a more severe (i.e. null) genotype compared to humans, or 
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expression of other anion channels that can aid in compensation in the case of human 

disease [28].

Ferret model

The ferret model of CF was developed because the ferret’s lung anatomy is similar to that of 

humans and the moderate size of the ferret makes handling and housing not much more 

burdensome than for a rodent [10]. CFTR-knockout ferrets have a disruption in exon 10, 

which was achieved by adeno-associated virus-mediated insertion of a neomycin cassette at 

the CFTR locus in fibroblasts, coupled with somatic cell nuclear transfer [65]. The CF ferret 

and pig both exhibit pancreatic lesions at birth, although the changes in newborn ferrets are 

less severe [65,66]. The pancreas from newborn CF ferrets (also called kits) grossly 

resembles the newborn wild-type pancreas, yet at birth CF ferret pancreata have dilated acini 

and ducts, which are expanded by eosinophilic zymogen material [65] (Figure 1E, F). CF 

kits also have increased duct and acinar cell apoptosis, indicating that changes within the 

pancreas occur very early in life [18]. Within the first month of life and beyond into 

adulthood, CF kits quickly develop significant acinus destruction and loss along with 

marked duct dilation [18,21,67] (Figure 1 G, H). As CF ferrets age there is increased 

pancreatic fibrosis as well as infiltration of inflammatory cells; primarily neutrophils, 

macrophages and lymphocytes [18]. By adulthood (>5 months of age), CF ferrets 

accumulate adipose tissue and islets reside within fibrotic regions surrounding large ducts, 

similar to humans [67]. The majority of newborn CF kits are PI and lack detectable levels of 

pancreatic elastase 1 (EL1) in their faeces [14,67]. However, a very small percentage (less 

than 1%) of newborn CF kits are PS with mild pancreatic pathology, normal faecal EL1 

levels, and normal growth [67]. Although the incidence of CF kits with PS is quite low, PS 

also occurs within a small subset of the human CF population as well, depending on the 

CFTR mutation that is present. However, the findings that even a small number of CFTR 

knockout ferrets can have near normal pancreatic histology and normal growth rates, 

suggests that a modifier gene(s) can have a significant impact on CF pancreatic disease. 

Thus, the variability in PS among CF patients may not be solely due to the type of CFTR 

mutation. Attempts to capture this trait through the breeding of siblings from PS CF ferrets, 

however, have proven unsuccessful and suggest that more than one modifier locus may be 

responsible.

Zebrafish model

A zebrafish CF model has recently been reported as an alternative to the larger animal 

species [12,13]. The small size of zebrafish is conducive for handling and housing and also 

allows for relatively rapid forward genetic and/or chemical screens that are more difficult in 

the larger animal models. Zebrafish express CFTR on the apical membrane of ducts in the 

pancreas and loss of CFTR function produces pancreatic destruction [12]. It was reported 

that 10 days post fertilization (while the zebrafish are considered to be larvae) there is 

increased death in the mutants, by 16 days post fertilization loss of exocrine pancreatic 

tissue is evident and by 22 days post fertilization there is marked loss of exocrine tissue. 

Adult CF zebrafish (3 months post fertilization) exhibit significant destruction of pancreatic 

acini with duct dilation and filling with PAS positive mucus, neutrophil infiltration and 

marked fibrosis [12] (Figure 1 I, J).

Gibson-Corley et al. Page 5

J Pathol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Endocrine pancreas lesions in animal models of CF

Mouse model

PI is a risk factor for development of CFRD in humans. CF mice lack severe exocrine 

disease and also do not spontaneously develop CFRD [37,68,69]. That said, CF mice have 

been used to study the possible consequences of CFRD, specifically on the immune system 

and pulmonary function by inducing diabetes using streptozotocin, a chemical that is toxic 

to pancreatic β cells [68,69].

Porcine model

At birth, the endocrine pancreas in CF pigs appears to be spared from the surrounding 

exocrine destruction [20,28]. More in-depth analysis of the islets from pigs ranging from 

fetal to one year of age concluded that islet structure remained intact over time with 

preferential localization of insulin-immunoreactive islets to remnant lobular tissue (Figure 

2A). Even so, there were no differences in the cellular density of either insulin or glucagon-

producing cells [66]. Nonetheless, abnormalities were identified in both blood glucose and 

insulin secretion of newborn CF piglets, suggesting a secretory defect caused by loss of 

CFTR. Newborn CF piglets had abnormally low insulin secretion and elevated serum 

glucose after IV bolus glucose challenge. Adult CF pigs had higher blood glucose levels 

compared to controls, indicating they develop spontaneous hyperglycaemia [66].

Ferret model

At birth, CF ferret pancreatic islets are present (Figure 2B), although with more small islets 

and fewer large islets compared to age-matched controls [18] (Figure 2C). Pancreata from 

newborn CF kits have normal levels of lobular insulin and glucagon staining, suggesting that 

the abundance of β-cells and α-cells remains intact at birth [18]. CF kits 6–12 hours old 

demonstrate poorly regulated blood glucose and insulin levels during spontaneous feeding—

non-CF kits demonstrated an association of higher blood glucose and higher blood insulin, 

while CF kits lost this relationship [18]. Formal glucose testing in newborn CF kits also 

demonstrated impaired glucose tolerance, elevated glucose area under the curve, and 

impaired first phase insulin secretion, demonstrating that even early in life glucose handling 

is impaired [18]. At 1–2 months of age CF ferrets had multiple abnormal glucose tolerance 

phenotypes, including elevated fasted glucose and abnormal mixed meal tolerance tests, 

demonstrating progressive disturbances in the ability of CF animals to handle glucose. Over 

time, the percent area showing insulin and glucagon staining in the pancreas decreases in 

CF, indicating a progressive loss of endocrine tissue [18]. Importantly, in vitro cultures of 

neonatal ferret islets show dysregulation of insulin secretion and impaired glucose 

stimulated insulin secretion in CF genotypes, providing evidence that CFTR defects intrinsic 

to the islet affect insulin secretion [18]. It will be of interest to utilize the CF ferret to better 

understand CFRD in humans. Histopathologically, CF patients show similar pancreatic 

disease as the CF ferret with clustering of insulin-immunoreactive islets within fibrotic 

tissue (Figure 2D,E) and those with CFRD oftentimes lack much in the way of islet tissue at 

all (Figure 2F).
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Zebrafish model

The zebrafish model has notable endocrine pancreatic disorganization as reported by Navis, 

et al. [12]. CF zebrafish islets have altered spatial distribution of insulin and glucagon 

staining within islets and islets are smaller and more numerous in comparison to wild-type 

sibling controls [12].

Relationship of pancreatic disease to gastrointestinal disease in CF

In the 1930’s, before CF was recognized, there were reports of pancreatic insufficiency, 

steatorrhoea, vitamin A deficiency and failure to thrive in children, many of which on 

autopsy had evidence of severe exocrine pancreatic disease [19,20,70–74]. Many of these 

reports are now thought to be secondary to CF [75]. Today, many of these manifestations of 

CF are historical as pancreatic insufficient CF patients are now treated with daily pancreatic 

enzyme replacement [76]. The combination of destruction and altered secretions in the CF 

pancreas can cause clinical PI, necessitating enzyme supplementation. Additionally, 

decreased bicarbonate levels from the pancreas and other tissues such as Brunner’s glands, 

and bile, leads to decreased pH [5,77,78]. Lower duodenal pH limits activation of many 

pancreatic enzymes within the duodenum and is associated with precipitation of bile acids, 

development of intestinal obstruction and also a predisposition to pancreatitis [5,36,79].

Pancreatic disease has been speculated to contribute to intestinal obstruction, but assessment 

of this has been difficult in humans. Meconium ileus, obstruction of the intestine shortly 

after birth, occurs in 15–20% of CF babies [80,81]. A similar type of intestinal obstruction 

can also occur anytime later in life and is termed distal intestinal obstruction syndrome 

(DIOS) [21], which is also frequently observed in CF ferrets [67]. Constipation, although a 

less severe manifestation of disease, is also associated with CF and has been reported in 

47% of CF patients [82]. Intestinal obstruction occurs in 100% of CF pigs at the time of 

birth, but transgenic expression of CFTR cDNA under control of the intestinal fatty acid-

binding protein (iFABP) allows for alleviation of meconium ileus [60]. This same 

technology has also been applied to the CF mouse [83] and CF ferret [10]. In contrast to the 

pig, ~75% of CF ferrets have meconium ileus at birth and the incidence appears to have 

heritable contributions [10]. In the iFABP CF pig the persistence of pancreatic destruction, 

but mitigation of intestinal obstruction, suggests that pancreatic disease it is not a major 

contributing factor to intestinal obstruction [60]. Further evidence using conditional 

expression (villin:Cre) of CFTR in intestinal epithelium of PS CF mice also suggests that 

replacement of CFTR in intestinal epithelium alone can prevent intestinal obstruction [84]. 

Taken together, these studies suggest that the CFTR status of the intestinal epithelium, but 

not the extent of pancreatic disease, is important in the development of intestinal 

obstruction.

Relationship of pancreatic disease to lung disease in CF

Clinically, there is a strong link between pancreatic insufficiency and the severity of lung 

disease because severe CFTR mutations affect both of these organs [37,85]. Lung function 

tests in a cohort of CF patients were found significantly better in those with normal fat 

absorption in comparison to those with steatorrhoea which is a symptom of PI [86]. A later 
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study identified that CF patients with PI had a marked decline in pulmonary function as 

compared to those with PS, as measured by forced vital capacity (FVC), forced expiratory 

volume in one second (FEV1) and forced expiratory flow in the middle half of FVC, [85]. 

Another study reported growth indices, including weight-for-age and height-for-age, and 

symptoms of lung disease are highly associated with decreased lung function at 6 years of 

age, and concluded that early treatment with pancreatic enzyme therapy and appropriate 

nutrition could improve lung health overall [87]. The link between pancreatic disease and 

pulmonary disease is multifaceted. Poor nutritional status and growth secondary to PI cannot 

only affect the growth of the lung early in life [88], but also immune function leading to 

increased pulmonary infections and therefore decreased pulmonary function [89,90] (AQ: 

please check sense of sentence). Lung disease can also affect weight and growth directly as 

well, via suppression of appetite and increases the amount of energy expended [87,91,92], 

demonstrating that the pancreas is not solely responsible for growth restriction associated 

with CF.

CFRD is also directly linked to severity of lung disease. Approximately half of CF patients 

develop CFRD by the age of 30 years, and this comorbidity is also associated with 

decreased pulmonary function in CF patients [42,43,85]. Decreases in lung function are 

oftentimes identified before CFRD is diagnosed and these decreases are proportional to the 

severity of insulin deficiency [42,44]. Interestingly, people with diabetes in the general 

population (those that do not have CF) have reduced lung function (2–4% lower) compared 

to non-diabetics further suggesting a direct association [46]. Diabetes has been linked to 

restrictive pulmonary function, which is likely due mechanistically to increased 

inflammation [93]. Diabetes also affects normal immune system function, specifically 

leading to complement system deficiencies, decreased activity of natural killer cells and 

neutrophils, and decreased responses by lymphocytes [94–98]. Insulin deficiency leads to 

malnutrition by promoting a catabolic state and malnutrition itself is known to 1) impair 

lung function by decreasing muscle mass, specifically of the diaphragm and intercostal 

muscles [44,99,100] and 2) directly affecting the immune status [101].

Hyperglycaemia can affect lung function, and a rat model of diabetes showed there are 

changes in the synthesis and turnover of connective tissue leading to thickening of 

pulmonary septal walls [102]. Another mechanism of lung dysfunction in CFRD is defective 

bacterial clearance in the lung [103]. Increased glucose levels within airways secondary to 

CFRD resulted in increased bacterial proliferation in vitro compared to cultures with normal 

glucose levels [103]. This is of interest as one can imagine any decrease in lung function 

would be magnified in CF patients with underlying lung disease [44,46].

In animal models, it has been reported that streptozotocin-treated CF mice have a reduced 

ability to clear bacteria from the lung and that they have an increased but less effective 

pulmonary inflammatory cell response [68,69]. It is also interesting that newborn CF ferrets 

have poorly regulated blood glucose and insulin levels [18], while also demonstrating 

heightened inflammatory response in the lung prior to bacterial colonization [104]. 

Furthermore, the lungs of CFTR knockout ferrets are very rapidly colonized by bacteria, 

requiring multiple antibiotics during rearing to adulthood [105] and also have rapidly 

progressing pancreatic disease that influences glucose metabolism [18]. Whether these 
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observations regarding lung inflammation and infection are linked to the severity of 

pancreatic inflammation and endocrine dysfunction remains to be determined. It has been 

shown that hyperglycaemia during diabetes inhibits leukocyte function, therefore 

contributing to a decreased host defence during infections, including those of the lung 

[106,107]. All of these findings indicate that early and sustained insulin therapy and 

nutritional supplementation may be beneficial for CF patients, even before onset of 

clinically evident CFRD [108–110].

Future directions for animal models of CF

Animal models are necessary to understand disease pathogenesis and to develop treatments 

for human diseases. The CF field is fortunate to have a large number of animal models to 

facilitate research discovery in these areas. These animal models have also significantly 

aided in the study of early CF disease processes that are difficult to examine in CF infants 

and children. As evident from this review, CF patients often have multiple disease 

manifestations that confound the study of each affected organ system. As already 

accomplished in mice, enhanced tools for genetic engineering in larger animal models will 

also soon allow for the dissection of CF disease processes in a single affected organ system, 

which is impossible in humans. Such models will aid in the understanding of multi-organ 

aspects of CF disease pathogenesis and how disease processes in different organs influence 

the overall progression of disease in the whole animal. For example, models that have the 

ability to reduce CFTR expression and/or restore CFTR expression in specific organs such 

as “gut-corrected” (iFABP) CF pig and ferret [60,65], will allow for the dissection of gut-

lung and gut-pancreas disease relationships. Comparative studies between the multiple 

animal models of CF has also allowed researchers to better understand aspects of CFTR and 

organ physiology that contribute to CF pathogenesis, and the potential influences of 

modifier genes on disease processes [10,21,67]. All of these models have aided in our 

understanding of CF and most importantly provide great opportunity for testing therapies 

targeted at the multiple organs affected in disease.
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Figure 1. 
H&E images of lesions of the pancreas in the wild-type and CF pig, ferret and zebrafish. A. 

Wild-type newborn pig pancreas. B. CF newborn pig pancreas highlighting dilated acinus 

tissue (inset) filled with lightly eosinophilic secretions (arrow). Bars = 200µm (inset bars = 

20µm). C. Adult pig pancreas showing normal exocrine and endocrine (arrows) pancreatic 

tissue. D. CF adult pig pancreas demonstrating dilated pancreatic ducts (arrows), loss of 

exocrine pancreatic tissue and fatty infiltration (asterisks) (Bars = 200 µm). E. Wild-type 

newborn ferret pancreas. Inset highlights a normal islet surround by exocrine tissue. F. CF 

newborn ferret pancreas with acinus dilation (arrows) Bars = 200µm (inset bars = 20µm). G. 

Wild-type adult ferret pancreas showing normal pancreatic islets (arrows) surrounded by 

exocrine pancreatic tissue. H. CF adult ferret pancreas with abundant loose fibrous 

connective tissue (asterisks), multifocal inflammatory cell infiltrates and multifocal islands 

of dilated acini and ducts filled with lightly eosinophilic secretions (arrows) (Bars = 100 

µm). I. Wild-type zebrafish pancreas at 1 year post fertilization. J. cftr mutant zebrafish 

pancreas at 1 year post fertilization showing loss of exocrine pancreas, fibrosis and dilated 

pancreatic ducts (white arrows) (bars = 50 µm) (reprinted with permission) [12].
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Figure 2. 
Insulin immunohistochemistry (IHC) images of pancreatic islets from CF pigs, ferrets and 

human patients. A, B, C. Adult pancreata stained with insulin from WT pig (A), WT ferret 

(B) and normal human (C) Bars = 100 µm. D. Newborn CF pig pancreas stained with insulin 

to show abundance of islets even with exocrine pancreatic destruction. Bar = 200 µm. E. 

Insulin IHC of newborn CF ferret pancreas. Bar = 200 µm. F. Higher magnification images 

of B demonstrating the different sized islets present. There were more small islets (S) in CF 

ferrets compared to WT with fewer large (L) islets while medium (M) sized islets were not 

different (19). Bar = 20µm. G, H. Insulin IHC performed on human CF patients highlighting 

the lack of exocrine tissue with remnant insulin immunoreactive islets (arrows). I. Insulin 

IHC on a human CF patient with CFRD demonstrating a paucity of insulin 

immunoreactivity and abundance of adipose tissue.
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